The present invention relates to medical valves and more particularly to bacteria-retaining medical valves.
The following publications are believed to represent the current state of the art:
U.S. Pat. Nos. 4,479,874; 4,797,259; 5,139,668; 5,401,403; 5,569,209; 5,851,390; 5,961,326; 6,736,138; 6,743,214 and 7,179,378.
The present invention seeks to provide a bacteria-retaining medical valve or an improved bacterial filter for medical use.
There is thus provided in accordance with a preferred embodiment of the present invention a bacteria-retaining medical valve including a housing defining a liquid inlet and a liquid outlet, a valve located within the housing downstream of the liquid inlet and a bacterial filter assembly located within the housing downstream of the valve and upstream of the liquid outlet. The bacterial filter assembly includes hydrophilic bacterial impermeable passageways which are configured to permit liquid passage therethrough and prevent bacterial passage therethrough and air passage therethrough and hydrophobic bacterial impermeable passageways which are configured to permit air passage therethrough and prevent bacterial passage therethrough and liquid passage therethrough.
Preferably, at least an upstream part of the bacterial filter assembly reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly and at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly at at least some of the hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
In accordance with a preferred embodiment of the present invention the hydrophobic bacterial impermeable passageways are formed in an air vent filter which is upstream of the hydrophilic bacterial impermeable passageways.
Preferably, the bacterial filter assembly includes a folded bacterial filter element which, when folded, has multiple, non co-planar liquid and air passage surfaces. Additionally or alternatively, the bacterial filter assembly includes a spiral wound filter element and spacer. Alternatively or additionally, the bacterial filter assembly includes an envelope formed of a filter substrate which encloses a spacer and is formed with a single aperture.
In accordance with a preferred embodiment of the present invention the bacterial filter assembly includes a bundle of mutually spaced hollow fibers.
There is also provided in accordance with another preferred embodiment of the present invention a bacteria-retaining medical filter including a housing defining a liquid inlet and a liquid outlet and a bacterial filter assembly located within the housing downstream of the liquid inlet and upstream of the liquid outlet, the bacterial filter assembly including hydrophilic bacterial impermeable passageways which are configured to permit liquid passage therethrough and prevent bacterial passage therethrough and air passage therethrough and hydrophobic bacterial impermeable passageways which are configured to permit air passage therethrough and prevent bacterial passage therethrough and liquid passage therethrough, and wherein at least an upstream part of the bacterial filter assembly reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly and at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly at at least some of the hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
Preferably, the bacterial filter assembly includes a folded bacterial filter element which, when folded, has multiple, non co-planar liquid and air passage surfaces. In accordance with a preferred embodiment of the present invention the bacterial filter assembly includes a spiral wound filter element and spacer. Additionally or alternatively, the bacterial filter assembly includes an envelope formed of a filter substrate which encloses a spacer and is formed with a single aperture.
Preferably, the bacterial filter assembly includes a bundle of mutually spaced hollow fibers.
There is further provided in accordance with yet another preferred embodiment of the present invention a bacteria-retaining medical valve including a housing defining a liquid inlet and a liquid outlet, a valve located within the housing downstream of the liquid inlet and a bacterial filter assembly located within the housing downstream of the valve and upstream of the liquid outlet, the bacterial filter assembly being formed of a plurality of hollow fibers and including hydrophilic bacterial impermeable passageways which are configured to permit liquid passage therethrough and prevent bacterial passage therethrough and air passage therethrough and hydrophobic bacterial impermeable passageways which are configured to permit air passage therethrough and prevent bacterial passage therethrough and liquid passage therethrough.
Preferably, at least an upstream part of the bacterial filter assembly reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly and at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly at at least some of the hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
There is even further provided in accordance with still another preferred embodiment of the present invention a bacteria-retaining medical valve including a housing defining a liquid inlet, a liquid outlet and an air vent aperture, a valve located within the housing downstream of the liquid inlet and a bacterial filter assembly located within the housing downstream of the valve and upstream of the liquid outlet, including at least one filter substrate and at least one spacer folded together to define a folded structure including hydrophilic bacterial impermeable passageways which are configured to permit liquid passage therethrough and prevent bacterial passage therethrough and air passage therethrough and hydrophobic bacterial impermeable passageways communicating with the air vent aperture, which are configured to permit air passage therethrough and prevent bacterial passage therethrough and liquid passage therethrough.
In accordance with a preferred embodiment of the present invention the bacterial filter assembly includes a folded bacterial filter element which, when folded, has multiple, non co-planar liquid and air passage surfaces. Preferably, the bacterial filter assembly includes a spiral wound filter element and spacer. Additionally or alternatively, the bacterial filter assembly includes an envelope formed of a filter substrate which encloses a spacer and is formed with a single aperture.
In accordance with a preferred embodiment of the present invention the bacterial filter assembly includes a bundle of mutually spaced hollow fibers.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As seen in
The forward housing portion 102 preferably includes a forward, outwardly threaded, generally hollow cylindrical wall portion 110 and a rearward forwardly rounded, generally hollow cylindrical wall portion 112 having a rearward edge 114. Forward generally hollow cylindrical wall portion 110 defines a tapered axial opening 116 which leads into a generally cylindrical bore 118, thence to a rearwardly tapered portion 120 and a broadened, forwardly curved portion 122. Part of rearwardly tapered portion 120 and forwardly curved portion 122 lies interiorly of rearward forwardly rounded, generally hollow cylindrical wall portion 112.
The rearward housing portion 104 defines a central axial male luer portion 130, which terminates in a flange 132, having a forwardly facing surface 134 and from which a rearward outer cylindrical wall portion 136 extends rearwardly. Rearward outer cylindrical wall portion 136 is spaced from and overlies part of the male luer portion 130 and is formed with interior luer lock threading 138 on an inner cylindrical surface thereof and a central bore 139. Extending forwardly from flange 132 is a forward outer cylindrical wall 140 having a forward edge 142 and defining an interior cylindrical wall surface 144.
The support element 106 preferably comprises an apertured base 150 having a central axial aperture 152. Extending from aperture base 150 is a circumferential wall portion 154 having a forward edge 156 and defining an interior facing cylindrical wall surface 158. Circumferential wall portion 154 defines a forward outwardly facing cylindrical wall surface 160, a rearward outwardly facing cylindrical wall surface 162 and a flange 164 therebetween, which defines respective forward and rearward facing ring surfaces 166 and 168. Base 150 defines a forwardly facing surface 170 and a rearwardly facing surface 172.
A valve 180, such as a Cat. Number 245204024, commercially available from Halkey Roberts of St. Petersburg, Fla., USA, or a CLAVE® valve, commercially available from ICU Medical of San Clemente, Calif., USA, here shown a Halkey Roberts valve, including a forward cylindrical portion 182 having an axial slit 184, a rearwardly outwardly tapered portion 186 and a cylindrical body portion 188, having a rearwardly facing surface 190, is preferably located within forward housing portion 102 and support element 106. Forward cylindrical portion 182 of valve 180 seats in generally cylindrical bore 118 of forward housing portion 102 and rearwardly outwardly tapered portion 186 of valve 180 seats in rearwardly tapered portion 120 of the forward housing portion 102. Valve 180 defines an axial fluid flow passageway 192 therewithin communicating with slit 184.
Cylindrical body portion 188 of valve 180 is located within a volume 194 (as shown in
A bacterial filter assembly 200 is preferably located in a volume 202 (as shown in
In accordance with one embodiment of the present invention, as seen in
As seen in
Reference is now made to
When a male luer 310 is inserted at the forward end of the bacteria-retaining medical valve 100, engaging opening 116 and bore 118 of forward housing portion 102, and thereby opening slit 184, fluid, such as an infusion solution in which both air bubbles 302 and bacteria 306 may be present, flows through the male luer 310 and passageway 192 of valve 180 via aperture 152 and entry passage 212 to the interior of bacterial filter assembly 200. Inside bacterial filter assembly 200, the fluid passages along and through spacer 216 and the bacteria 306 are retained in the filter substrate 210. Air bubbles 302 pass through the hydrophobic regions 214 of the filter substrate 210 which define hydrophobic bacterial impermeable passageways and liquid passes through the remaining regions of the filter substrate 210, which are hydrophilic and which define hydrophilic bacterial impermeable passageways.
It is appreciated that in an embodiment of the present invention, at least an upstream part of bacterial filter assembly 200 reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly 200. This pressure reduction is produced, for example, by the passage of liquid inside bacterial filter assembly 200, along the fluid passages along and through spacer 216.
Thus it is understood that at least one pressure reducing passageway substantially reduces the pressure of liquid reaching at least some of the hydrophilic bacterial impermeable passageways downstream thereof.
It is a particular feature of the present invention that at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly 200 at those hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
Reference is now made to
Elements of the bacteria-retaining medical valve 400 which are identical to those of bacteria-retaining medical valve 100 are designated by identical reference numerals.
In the embodiment of
As seen in
Reference is now made to
When a male luer 510 is inserted at the forward end of the bacteria-retaining medical valve 400, engaging opening 116 and bore 118 of forward housing portion 102, and thereby opening slit 184, fluid, such as an infusion solution in which both air bubbles 502 and bacteria 506 may be present, flows through the male luer 510 and fluid passage 192 of valve 180 via aperture 152 and entry passage 212 to the interior of bacterial filter assembly 402. Inside bacterial filter assembly 402, the fluid passes along and through spacer 216 and the bacteria 506 are retained in the filter substrate 210. Air bubbles 502 pass through the hydrophobic regions 214 of the filter substrate 210 which define hydrophobic bacterial impermeable passageways and liquid passes through the remaining regions of the filter substrate 210, which are hydrophilic and which define hydrophilic bacterial impermeable passageways.
It is appreciated that in this embodiment of the present invention, at least an upstream part of bacterial filter assembly 402 reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly 402.
Thus it is understood that at least one pressure reducing passageway substantially reduces the pressure of liquid reaching at least some of the hydrophilic bacterial impermeable passageways downstream thereof.
It is a particular feature of the present invention that at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly 402 at those hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
Reference is now made to
In the embodiment of
The hydrophilic filter substrate 606, the spacer sheet 610 and the hydrophobic filter substrate 612 are circumferentially sealed together, as by ultrasonic or heat sealing, for example, to provide a precursor filter assembly 604.
The precursor filter assembly 604 is preferably folded as shown so as to have entry passage defining aperture 608 centered on a top facing surface thereof, as shown, to define filter assembly 600.
The filter assembly 600 is preferably adhered to rearward facing surface 172 (
Reference is now made to
In the embodiment of
The precursor filter assembly 704 is preferably folded as shown so as to have entry passage defining aperture 708 centered on a top facing surface thereof, as shown, to define filter assembly 700.
The filter assembly 700 is preferably adhered to rearward facing surface 172 (
Reference is now made to
In
When a male luer 810 is inserted at the forward end of the bacteria-retaining medical valve 602, engaging opening 116 (
It is appreciated that in this embodiment of the present invention, at least an upstream part of bacterial filter assembly 600 reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly 600.
Thus it is understood that at least one pressure reducing passageway substantially reduces the pressure of liquid reaching at least some of the hydrophilic bacterial impermeable passageways downstream thereof.
It is a particular feature of the present invention that at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly 600 at those hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
Reference is now made to
As seen in
The forward housing portion 902 preferably includes a forward, outwardly threaded, generally hollow cylindrical wall portion 910 and a rearward forwardly rounded, generally hollow cylindrical wall portion 912 having a rearward edge 914. Forward generally hollow cylindrical wall portion 910 defines an tapered axial opening 916 which leads into a generally cylindrical bore 918, thence to a rearwardly tapered portion 920 and a broadened, forwardly curved portion 922. Part of rearwardly tapered portion 920 and forwardly curved portion 922 lies interiorly of rearward forwardly rounded, generally hollow cylindrical wall portion 912.
The rearward housing portion 904 defines a central axial male luer portion 930, which terminates in a flange 932, having a forwardly facing surface 934 and from which a rearward outer cylindrical wall portion 936 extends rearwardly. Rearward outer cylindrical wall portion 936 is spaced from and overlies part of the male luer portion 930 and is formed with interior luer lock threading 938 on an inner cylindrical surface thereof and a central bore 939. Extending rearwardly from flange 932 is a forward outer cylindrical wall 940 defining a forwardly facing outwardly protruding ring surface 942.
The support element 906 preferably comprises an apertured base 950 having a central axial aperture 952 from which extends a forwardly extending circumferential wall portion 954, having a forward edge 956 and defining an interior facing cylindrical wall surface 958. Circumferential wall portion 954 defines a forward outwardly facing cylindrical wall surface 960 which defines a forward facing ring surface 962 and a rearward outwardly facing cylindrical wall surface 964. Base 950 defines a forwardly facing surface 966 and a rearwardly facing surface 968. Extending rearwardly from base 950 is a rearwardly extending circumferential wall portion 970 having a rearward edge 972 and defining an interior facing cylindrical wall surface 974 in which there is provided an air vent hole and socket 976, which accommodates an air vent filter 978, such as a SUPOR® 450R membrane, commercially available from Pall Corporation of Port Washington, N.Y., USA, and an air vent cover 979.
A valve 980, such as a Cat. Number 245204024, commercially available from Halkey Roberts of St. Petersburg, Fla., USA, or a CLAVE® valve, commercially available from ICU Medical of San Clemente, Calif., USA, here shown a Halkey Roberts valve, including a forward cylindrical portion 982 having an axial slit 984, a rearwardly outwardly tapered portion 986 and a cylindrical body portion 988, having a rearwardly facing surface 990, is preferably located within forward housing portion 902 and support element 906. Forward cylindrical portion 982 of valve 980 seats in generally cylindrical bore 918 of forward housing portion 902 and rearwardly outwardly tapered portion 986 of valve 980 seats in rearwardly tapered portion 920 of the forward housing portion 902. Valve 980 defines an axial fluid flow passageway 992 therewithin communicating with slit 984.
The cylindrical body portion 988 of valve 980 is located within a volume 994 (as seen in
A bacterial filter assembly 1000 is preferably located in a volume 1002 (as shown in
In accordance with one embodiment of the present invention, as seen in
As seen in
The downstream side of filter assembly 1000 communicates with a fluid passageway defined by bore 939 of male luer 930.
Reference is now made to
When a male luer 1110 is inserted at the forward end of the bacteria-retaining medical valve 900, engaging opening 916 and bore 918 of forward housing portion 902, and thereby opening slit 984, fluid, such as an infusion solution in which both air bubbles 1102 and bacteria 1106 may be present, flows through the male luer 1110 and passageway 992 of valve 980 via aperture 952 to the interior of volume 1002. The air bubbles 1102 are vented through the air vent at vent hole 976 via air vent filter 978.
The remaining fluid passes through the filter substrate 1010 to the interior of bacterial filter assembly 1000. Inside bacterial filter assembly 1000, the fluid passes along and through spacer 1016 and the bacteria 1106 are retained in the filter substrate 1010.
It is thus appreciated that in this embodiment the bacterial filter assembly 1000 and the air vent filter 978 together provide a bacterial filter assembly including hydrophilic bacterial impermeable passageways which are configured to permit liquid passage therethrough and prevent bacterial passage therethrough and air passage therethrough and hydrophobic bacterial impermeable passageways which are configured to permit air passage therethrough and prevent bacterial passage therethrough and liquid passage therethrough.
Reference is now made to
As seen in
The forward housing portion 1202 preferably includes a forward, outwardly threaded, generally hollow cylindrical wall portion 1210 and a rearward forwardly rounded, generally hollow cylindrical wall portion 1212 having a rearward edge 1214. Forward generally hollow cylindrical wall portion 1210 defines an tapered axial opening 1216 which leads into a generally cylindrical bore 1218, thence to a rearwardly tapered portion 1220 and a broadened, forwardly curved portion 1222. Part of rearwardly tapered portion 1220 and forwardly curved portion 1222 lies interiorly of rearward forwardly rounded, generally hollow cylindrical wall portion 1212.
The rearward housing portion 1204 defines a central axial male luer portion 1230, which terminates in a flange 1232, having a forwardly facing surface 1234 and from which a rearward outer cylindrical wall portion 1236 extends rearwardly. Rearward outer cylindrical wall portion 1236 is spaced from and overlies part of the male luer portion 1230 and is formed with interior luer lock threading 1238 on an inner cylindrical surface thereof. Extending forwardly from flange 1232 is a forward outer cylindrical wall 1240 having a forward edge 1242 and defining an interior generally cylindrical wall surface 1244. Interior generally cylindrical wall surface 1244 preferably defines a rearward circumferential shoulder 1246 and a forward circumferential shoulder 1248.
The support element 1206 preferably comprises an apertured base 1250 having a central axial aperture 1252 from which extends a forward circumferential wall portion 1254, having a forward edge 1256 and defining a forward interior facing cylindrical wall surface 1258. Circumferential wall portion 1254 defines a forward outwardly facing cylindrical wall surface 1260, a rearward outwardly facing cylindrical wall surface 1262 and a flange 1264 therebetween which defines respective forward and rearward facing ring surfaces 1266 and 1268. Base 1250 defines a forwardly facing surface 1270 and a rearwardly facing surface 1272. A rearward circumferential wall portion 1274 extends from base 1250. Wall portion 1274 has a rearward edge 1276 and defines a rearward interior facing cylindrical wall surface 1278. The outer surface of wall portion 1274 is a rearward continuation of rearward outwardly facing cylindrical wall surface 1262.
A valve 1280, such as a Cat. Number 245204024, commercially available from Halkey Roberts of St. Petersburg, Fla., USA, or a CLAVE® valve, commercially available from ICU Medical of San Clemente, Calif., USA, here shown a Halkey Roberts valve, including a forward cylindrical portion 1282 having an axial slit 1284, a rearwardly outwardly tapered portion 1286 and a cylindrical body portion 1288, having a rearwardly facing surface 1290, is preferably located within forward housing portion 1202 and support element 1206. Forward cylindrical portion 1282 of valve 1280 seats in generally cylindrical bore 1218 of forward housing portion 1202 and rearwardly outwardly tapered portion 1286 of valve 1280 seats in rearwardly tapered portion 1220 of the forward housing portion 1202. Valve 1280 defines an axial fluid flow passageway 1292 therewithin communicating with slit 1284.
The cylindrical body portion 1288 of valve 1280 is located within a volume 1294 defined by the interior of forwardly curved portion 1222 of forward housing portion 1202 and by the interior facing cylindrical wall surface 1258 of support element 1206. It is seen that preferably rearwardly facing surface 1290 of valve 1280 seats against forwardly facing surface 1270, when the forward housing portion 1202 is sealed to the support element 1206, as by ultrasonic sealing, with rearwardly facing surface 1214 of forward housing portion 1202 abutting forwardly facing ring surface 1266 of support element 1206.
A bacterial filter assembly 1300 is preferably located in an interior volume 1302 defined by interior cylindrical wall surface 1244 and forwardly facing surface 1234 of rearward housing portion and rearwardly facing surface 1272 of base 1250 of support element 1206, when rearward housing portion 1204 and support element 1206 are sealed together, as by ultrasonic sealing, with forwardly facing edge 1242 of rearward housing portion 1204 abutting ring surface 1268 of support element 1206.
In accordance with an embodiment of the present invention, as seen in
The hollow fibers 1303 are preferably formed of polysulfone. A preferred hollow fiber is CFP-2-E, commercially available from GE Healthcare of Pittsburgh, Pa., USA. In accordance with an embodiment of the present invention, each hollow fiber is treated so as to have a hydrophobic strip 1308 extending generally along its entire length and defining a hydrophobic region. The hydrophobic strip 1308 is preferably realized by applying to the hollow fiber a hydrophobic material, such as a siliconizing agent, for example MDX4®, commercially available from Dow Corning of Midland, Mich., USA. Following suitable curing of the hollow fibers 1303, the hollow fibers 1303 are arranged in a desired mutually spaced parallel arrangement and potted as shown in
As seen in
Reference is now made to
When a male luer 1410 is inserted at the forward end of the bacteria-retaining medical valve 1200, engaging opening 1216 and bore 1218 of forward housing portion 1202, and thereby opening slit 1284, fluid, such as an infusion solution in which both air bubbles 1402 and bacteria 1406 may be present, flows through the male luer 1410 and passageway 1292 of valve 1280 via aperture 1252 and upstream portion 1310 of interior volume 1302 to the interiors of the hollow fibers 1303 of bacterial filter assembly 1300. The bacteria 1406 are retained in the hollow fibers 1303. Air bubbles 1402 pass through the hydrophobic strip 1308 of the hollow fibers 1303, which define hydrophobic bacterial impermeable passageways, and liquid passes through the remaining regions of the hollow fibers 1303, which are hydrophilic and which define hydrophilic bacterial impermeable passageways.
It is appreciated that in this embodiment of the present invention, at least an upstream part of bacterial filter assembly 1300, such as the forward portions of the hollow fibers 1303, reduces the pressure of liquid reaching at least a downstream part of the bacterial filter assembly 1300, such as the rearward portions of the hollow fibers 1303.
Thus it is understood that at least one pressure reducing passageway substantially reduces the pressure of liquid reaching at least some of the hydrophilic bacterial impermeable passageways downstream thereof.
It is a particular feature of the present invention that at least some of the hydrophobic bacterial impermeable passageways are located so as to prevent air buildup within the bacterial filter assembly 1300 at those hydrophilic bacterial impermeable passageways at which the liquid pressure is substantially reduced, which would otherwise block liquid flow therethrough.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of various features described hereinabove as well as variations and modifications thereof which are not in the prior art.
Reference is made to U.S. Provisional Patent Application Ser. No. 61/462,407, filed Feb. 3, 2011 and entitled “FILTER CONTAINING NEEDLELESS VALVE”, the disclosure of which is hereby incorporated by reference and priority of which is hereby claimed pursuant to 37 CFR 1.78(a) (4) and (5)(i).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL12/00059 | 2/2/2012 | WO | 00 | 8/1/2013 |
Number | Date | Country | |
---|---|---|---|
61462407 | Feb 2011 | US |