This invention relates generally to a backpack with side bolsters and, more specifically, to side bolsters for stabilizing the backpack and providing ventilation between the backpack and a wearer of the backpack.
Conventional backpacks are generally configured with either an internal or external frame coupled to a compartment for carrying gear, such as, but not limited to clothing, food, water bottles and sleeping gear. Internal frame backpacks are generally more stable, but the weight or load of the gear in the load compartment should be selectively distributed to help improve the vertical and rotational stability of the backpack relative to a wearer. By way of example, one type of conventional internal frame backpack includes flexible stays arranged within frame material. The flexible stays may be arranged vertically, horizontally, or in some other direction in an attempt to transfer the load in the load compartment to the shoulder straps and the waist belt of the backpack.
Stabilizing the backpack on the wearer, maintaining a desired amount of ventilation between the backpack and the wearer, and providing a comfortable fit after the backpack has been loaded and strapped onto the wearer has always been some of the primary challenges in designing and configuring a backpack. In some environments, where heavy backpack loads are required or where the backpack is to be worn with other gear, such as body armor in a military environment, the above-identified design challenges become even more difficult to overcome. By way of example, backside armor is generally curved or contoured to at least somewhat conform to the general shape of a soldier's back. Conventional backpacks tend to ride on and slide relative to the backside armor. Under heavy load conditions, such as when the backpack includes a substantial amount of weight (e.g., food, clothing, ammunition, communications gear, etc.), the backpack may become unstable relative to the backside armor. To stabilize the backpack, soldier's often have to highly tighten the waist belt, which in turn presses the backside armor into the soldier's back and entraps body heat.
U.S. Patent Publication No. 2005/02025634 to Han describes cushion pads for backpacks. Each cushion pad includes a porous filter which is placed inside the net fabric to dissipate heat to the atmosphere, and a sheet which is made of a material such as polyurethane and layered on a surface of the porous filter. The sheet is inserted along with the porous filter into a space defined between the net fabric and the cloth of the backpack. Han suggests that the cushion pads provide improved ventilation and elasticity to the backpack and the shoulder straps of the backpack.
U.S. Patent Publication No. 2004/0134955 to Williams describes a ventilation system that may be attached to a conventional backpack. The ventilation system elevates the backpack, hydration pack, fanny pack, or the like off the wearer's skin. The ventilation system includes pliable supports that provide for pressure relief and good ventilation between a wearer's back and the conventional backpack. Williams suggests that the purpose of the invention is to support and elevate the backpack off of the wearer's skin or other bodily part in order to reduce the pack's surface area in contact with the wearer, thusly increasing ventilation and exposed wearer's body surface area to maximize cooling, therefore reducing perspiration and water consumption, while increasing performance, comfort, and physical and mental endurance.
Japanese Patent No. JP09252840 by Shigeharu describes a back panel and cushioning system that includes a back panel that couples to the backpack. The back panel substantially over a width of the wearer's back and includes left and right edges that are curved in a direction away from the back. Cushioning devices are coupled to the left and right edges and generally extend from an upper edge to a lower edge of the back panel. Shigeharu suggests that the space created between the back panel and the wearer's back because the cushioning devices offset the backpack from the wearer's back provides improved ventilation.
The present invention generally relates to a backpack having stabilizing and ventilating side bolsters, and a method for securing and releasing the side bolsters. In accordance with an aspect of the invention, a backpack includes a frame; a load compartment coupled to the frame; shoulder straps coupled to the frame; and a pair of side bolsters coupled to the frame by fastening devices.
The side bolsters are comprised of a semi-rigid material, such as high-density polyurethane or polystyrene foam. The side bolsters include a plurality of channels to allow air flow through the side bolsters and away from the wearer. The side bolsters may be firmly coupled to the frame by fastening devices including a combination of straps and clips disposed either through slots in the side bolster or around the perimeter of the side bolster. In a preferred embodiment, the density of the side bolsters is in the range of 0.5 lbs/ft3 to 10.0 lbs/ft3, in a more preferred embodiment the range of density is 2.0 to 4.0 lbs/ft3.
The side bolsters function to cooperate with the frame and stabilize the backpack under load while providing improved ventilation between the backpack and a back side of a wearer of the backpack. The side bolsters have a center axis oriented substantially vertically to structurally cooperate with the frame in providing stability for the load compartment. The center axes of the side bolsters are spatially separated in a forward direction from the forward surface of the frame. The side bolsters thereby contour around the backside of the wearer to provide stability for the load compartment and to allow ventilation.
The channels may be formed in a circular or oval cross-section to provide stabilizing support for the backpack while allowing air flow in a direction away from the forward surface of the backpack. The channels are formed laterally from one side of the side bolster to the other side to permit air flow away from the backside of the wearer. By way of example, the side bolsters may be formed for a particular environment, for a particular body type, or for particular loads to be carried in the backpack. For example, the side bolsters may be manufactured with a variable stiffness, size, material, density, and other aspects of the side bolsters.
In accordance with another aspect of the invention, a stabilizing system for a backpack includes the pair of side bolsters made from a semi-rigid material, and a pair of sleeves coupled to the backpack and sized to receive the side bolsters. The sleeves are made from a breathable material, wherein a side bolster is arranged in a sleeve to provide an amount of vertical stabilization to the backpack. The sleeves are horizontally spaced apart from each other by approximately the width of the back pad and the sleeves are oriented approximately vertically. The sleeves are made from a breathable material and the side bolsters cooperate with the sleeves to move air from the back pad area and away from the spaced apart region formed by the sleeves in a direction away from the back pad. The sleeves may include a zipper for opening the sleeve to access the side bolsters for removal. Alternatively, the sleeve may include other means of securing the side bolster to the backpack, such as a hook and loop fastener or snap buttons.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details or with various combinations of these details. In other instances, well-known structures and methods associated with backpacks, backpack frames, shoulder and waist harness systems, and various other accessory items usable with a backpack may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention. The term backpack as used herein generally refers to a soft-covered carrier designed for carrying belongings or items on a person's back within the carrier. In addition, the term backpack, as used herein, includes, but is not limited to, carriers that may be referred to by other names such as a rucksack, knapsack, pack, carrier, bag, and daypack.
As will be described in further detail below, at least one embodiment of the invention includes a backpack having stabilizing and ventilating side bolsters coupled to a frame. The backpack may be configured to operate in a variety of environments such as a in the military, on a climbing, hiking, or camping trip, or for general traveling. The side bolsters function to cooperate with the frame and stabilize the backpack under load while providing improved ventilation between the backpack and a back side of a wearer of the backpack. Stabilizing the backpack includes reducing or even preventing bulging when the backpack is under load. By way of example, the side bolsters may be formed for a particular environment, for a particular body type, or for particular loads to be carried in the backpack. Stabilization also includes retaining the position of the pack relative to the body (and any body armor) of the wearer. Thus, the bolsters aid the side-to-side position retention (both lateral shifting and rocking) of the pack relative to the wearer.
The illustrated frame 112 is commonly referred to as a “soft-frame” because the stays are flexible enough to form and generally move with the wearer, yet structurally strong and stiff enough to support the load compartment 102, shoulder harness 104, and waist belt 106 even when the load compartment 102 contains a substantial amount of weight, for example more than thirty pounds (30 lbs.). The length, width, thickness, and material of the stays 118, 128 may be selected depending on a desired purpose of the backpack 100.
In one embodiment, a first side portion 132 is coupled to a mid portion 134 of the side bolster 110. By way of example, the first side portion 132 may be coupled to the mid portion 134 with a fastening system 136, for example a zipper device, a hook and loop fastening system (e.g., VELCRO®), an adhesive or bonding agent, or an equivalent system. However, the side bolster 110 does not have to be coupled together with the fastening system 136 to hold its rolled configuration because the side bolster 110 may be rolled and then placed into the breathable sleeve 111 (
Referring to
Side bolsters 110 may alternatively be constructed of other materials. Closed or open cell materials may be used, including rubber or foam. The density can be selected based on the load to be carried. The stiffness may vary based on the selection of the bolster material as well. The material may be rolled from a sheet form, as discussed above, or may be one or more blocks of material stacked together vertically or otherwise. The material may be progressively more dense or stiff as it extends away from the back of the user or may vary vertically in compressibility. Various materials and material arrangements may be employed to meet the needs of the load and the user.
Briefly referring back to
The illustrated frame 112 is commonly referred to as a “soft-frame” because the stays are flexible enough to form and generally move with the wearer, yet structurally strong and stiff enough to support the load compartment 102, shoulder harness 104, and waist belt 106 even when the load compartment 102 contains a substantial amount of weight, for example more than thirty pounds (30 lbs.). The length, width, thickness, and material of the stays 118, 128 may be selected depending on a desired purpose of the backpack 100.
Slots 121 are formed laterally through side bolster 110 to receive the fastening devices 123 when coupling the side bolsters to the backpack (
The side bolsters 110 have a center axis 125 oriented substantially vertically to structurally cooperate with frame 112 in providing stability for the load compartment 102. The center axes 125 of side bolsters 110 are spatially separated in a forward direction from the forward surface of frame 112 that is laterally adjacent bolsters 110 (
The side bolsters 110 may be comprised of various semi-rigid materials having various densities to help stabilize the backpack 100 with respect to the wearer. According to a presently preferred embodiment, side bolsters 110 are comprised of high-density foam having a range of density of approximately 0.5 lbs/ft3 to 10.0 lbs/ft3, in a more preferred embodiment the range of density is 2.0 to 4.0 lbs/ft3. Side bolsters 110 may alternatively be constructed of other materials. Closed or open cell materials may be used, including rubber or polymers. The density can be selected based on the load to be carried. The stiffness may vary based on the selection of the bolster material as well. The material may be progressively more dense or stiff as it extends away from the back of the user or may vary vertically in compressibility. Various materials and material arrangements may be employed to meet the needs of the load and the user.
In a presently preferred embodiment, each side bolster assembly includes at least four straps 115 that are secured to frame 112 by stitching the ends of straps 115 to the fabric of frame 112. As described above, one pair of straps is secured to the frame near the upper portion of the side bolster, and another pair of straps is secured near the lower portion of the side bolster. Straps 115 are therefore secured to frame 112 behind side bolster 110 when it is secured to the frame by virtue of engaging clips 117 to one another (
Fastening devices 123 may include a plurality of straps and clips extending vertically over a substantial portion of the backpack 110 to provide additional structural support. Alternatively, two or more side bolsters 110 may be stacked vertically on one side of the back pad 108. In a preferred embodiment, fastening devices 123 firmly secure side bolsters 110 to load compartment 102 to provide structural stability to the system. Another purpose of side bolsters 110 is to offset or space the backpack 100 away from the back of the wearer. In one application, the side bolsters 110 have been found to be advantageous on military-style backpacks to stabilize the backpack 100 while maintaining the backpack 100 away from or nested and contoured with an armored plate (not shown) worn on the backside of a soldier (not shown).
The sleeves 204 may extend vertically over a substantial portion of the backpack 100 or may be truncated to have a shorter height, for example a height approximately equivalent to a height of the waist belt 106. Further, the sleeves 111 may take the form of a plurality of sleeves vertically aligned with one another and extending over the substantial portion of the backpack 100 or may be arranged in other configurations on the backpack 100. In one embodiment, the sleeves 204 are made from a woven fabric in which the selected weave pattern permits a substantial amount of airflow through the sleeves 204. Slots 121 of the side bolster 110 may not be necessary in this embodiment, but they may improve ventilation in cooperation with channels 119.
The backpack with side bolsters according to any of the embodiments described above may advantageously improve or enhance ventilation to the wearer's backside and may advantageously cooperate with the frame to increase the stability of the load compartment of the backpack. In addition, the side bolsters may be arranged to replace rigid plastic extension members located near the hip belts on some backpacks.
Embodiments of the present invention also include a method of stabilizing the backpack by engaging the clips to secure the side bolsters to the frame of the backpack, including the step of releasing the clips to remove the side bolsters, as previously described in connection with
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined by reference to the claims that follow.
This application constitutes a continuation-in-part of co-pending, commonly-owned U.S. application Ser. No. 12/032,541 filed on Feb. 15, 2008, the contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4318502 | Lowe et al. | Mar 1982 | A |
4324012 | Cannaday | Apr 1982 | A |
5894977 | Krueger et al. | Apr 1999 | A |
6193122 | Buckley | Feb 2001 | B1 |
6607107 | Dexheimer | Aug 2003 | B2 |
6820783 | Beale | Nov 2004 | B2 |
20040134955 | Williams | Jul 2004 | A1 |
20050205634 | Han | Sep 2005 | A1 |
20060163305 | Tong | Jul 2006 | A1 |
20060208024 | Gleason | Sep 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20130140337 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12032541 | Feb 2008 | US |
Child | 13408792 | US |