Backwash method

Information

  • Patent Grant
  • 7938966
  • Patent Number
    7,938,966
  • Date Filed
    Friday, October 10, 2003
    20 years ago
  • Date Issued
    Tuesday, May 10, 2011
    13 years ago
Abstract
A filtration arrangement including one or more membrane modules (5) positioned vertically within a feed tank (6), each membrane module (5) having one or more membranes positioned therein. An aeration hood (10) having an upper wall (11) and one or more downwardly extending side walls (12, 13) is configured to at least partially shroud the membrane modules (5) within the tank (6). The aeration hood (10) includes a number of open-ended tubes (14), each extending downwardly from the upper wall (11) and forming a respective opening (15) therein. Each tube (14) is adapted to have at least one of the modules (5) mounted therein and extending through the respective openings (15) in the upper wall (11) so as to at least partially surround an outer periphery of an associated module or modules (5). One or more aeration openings (17) are provided in each tube (14) at a location spaced from a proximal end of the tube (16). The aeration hood side wall or walls (12, 13) extend to below the location of the aeration openings (17) in the tubes (14). Gas providing means (18) feed gas into the hood (10).
Description
FIELD OF THE INVENTION

The present invention relates to membrane filtration systems, and more particularly to those systems employing porous or permeable membranes located in a tank or cell open to atmosphere and a backwash method and arrangement therefor.


BACKGROUND ART

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.


Porous membrane filtration systems require regular backwashing of the membranes to maintain filtration efficiency and flux while reducing transmembrane pressure (TMP) which rises as the membrane pores become clogged with impurities. Typically, during the backwash cycle the impurities are forced out of the membrane pores by pressurised gas, liquid or both into the feed tank or cell. Impurities may also be removed from the membrane surfaces by scouring with gas bubbles. The liquid containing impurities and deposits from the membranes is then drained or flushed from the tank.


The waste liquid displaced from the tank needs to be disposed of or reprocessed, usually in an environmentally safe manner, so any reduction in the volume of such waste liquid is seen as advantageous in terms of environmental impact and cost.


The draining or flushing of the tank, particularly when large arrays of membranes are used also requires time which results in down time of the filtration cycle. In order to reduce this down time large pumping systems are required to quickly drain and refill the tank. Where tanks or cells are arranged in banks and feed is used to refill the tank, a lowering in levels in other cells may be produced during the refill process. This again impinges on operating efficiency of the filtration system.


Further, in filtration systems employing gas bubble scouring of the membranes it has been found advantageous to confine the bubbles as much as possible in the region of the membranes to assist with the scouring process.


Reduction in backwash volume also reduces the volume of chemical cleaning agents required in some systems. This has the two-fold advantage of reducing cost in terms of chemical requirements while also reducing waste disposal problems.


Minimising the footprint of filtration systems is also desirable in terms of space eventually occupied by the filtration plant. Compact systems have lesser impact on the environment and are more acceptable to the market.


The distribution of gas across large membrane module arrays often leads to complex distribution systems and thus it is desirable to reduce the complexity of such systems where possible.


It has been found advantageous to reduce the volume of feed liquid in the filtration cell as well as confine scouring bubbles as much as possible in order to ameliorate the above problems and provide at least some of the advantages outlined above.


DISCLOSURE OF THE INVENTION

The present invention seeks to overcome one or more of the abovementioned problems of the prior art, provide one or more of the advantages outlined above or at least provide a useful alternative.


According to one aspect, the present invention provides a filtration arrangement including one or more membrane modules positioned vertically within a feed tank, each membrane module having one or more membranes positioned therein, an aeration hood having an upper wall and one or more downwardly extending side walls configured to at least partially shroud said membrane modules within said tank, said aeration hood including a number of open-ended tubes, each extending downwardly from said upper wall and forming a respective opening therein, each tube adapted to have at least one of said modules mounted therein and extending through said respective openings in the upper wall so as to at least partially surround an outer periphery of an associated module or modules, one or more aeration openings being provided in each tube at a location spaced from a proximal end of said tube, said aeration hood side wall or walls extending to below the location of said aeration openings in said tubes, and gas providing means for feeding gas into said hood.


In one preferred form, one or more of said aeration hood side walls are formed by side walls of the feed tank with the upper wall being sealingly attached to the side wall so formed.


For preference, the aeration openings are provided at or adjacent the distal end of each tube and the aeration hood side wall or walls extend to or below the downward extent of a distal end of said tubes.


Preferably, each membrane module has an associated tube surrounding an outer periphery thereof. For preference, the openings comprise a number of through holes located around the periphery of each tube and spaced from the distal end of said tube. In one form, the gas providing means may comprise an aeration header located below the aeration hood.


In one preferred form, the at least one module includes a sleeve surrounding the outer periphery to prevent flow of gas therethrough. The sleeve extends part way along the length of the module to define an open region at or adjacent the lower end of the module to allow flow of gas into the module through said open region, and the hood is positioned to shroud the module at the location of the open region such that gas passing through the aeration openings may pass through the open region into the module membranes.


Desirably openings or an open region are also provided at the top of the module to allow escape of the gas from the module and entry of liquid into the module.


According to another aspect, the present invention provides a method of cleaning membrane modules in arrangement according to the above aspect including the steps of:

    • i) suspending the filtration operation;
    • ii) displacing feed liquid within the aeration hood to a level below the location of said aeration openings in each tube by feeding gas into said aeration hood while maintaining a liquid seal with the distal end of each tube;
    • iii) passing said gas through said aeration openings into said tubes and along surfaces of membranes within each membrane module to dislodge accumulated fouling materials therefrom;
    • iv) recommencing the filtration operation.





BRIEF DESCRIPTION OF THE DRAWING

A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 shows a pictorial perspective view of one preferred embodiment of the invention; and



FIG. 2 shows a simplified schematic side elevation view of one module of a further embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the FIG. 1 of the drawings, the arrangement consists of a rack of membrane modules 5 suspended in an open feed tank 6 having a feed inlet 7. The modules 5 are suspended from a group manifold 8 which in turn is connected to main filtrate conduit 9 which extends across the top of the tank 6 and connects to each of the manifolds 8. Located and supported within the tank 6 is a hollow structure forming an aeration hood 10 consisting of an upper wall 11 and side walls 12 and 13. The aeration hood 10 has four side walls (two of which have been cutaway to show the internal configuration of the filter arrangement) and is open at its base. It will be appreciated that the walls of the hood can be formed by the sides or walls of the feed tank 6 with the upper wall extending between the tank walls and being sealingly attached thereto (not shown). The aeration hood 10 further includes a number of open-ended tubes 14 corresponding to the number of membrane modules 5 which extend downwardly from the upper wall 11 and form openings 15 therein. Each module 5 is accommodated within a corresponding tube 14 which at least partially surrounds the outer periphery of each module 5. Adjacent the distal end 16 of each tube 14 and spaced around the circumference of the tube 14 is a row of aeration holes 17. The size and number of aeration holes will vary with type and size of module and requirements in terms of maintaining a desired pressure drop to ensure a liquid seal with the distal end 16 of the tube 14. Several rows of holes may be provided along the length of the tube 14 at spaced locations, each row having varying sized holes to control the flow of gas. While holes are shown, a variety of openings may be used including slots extending upwardly from the end of the tube 14. The use of slots may provide self-regulation of the desired pressure drop. A series of aeration lines 18 are provided along the bottom 18 of the feed tank 6.


The aeration and cleaning process according to this embodiment may be described as follows. The filtration process is suspended and backwash commenced with backwash gas, typically air, being supplied from aeration lines 18 under the aeration hood 10 so as to bubble up into the void space between the tubes 14. It will be appreciated that gas could also be fed directly into the aeration hood 10 through a pipe or the like. The gas that bubbles up from the aeration lines 18 displaces feed liquid from within the aeration hood 10. The liquid level in the aeration hood 10 drops until it is below the row of aeration holes 17 near the distal end 16 of the tubes 14. The gas then flows through the holes 17 and into the sides of the module 5 suspended inside the tubes 14. This gas then provides a scrubbing action to scour the membranes within the module 5, whilst the tubes 14 serve to contain the gas within the module 5 thus promoting more effective cleaning.


The distal end 16 of the tube typically extends about 50 to 100 mm below the aeration holes 17 in the tube 14, though it will be appreciated that the aeration holes may be located at any desired location along the length of the tube 14 and several rows of holes may be provided. The pressure drop across the aeration holes 17 is selected to ensure that a liquid seal is maintained between the holes 17 and the end 16 of the tubes 14. A gap 19 may also be provided between the end 16 of the tube 14 and the bottom 20 of the module 5 to allow solids to exit from the bottom 20 of the modules.


A further embodiment of hood arrangement is shown in FIG. 2. In this embodiment, the membrane module 5 is provided with a sleeve or wrapping 21 along part of its length which assist with retention of aeration gas within the module 5. The sleeve 21 only extends along a part of the module length leaving an open region 22 adjacent the lower end 23 of the module 5. This open region 22 allows flow of feed, backwash and gas to and from the module 5. In this embodiment, the hood 10 is abbreviated in form and shrouds the module 5 at the location of the open region 22 so that the aeration openings 17 are positioned adjacent the open region 22 to allow free movement of aeration gas into the membranes of the module 5. A further open region or aperture (not shown) is provided at the top of the module 5 to allow the escape of gas and flow of liquid to and from the module.


While the invention has been described in relation in relation to a feed tank open to atmosphere, it will be appreciated that the invention is equally applicable to a closed, pressurized filtration system.


It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described.

Claims
  • 1. A filtration arrangement comprising: an aeration hood comprising an upper wall and at least one downwardly extending side wall, the at least one side wall at least partially shrouding at least one membrane module vertically positioned within a feed tank, the aeration hood comprising at least one open-ended tube distinct from any side wall of the aeration hood, the at least one open-ended tube extending downwardly from the upper wall, the aeration hood configured and arranged such that a gas fed into the aeration hood will displace feed liquid and lower a level of feed liquid in the aeration hood,each of the at least one open-ended tubes having at least one of the at least one membrane modules mounted therein, at least one of the at least one membrane modules in fluid communication with an interior of the feed tank through a lower end of the at least one open-ended tube,at least one aeration inlet in a wall of the at least one open-ended tube, andthe at least one downwardly extending side wall extending to below the location of the at least one aeration inlet in the wall of the at least one open-ended tube.
  • 2. The filtration arrangement according to claim 1, wherein at least one of the aeration hood side walls is formed by a side wall of the feed tank with the upper wall being sealingly attached to the at least one aeration hood side wall.
  • 3. The filtration arrangement according to claim 1, wherein the at least one aeration inlet is disposed adjacent to a lower end of the at least one open-ended tube.
  • 4. The filtration arrangement according to claim 1, wherein each of the at least one membrane modules is mounted in a corresponding open-ended tube.
  • 5. The filtration arrangement according to claim 1, wherein the at least one aeration inlet is shaped as a slot.
  • 6. The filtration arrangement according to claim 1, further comprising an aeration header located below the aeration hood.
  • 7. The filtration arrangement according to claim 1, wherein the at least one side wall extends downward to at least a downward extent of a lower end of the at least one open-ended tube.
  • 8. The filtration arrangement according to claim 5, wherein the at least one aeration inlet is spaced adjacent to a lower end of the at least one open-ended tube.
  • 9. The filtration arrangement according to claim 1, wherein the at least one aeration inlet is shaped as an open-ended slot extending upwardly from a lower end of the at least one open-ended tube.
  • 10. The filtration arrangement of claim 1, wherein the at least one aeration inlet in the wall of the at least one open-ended tube is at a location spaced from the upper end of the at least one open-ended tube.
  • 11. A filtration arrangement comprising: at least one membrane module positioned vertically within a feed tank;a sleeve surrounding a periphery of the at least one membrane module, the sleeve extending partially along a length of the at least one membrane module, and having an open region adjacent to a lower end of the at least one membrane module;an aeration hood positioned within the feed tank, distinct from the sleeve, positioned to shroud the at least one membrane module at the location of the open region, the aeration hood configured and arranged such that a gas fed into the aeration hood will displace feed liquid and lower a level of feed liquid in the aeration hood;at least one aeration opening in a wall of the aeration hood positioned adjacent to the open region, the aeration hood constructed and arranged to direct a gas through the at least one aeration opening and into an interior of the sleeve through the open region upon displacement of the feed liquid in the aeration hood; andat least one aeration outlet in the sleeve above an upper wall of the aeration hood.
  • 12. The filtration arrangement of claim 10, wherein the open region is defined by at least one opening in the sleeve.
  • 13. A water treatment system, comprising: an aeration hood submerged in water to be treated, the aeration hood comprising an upper wall with an opening;a tube distinct from any side wall of the aeration hood at least partially submerged in the water to be treated, the tube having a first open end sealingly secured to the upper wall at the opening; anda membrane module disposed within the tube, the tube extending part way along the length of the membrane module and defining an open region adjacent a lower end of the membrane module, the open region comprising a portion of the lower end of the membrane module extending from a lower end of the tube, the membrane module in fluid communication with the water to be treated through the opening in the upper wall.
  • 14. The water treatment system of claim 13, further comprising an aeration header submerged below the aeration hood.
  • 15. The water treatment system of claim 13, wherein the tube comprises at least one aeration inlet disposed at a tube wall thereof.
  • 16. The water treatment system of claim 15, wherein the membrane module is in fluid communication with water to be treated within the aeration hood through the at least one aeration inlet.
  • 17. The water treatment system of claim 15, wherein the membrane module is in fluid communication with air in the aeration hood through the at least one aeration inlet.
  • 18. The water treatment system of claim 17, wherein the tube has a second open end in fluid communication with the water to be treated within the aeration hood.
  • 19. The water treatment system of claim 18, wherein at least one aeration opening is disposed proximate the second open end.
  • 20. A method of cleaning a membrane module disposed in a tank comprising: immersing in feed liquid a filtration arrangement comprising an aeration hood shrouding the membrane module, the aeration hood comprising an open-ended tube distinct from any side wall of the aeration hood extending downwardly from an upper wall of the aeration hood, the open-ended tube partially enclosing the membrane module, a portion of a lower end of the membrane module extending from a lower end of the open-ended tube, the open-ended tube comprising an aeration inlet in a wall of the open-ended tube at a location spaced from an upper end thereof;lowering a liquid level in the aeration hood by displacing feed liquid within the aeration hood with a gas; andpassing the gas through the aeration inlet into a volume enclosed by the open-ended tube.
  • 21. The method of cleaning the membrane module of claim 20, further comprising maintaining a liquid seal at a lower end of the tube.
  • 22. The method of cleaning the membrane module of claim 21, further comprising maintaining a pressure drop across the aeration inlet sufficient to maintain the liquid seal.
  • 23. The method of cleaning the membrane module of claim 20, further comprising withdrawing permeate through the membrane module.
  • 24. The method of cleaning the membrane module of claim 20, wherein the act of passing gas through the aeration inlet comprises scouring the membrane module with gas passed through the aeration inlet.
  • 25. The method of claim 20, wherein displacing the feed liquid within the aeration hood with a gas comprises displacing the feed liquid to a level below the location of the aeration inlet.
Priority Claims (2)
Number Date Country Kind
2002951974 Oct 2002 AU national
2002952048 Oct 2002 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/AU03/01338 10/10/2003 WO 00 4/11/2005
Publishing Document Publishing Date Country Kind
WO2004/033078 4/22/2004 WO A
US Referenced Citations (500)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Killsman Aug 1969 A
3472765 Okey et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Bray Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3591010 Pall et al. Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin et al. Apr 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hall et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Ammadio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Müller Apr 1985 A
4519909 Castro May 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4963304 Im et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Klüver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Müller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 Loker Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
5783083 Henshaw et al. Jul 1998 A
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Gröschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6620319 Behmann et al. Sep 2003 B2
6627082 Del Vecchio Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Côté Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowel Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7361274 Lazaredes et al. Apr 2008 B2
7378024 Bartels et al. May 2008 B2
7387723 Jordan Jun 2008 B2
7404896 Muller et al. Jul 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7510655 Barnes Mar 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7713413 Barnes May 2010 B2
7718057 Jordan May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan May 2010 B2
20010047962 Zha et al. Dec 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030226797 Phelps Dec 2003 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040084369 Zha et al. May 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007205 Johnson et al. Jan 2007 A1
20070007214 Zha et al. Jan 2007 A1
20070045183 Murphy Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070227973 Zha et al. Oct 2007 A1
20080053923 Beck et al. Mar 2008 A1
Foreign Referenced Citations (251)
Number Date Country
3440084 Sep 1983 AU
5584786 Mar 1985 AU
7706687 Jul 1986 AU
762091 Nov 2000 AU
1050770 Jan 1995 CN
1249698 Apr 2000 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
194735 Sep 1876 EP
012577 Feb 1983 EP
126714 Nov 1984 EP
050447 Oct 1985 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
463627 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
395133 Feb 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
1034835 Sep 2000 EP
1052012 Nov 2000 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1659171 May 2006 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
2253572 Sep 1992 GB
54-162684 Dec 1979 JP
55-129155 Jun 1980 JP
55-099703 Jul 1980 JP
55-129107 Oct 1980 JP
56-021604 Feb 1981 JP
56-118701 Sep 1981 JP
56-121685 Sep 1981 JP
57-190697 Nov 1982 JP
58-088007 May 1983 JP
60-019002 Jan 1985 JP
60-206412 Oct 1985 JP
60-260628 Dec 1985 JP
61-097005 May 1986 JP
61-097006 May 1986 JP
61-107905 May 1986 JP
61-167406 Jul 1986 JP
61-167407 Jul 1986 JP
61-171504 Aug 1986 JP
61-192309 Aug 1986 JP
61-222510 Oct 1986 JP
61-242607 Oct 1986 JP
61-249505 Nov 1986 JP
61-257203 Nov 1986 JP
61-263605 Nov 1986 JP
61-291007 Dec 1986 JP
61-293504 Dec 1986 JP
62-004408 Jan 1987 JP
62-068828 Mar 1987 JP
62-114609 May 1987 JP
62-140607 Jun 1987 JP
62-144708 Jun 1987 JP
62-163708 Jul 1987 JP
62-179540 Aug 1987 JP
62-237908 Oct 1987 JP
62-250908 Oct 1987 JP
62-262710 Nov 1987 JP
63-097634 Apr 1988 JP
63-099246 Apr 1988 JP
63-143905 Jun 1988 JP
63-171607 Jul 1988 JP
63-180254 Jul 1988 JP
S63-38884 Oct 1988 JP
01-075542 Mar 1989 JP
06-027215 Mar 1989 JP
01-151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-026625 Jan 1990 JP
02-031200 Feb 1990 JP
02-040296 Feb 1990 JP
02-107318 Apr 1990 JP
02-126922 May 1990 JP
02-144132 Jun 1990 JP
02-164423 Jun 1990 JP
02-241523 Sep 1990 JP
02-284035 Nov 1990 JP
2277528 Nov 1990 JP
02277528 Nov 1990 JP
03-018373 Jan 1991 JP
03-028797 Feb 1991 JP
03-110445 May 1991 JP
04-108518 Apr 1992 JP
04-110023 Apr 1992 JP
04-187224 Jul 1992 JP
04-250898 Sep 1992 JP
04-256424 Sep 1992 JP
04-265128 Sep 1992 JP
04-293527 Oct 1992 JP
04-310223 Nov 1992 JP
04-334530 Nov 1992 JP
04-348252 Dec 1992 JP
05-023557 Feb 1993 JP
05-096136 Apr 1993 JP
05-137977 Jun 1993 JP
05-157654 Jun 1993 JP
05-161831 Jun 1993 JP
05-285348 Nov 1993 JP
06-071120 Mar 1994 JP
06-114240 Apr 1994 JP
06-218237 Aug 1994 JP
06-277469 Oct 1994 JP
06-285496 Oct 1994 JP
06-343837 Dec 1994 JP
07-000770 Jan 1995 JP
07-024272 Jan 1995 JP
07-047247 Feb 1995 JP
07-068139 Mar 1995 JP
07-136470 May 1995 JP
07-136471 May 1995 JP
07-155758 Jun 1995 JP
07-178323 Jul 1995 JP
07-185268 Jul 1995 JP
07-185271 Jul 1995 JP
07-236819 Sep 1995 JP
07-251043 Oct 1995 JP
07-275665 Oct 1995 JP
07-289860 Nov 1995 JP
07-303895 Nov 1995 JP
08-010585 Jan 1996 JP
09-072993 Mar 1997 JP
09-099227 Apr 1997 JP
09-141063 Jun 1997 JP
09-155345 Jun 1997 JP
09-187628 Jul 1997 JP
09-220569 Aug 1997 JP
09-271641 Oct 1997 JP
09-324067 Dec 1997 JP
10-024222 Jan 1998 JP
10-033955 Feb 1998 JP
10-048466 Feb 1998 JP
10076264 Mar 1998 JP
10-085565 Apr 1998 JP
10-156149 Jun 1998 JP
10-085562 Jul 1998 JP
10-180048 Jul 1998 JP
11-005023 Jan 1999 JP
11-028467 Feb 1999 JP
11-076769 Mar 1999 JP
11-156166 Jun 1999 JP
11-165200 Jun 1999 JP
11-333265 Jul 1999 JP
11-033365 Sep 1999 JP
11-033367 Sep 1999 JP
11-302438 Nov 1999 JP
11-319501 Nov 1999 JP
11-319507 Nov 1999 JP
2000-000439 Jan 2000 JP
2000070684 Mar 2000 JP
2000-185220 Apr 2000 JP
2000-157850 Jun 2000 JP
2000-233020 Aug 2000 JP
2000-237548 Sep 2000 JP
2000-300968 Oct 2000 JP
2000-317276 Nov 2000 JP
2001-009246 Jan 2001 JP
2001-070967 Mar 2001 JP
2001-079366 Mar 2001 JP
2001-079367 Mar 2001 JP
2001-104760 Apr 2001 JP
2001-179059 Jul 2001 JP
2001-190937 Jul 2001 JP
2001-190938 Jul 2001 JP
2001-205055 Jul 2001 JP
2000-342932 Dec 2002 JP
2003-053160 Feb 2003 JP
2003047830 Feb 2003 JP
2003-062436 Mar 2003 JP
2003-135935 May 2003 JP
2004-230280 Aug 2004 JP
05-279447 Oct 2005 JP
2005-279447 Oct 2005 JP
09-192458 Jul 2007 JP
07-313973 May 2010 JP
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
2005-063478 Jun 2005 KR
1020491 Oct 2003 NL
1021197 Oct 2003 NL
88-00494 Jan 1988 WO
88-06200 Aug 1988 WO
89-00880 Feb 1989 WO
90-00434 Jan 1990 WO
91-04783 Apr 1991 WO
91-16124 Oct 1991 WO
93-02779 Feb 1993 WO
93-15827 Aug 1993 WO
93-23152 Nov 1993 WO
94-11094 May 1994 WO
95-34424 Dec 1995 WO
96-07470 Mar 1996 WO
96-28236 Sep 1996 WO
96-41676 Dec 1996 WO
97-06880 Feb 1997 WO
98-22204 May 1998 WO
98-25694 Jun 1998 WO
98-28066 Jul 1998 WO
98-53902 Dec 1998 WO
99-01207 Jan 1999 WO
99-59707 Nov 1999 WO
00-18498 Apr 2000 WO
00-30742 Jun 2000 WO
WO0100307 Jan 2001 WO
WO 0100307 Jan 2001 WO
WO0100307 Jan 2001 WO
01-19414 Mar 2001 WO
01-32299 May 2001 WO
01-36075 May 2001 WO
WO 0132299 May 2001 WO
01-45829 Jun 2001 WO
02-40140 May 2002 WO
03-000389 Jan 2003 WO
03-013706 Feb 2003 WO
03-057632 Jul 2003 WO
03-059495 Jul 2003 WO
03-068374 Aug 2003 WO
2004-101120 Nov 2004 WO
2005-005028 Jan 2005 WO
2005-021140 Mar 2005 WO
2005-028086 Mar 2005 WO
2005-037414 Apr 2005 WO
2005-077499 Aug 2005 WO
2005-107929 Nov 2005 WO
2006-029456 Mar 2006 WO
WO2006047814 May 2006 WO
Related Publications (1)
Number Date Country
20060000774 A1 Jan 2006 US