None.
None.
1. Field of the Disclosure
The present disclosure relates generally to preventing or reducing treeing effects on media sheets imaged by electrophotographic imaging devices, and particularly to the use of end cap members associated with the backup roll of a fuser assembly for such imaging devices.
2. Description of the Related Art
Current belt fuser assemblies of electrophotographic imaging devices include a metal belt encasing a ceramic slab heater, and a backup roll having a silicone rubber layer and a smooth polyperfluoroalkoxy-tetrafluoroethylene (PFA) sleeve at least partly surrounding the rubber layer. In the fuser assembly, the backup roll and the belt with the heater are pressed together to form the fuser nip, which is the surface area that the media sheets contact and pass through in order to fuse a toner image on the sheet to the sheet itself. The metal belt may be a Teflon coated metal belt for monochrome imaging devices or a metal tube with a rubber layer and a PFA sleeve for color imaging devices.
“Treeing” is an effect that occurs when the sheet passes through the fuser nip and begins to corrugate and then eventually fold in on itself. Certain inconsistencies in the media sheet or printer design will cause the sheet to be compressed along its width such that wrinkles begin to form in the sheet. If these wrinkles become severe, treeing will occur. The result of treeing is that a crease is formed down the length of the media sheet that varies in length and depth.
Many known factors lead to treeing, the most common issues. For instance, treeing is more likely to occur when the media sheet is skewed as it enters the fuser nip, i.e., the leading edge of the sheet is not parallel with the fuser nip. Further, treeing is known to occur if the profile of the fuser nip is improperly designed or manufactured. Another factor that may cause treeing is the media sheet absorbed moisture from its environment, causing it to have a wavy edge and/or inconsistent width along the length of the sheet.
Accordingly, there is a need for an improved system for reducing or otherwise eliminating the occurrence of treeing in electrophotographic imaging devices.
Embodiments of the present disclosure are directed to a fuser assembly for an imaging device, including a heat transfer member for generating heat; a backup roll coupled to the heat transfer member and rotatable therewith. The backup roll includes a central core and a rubber layer surrounding the central core. The fuser assembly further includes a pair of end cap members, each end cap member being disposed at an end of the backup roll and dimensioned for substantially preventing outward expansion of the rubber layer in an axial direction of the backup roll.
The above-mentioned and other features and advantages of the disclosed example embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed example embodiments in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings. Terms such as “first”, “second”, and the like, are used to describe various elements, regions, sections, etc. and are not intended to be limiting. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the disclosure and that other alternative configurations are possible.
Reference will now be made in detail to the example embodiments, as illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
Each developer unit 20 is operably connected to a toner reservoir 35 for receiving toner for use in a printing operation. Each toner reservoir 35 is controlled to supply toner as needed to its corresponding developer unit 20. Each developer unit 20 is associated with a photoconductive member 40 that receives toner therefrom during toner development to form a toned image thereon. Each photoconductive member 40 is paired with a transfer member 45 to define a transfer station 50 for use in transferring toner to ITM 30 at first transfer area 15.
During color image formation, the surface of each photoconductive member 40 is charged to a specified voltage by a charge roller 55. At least one laser beam LB from a printhead or laser scanning unit (LSU) 60 is directed to the surface of each photoconductive member 40 and discharges those areas it contacts to form a latent image thereon. In one embodiment, areas on the photoconductive member 40 illuminated by the laser beam LB are discharged. The developer unit 20 then transfers toner to photoconductive member 40 to form a toner image thereon. The toner is attracted to the areas of the surface of photoconductive member 40 that are discharged by the laser beam LB from LSU 60.
ITM 30 is disposed adjacent to each of developer unit 20. In this embodiment, ITM 30 is formed as an endless ITM disposed about a drive roller and other rollers. During image forming operations, ITM 30 moves past photoconductive members 40 in a clockwise direction as viewed in
ITM 30 rotates and collects the one or more toner images from the one or more photoconductive members 40 and then conveys the one or more toner images to a media sheet at a second transfer area 65. Second transfer area 65 includes a second transfer nip formed between a back-up roller 70 and a second transfer member 75.
A fuser assembly 80 is disposed downstream of second transfer area 65 and receives media sheets with the unfused toner images superposed thereon. In general terms, fuser assembly 80 applies heat and pressure to the media sheets in order to fuse toner thereto. After leaving fuser assembly 80, a media sheet is either deposited into an output media area 85 or enters duplex media path 90 for transport to second transfer area 65 for imaging on a second surface of the media sheet.
Image forming device 10 is depicted in
Image forming device 10 further includes a controller 95 and an associated memory 97. Memory 97 may be any volatile and/or non-volatile memory such as, for example, random access memory (RAM), read only memory (ROM), flash memory and/or non-volatile RAM (NVRAM). Alternatively, memory 97 may be in the form of a separate electronic memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or DVD drive, or any memory device convenient for use with controller 95. Though not shown in
With reference to
Fuser belt 120 is disposed around housing 110 and heater element 115. Backup roll 105 contacts fuser belt 120 such that fuser belt 120 rotates about housing 110 and heater element 115 in response to backup roll 105 rotating. With fuser belt 120 rotating around housing 110 and heater element 115, the inner surface of fuser belt 120 contacts heater element 115 so as to heat fuser belt 120 to a temperature sufficient to perform a fusing operation to fuse toner to sheets of media.
Backup roll 105 includes a central core constructed from metal or the like and a rubber layer, such as a silicone rubber layer, surrounding the core. In addition, backup roll 105 may include a smooth sleeve made from PFA.
In an example embodiment, the profile of fuser nip N has a substantially hourglass shape. An hourglass shape ensures that fuser nip N will touch the ends of the leading edge of a sheet of media to be fused before the middle portion thereof. A substantially hourglass shape can be manipulated with changes to fuser belt 120, backup roll 105, the force applied to the ends of fuser belt 120 and backup roll 105, and the deflection of the heater assembly. Two non-trivial variables that were found to help the nip profile and have a significant effect on avoiding treeing are the profile of backup roll 105 as well as the profile of fuser belt 120.
In an example embodiment, fuser belt 120 is a profiled stainless steel belt and backup roll 105 has a straight (e.g., cylindrical) core with a profiled rubber layer. A profiled shape means that there is a larger diameter at the ends of each of backup roll 105 and fuser belt 100 than in the corresponding middle portions.
Even with fuser belt 100 and backup roll 105 having crowned profiles as described above, treeing continued to be occasionally observed at ambient conditions on high toner coverage pages. After observing pages going through from a cold start (when fuser backup roll 105 and belt 120 are at room temperature), it was also noticed that corrugation along the media sheet worsened as time went on and backup roll 105 became hotter. It is believed that as backup roll 105 increased in temperature, the profiled rubber layer thereof was losing its desired effect as it thermally expanded outwardly in the axial plane or direction of backup roll 105. Also, when there is a relatively high amount of toner on the media sheet, the sheet is no longer being driven (or less driven) by the fuser belt 100 and is instead driven by backup roll 105. In a second embodiment, also depicted in
During fusing operations, the rubber layer of backup roll 105 is seen to undesirably undergo thermal expansion in the outward, axial direction, relative to the rotational axis of backup roll 105, which altered the profile of the rubber layer and/or backup roll 105 and adversely affected the ability of fuser nip N to pull a media sheet in a lateral direction as the sheet passed through it. Accordingly, example embodiments include a pair of end caps 140, each of which is attached to shaft 142 of backup roll 105. End caps 140 are sized and shaped to contact the rubber layer of backup roll 105 so as to prevent the rubber layer from outwardly expanding in the axial direction of backup roll 105 and thereby maintain the crowned shape for substantially eliminating or otherwise reducing treeing on the fused sheet. End caps 140 are constructed from a rigid material, such a metal.
End cap 140 also includes a second portion 150 which extends radially outwardly from first portion 144. The extent second portion 150 radially extends outwardly from first portion 144 is such that a contact surface 152 contacts the rubber layer of backup roll 105 when end cap 140 is secured to shaft 142 of backup roll 105, and prevents the rubber layer from expanding outwardly in the axial direction of backup roll 105. The outer diameter of second portion 150 is between about 26 mm and about 30 mm, such as 28 mm The surface area of contact surface 152 is sized to prevent such axial expansion of the rubber layer. Radially inward from contact surface 152 is a recessed area 154. Recessed portion 154 may have an outer diameter between about 18 mm and about 24 mm, such as 21 mm, and may be recessed about 1.5 mm from contact surface 152. Recessed portion 154 allows for more even contact of contact surface 152 of end cap 140 with the rubber layer of backup roll 105 without being constrained by the metal core thereof. In addition, recessed portion 154 allows for more relaxed tolerance of the end of rubber layer of backup roll 105.
In an example embodiment, first portion 144 and second portion 150 are both constructed from metal and are integrally formed as a unitary member. In another example embodiment, all or part of first portion 144 is constructed from metal and all or part of second portion 150 is constructed from a rigid plastic that is secured to first portion 144 using an adhesive or other known securement mechanism. It is understood that other embodiments may utilize metal, plastic (with or without glass fibers) and/or other suitably rigid material.
As shown in
The foregoing description of several example embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Pursuant to 35 U.S.C. §119, this application claims the benefit of the earlier filing date of Provisional Application Ser. No. 61/892,414, filed Oct. 17, 2013, entitled “Fuser Backup Roll Thermal Axial Constraint and Fuser Therefor,” the content of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61892414 | Oct 2013 | US |