Bacterial And Fungal Metabolites Possessing Anti-Microbial Activity Against Xanthomonas Species, Compositions, Methods, Kits And Uses Relating To Same

Information

  • Patent Application
  • 20210337806
  • Publication Number
    20210337806
  • Date Filed
    July 12, 2021
    2 years ago
  • Date Published
    November 04, 2021
    2 years ago
  • CPC
    • A01N63/25
    • A01N63/30
    • A01N63/22
  • International Classifications
    • A01N63/25
    • A01N63/22
    • A01N63/30
Abstract
Anti-microbial metabolites secreted from various bacterial and/or fungal species are described that have anti-bacterial activity against Xanthomonas species, which cause disease in plant hosts, including a wide variety of crops. Bacterial and fungal species producing such metabolites were identified from environmental samples (seeds, different vegetable organs and soil) from different geographic locations. Compositions, methods, uses, and kits relating to the identified anti-microbial metabolites are also described.
Description
INCORPORATION BY REFERENCE OF MATERIAL IN ASCII TEXT FILE

This application incorporates by reference the Sequence Listing contained in the following ASCII text file submitted in prior application Ser. No. 16/070,703 on Apr. 10, 2019:


File Name: 55911000001SequenceListing.txt; created Apr. 10, 2019; 10 KB in size.


BACKGROUND


Xanthomonas is a genus of Gram-negative rod-shaped bacteria that acts as a plant pathogen. Many Xanthomonas species cause serious diseases in hundreds of plant hosts, including a wide variety of economically important crops, such as tomato, pepper, lettuce, strawberries, walnuts, rice, citrus, banana, cabbage, and bean.


Approaches to control Xanthomonas pathogenic species on plants include the use of non-specific chemicals such as copper-based formulations, in which copper ions bind indescriminantly to sulfhydryl groups, accounting for their non-specific biocidal and anti-bacterial activity. However, free copper ions can penetrate through plant cuticles and cause severe phytotoxicity. Furthermore, reduced copper sensitivity among Xanthomonas strains has been reported in some areas (i.e., some Xanthomonas strains became copper-tolerant), necessitating the addition of other agents such as Maneb™ or Mancozeb™ fungicides to the copper-based formulations to increase efficacy. The use of copper-based formulations may also have a negative environmental impact, since copper ions are not degraded in soil and can accumulate to high levels at locations with a history of intensive copper application.


Alternative chemical control approaches have been investigated in which chemicals are applied that activate plant defense responses. For example, Systemic Acquired Resistance (SAR) is a biochemical state of the plant in which the plant develops greater resistance to a pathogen by previous infection by that pathogen or a different pathogen. Several substances that induce SAR have been investigated (e.g., acibenzolar-S-methyl; ASM). However, such SAR inducers may reduce crop yield since it is argued that energy is spent to activate the plant defense system instead of growth.


Biological control of plant diseases may offer a safer and more specific effective alternative to the use of synthetic chemicals, and may pose less environmental concerns. There is thus a need for biological products for controlling plant pest diseases, such as Xanthomonas species.


SUMMARY

The present inventors have unexpectedly discovered anti-microbial metabolites secreted by various bacterial and/or fungal species that have anti-bacterial activity against Xanthomonas species, which cause disease in plant hosts, including a wide variety of crops. Bacterial and fungal species producing these metabolites were identified from environmental samples (seeds, different vegetable organs and soil) from different geographic locations. Compositions, methods, uses, and kits relating to the identified anti-microbial metabolites are also described herein.


Accordingly, in some aspects, the present description relates to a composition comprising metabolites from a bacterial and/or fungal species, wherein the metabolites have antimicrobial activity against Xanthomonas species. In some embodiments, the metabolites may be extracellular bacterial and/or extracellular fungal metabolites (e.g., secondary metabolites). In some embodiments, the metabolites may be from a: Bacillus species; Paenibacillus species; Burkholderia species; Mortierella species; Giberella species; Fusarium species; Aspergillus species; Penicillium species; or any combination thereof. In some embodiments, the metabolites may be from: Paenibacillus polymyxa; Paenibacillus peoriae; Bacillus amyloliquefaciens; Burkholderia cepacia; Mortierella alpine; Giberella moniliformis; Fusarium oxysporum; Aspergillus niger Tiegh; Aspergillus hiratsukae; Penicillium ochrochloron; or any combination thereof. In some embodiments, the metabolites may be from Burkholderia cepacia, Paenibacillus polymyxa, Paenibacillus peoriae, and/or Bacillus amyloliquefaciens. In some embodiments, the metabolites may be from Paenibacillus peoriae. In some embodiments, the metabolites may be from Bacillus amyloliquefaciens. In some embodiments, the metabolites may be from Paenibacillus polymyxa T1B; Paenibacillus polymyxa 44; Paenibacillus sp. 62; Paenibacillus polymyxa 273 (since renamed as Paenibacillus peoriae 273); Paenibacillus polymyxa 329; Paenibacillus sp. 344; Paenibacillus polymyxa 390; Paenibacillus polymyxa To99 (since renamed as Paenibacillus peoriae To99; deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67020); Paenibacillus polymyxa TP12; Paenibacillus polymyxa TP29; Paenibacillus polymyxa TP77; Paenibacillus polymyxa V25T; Paenibacillus polymyxa TFr60; Paenibacillus sp. TFr101 (since renamed as Paenibacillus peoriae TFr101; deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67019); Paenibacillus polymyxa TAul; Paenibacillus polymyxa TM54; Bacillus amyloliquefaciens subsp. plantarum 16; Bacillus amyloliquefaciens subsp. plantarum 33; Bacillus amyloliquefaciens subsp. plantarum 71 (deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67021); Bacillus amyloliquefaciens subsp. plantarum 237; Bacillus amyloliquefaciens subsp. plantarum 335; Bacillus amyloliquefaciens subsp. plantarum VFb49; Burkholderia cepacia BC19; Burkholderia cepacia BC153; Mortierella sp. VFb1; Giberella sp. TFr4; Fusarium sp. Fl3 S; Aspergillus sp. 8PT; Aspergillus sp. FG; Penicillium sp. VFr37; or any combination thereof. In some embodiments, the metabolites may be from: Bacillus amyloliquefaciens subsp. plantarum 71 (deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67021); Paenibacillus polymyxa To99 (since renamed as Paenibacillus peoriae To99; deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67020); Paenibacillus polymyxa TFr101 (since renamed as Paenibacillus peoriae TFr101; deposited on Mar. 9, 2015 at the NRRL under No NRRL B-67019); or any combination thereof. In some embodiments, the metabolites may have antimicrobial activity against phytopathogenic Xanthomonas species. In some embodiments, the metabolites may have antimicrobial activity against Xanthomonas campestris, Xanthomonas perforans, Xanthomonas gardneri, or any combination thereof. In some embodiments, the Xanthomonas campestris may comprise Xanthomonas campestris MAPAQ #901 and/or Xanthomonas campestris ED1985, or the Xanthomonas gardneri may comprise Xanthomonas gardneri DCOOT7A. In some embodiments, the Xanthomonas perforans may comprises Xanthomonas perforans T1, T2, T3, T4, T5, or any combination thereof. In some embodiments, the Xanthomonas perforans may comprise Xanthomonas perforans T4. In some embodiments, the metabolites may further have antimicrobial activity against a plant and/or a human pathogenic microorganism. In some embodiments, the pathogenic microorganism may be a virus, bacteria, fungus (including a microscopic fungus), yeast, mold, or any combination thereof. In some embodiments, the pathogenic microorganism may be: Xanthomonas euvesicatoria; Xanthomonas fragariae; Xanthomonas perforans; Xanthomonas campestris; Xanthomonas gardneri; Pseudomonas syringae; Envinia amylovora; Burkholderia glumae; Escherichia coli; Bacillus subtilis; Staphylococcus aureus; Pseudomonas aeruginosa; or any combination thereof. In some embodiments, the pathogenic microorganism may be: Xanthomonas euvesicatoria R4; Xanthomonas gardneri DCOOT7A; Xanthomonas fragariae LMG 708; Pseudomonas syringae DC3000; Envinia amylovora 435; Burkholderia glumae LMG10905; Escherichia coli O157:H7 EDL933; Bacillus subtilis ED66; Staphylococcus aureus ED711; Pseudomonas aeruginosa PA416A; or any combination thereof. In some embodiments, the antimicrobial activity may comprise anti-bacterial and/or anti-fungal antagonistic activity. In some embodiments, the metabolites may exhibit higher antimicrobial activity against Xanthomonas species, as compared to other species. In some embodiments, the metabolites may comprise lipopeptides and/or siderophores having anti-Xanthomonas activity. In some embodiments, the lipopeptides and/or siderophores may be from Bacillus and/or Paenibacillus. In some embodiments, the lipopeptides may be non-ribosomal lipopeptides (NRPs). In some embodiments, the lipopeptides and/or siderophores may comprise surfactin, fengycin, plipastatin, iturin, bacilysin, bacillibactin, bacillomycin, locillomycin, paenilarvin, pelgipeptin, polymyxin, paenibacterin, fusaricidin, bacitracin, tridecaptin, or any combination thereof. In some embodiments, the metabolites may comprise plipastatin and/or locillomycin. In some embodiments, the composition defined herein may further comprise an agriculturally acceptable excipient. In some embodiments, the composition defined herein may further comprise one or more of: non-toxic carriers, surfactants, preservatives, nutrients, UV protectants, stickers, spreaders and chelating agents. In some embodiments, the composition may lack viable cells from the bacterial and/or fungal species. In some embodiments, the composition may be a cell-free composition. In some embodiments, the composition may be a cell-free supernatant. In some embodiments, the composition may comprise killed cells from the bacterial and/or fungal species. In some embodiments, the composition may lack viable cells from the bacterial and/or fungal species. In some embodiments, the composition may comprise viable cells from the bacterial and/or fungal species. In some embodiments, the composition may comprise spores from the bacterial and/or fungal species. In some embodiments, the composition may be in the form of a liquid, concentrate, powder, tablet, gel, pellets, granules, or any combination thereof. In some embodiments, the composition, once applied to a target plant, may have no detectable phytotoxic effect on the target plant, or on the fruits, nuts, or leaves thereof. In some embodiments, the composition may comprise at least 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 3500 ppm, 4000 ppm, 4500 ppm, 5000 ppm, 5500 ppm, 6000 ppm, 6500 ppm, 7000 ppm, 8000 ppm, 8500 ppm, 9000 ppm, or 9500 ppm of the metabolites. In some embodiments, the composition may comprise between about 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 3500 ppm, 4000 ppm, 4500 ppm, 5000 ppm, to about 10 000 ppm of the metabolites. In some embodiments, the compositions defined herein may be for use as an anti-microbial agent against a plant and/or human pathogenic microorganism. In some embodiments, the composition as defined herein may be a biopesticide.


In some aspects, the present description relates to the use of the compositions as defined herein as an anti-microbial agent against a plant and/or human pathogenic microorganism. In some aspects, the present description relates to the use of the compositions as defined herein for the manufacture of an anti-microbial agent against a plant and/or human pathogenic microorganism. In some embodiments, the pathogenic microorganism may be a Xanthomonas species. In some embodiments, the compositions or uses defined herein may be for application to a growing plant. In some embodiments, the growing plant may be a fruit plant, nut, cereal, vegetable, or flower. In some embodiments, the fruit may be: apple, apricot, banana, blackberry, blueberry, cantaloupe, cherry, cranberry, currant, grapes, greengage, gooseberry, honeydew, lemon, mandarin, melon, orange, peach, pears, pineapple, plum, raspberry, strawberry, tomatoes, watermelon, grapefruit, pepper, olive, or lime. In some embodiments, the nut may be: almond, beech nut, Brazil nut, butternut, cashew, chestnut, chinquapin, filbert, hickory nut, macadamia nut, pecan, walnut, or pistachio. In some embodiments, the cereal may be: amaranth, breadnut, barley, buckwheat, canola, corn, fonio, kamut, millet, oats, quinoa, cattail, chia, flax, kañiwa, pitseed goosefoot, wattleseed, rice, rye, sorghum, spelt, teff, triticale, wheat, or colza. In some embodiments, the vegetable may be: artichoke, bean, beetroot, broad bean, broccoli, cabbage, carrot, cauliflower, celery, chicory, chives, cress, cucumber, kale, dill, eggplant, kohlrabi, lettuce, onion, pepper, parsnip, parsley, pea, potato, pumpkin, radish, shallot, soybean, spinach, turnip, or peanut. In some embodiments, the growing plant may be a tomato plant; a pepper plant; a berry plant; a strawberry plant; lettuce; a citrus plant; a walnut plant; a rice plant; and/or a kiwi plant. In some embodiments, the flower may be: a species of the Euphorbiaceae; Euphorbia pulcherrima (poinsettia), Euphorbia milii (crown-of-thorns), Codiaeum variegatum (croton); a member of the family Rosaceae (Rosoideae/Rosa), Begoniaceae (Begonia), Araceae; Dieffenbachia, Anthurium, Philodendreae (Philodendron), Caladieae (Syngonium), English ivy or another Araliaceae species; Pelargonium (geranium), Ficus, Hydrangea, Zinnia, ornamental Prunus species, ornamental Peppers, or another flower and/or ornamental plant susceptible to infection by Xanthamonas. In some embodiments, the compositions or uses defined herein may be for application to a plant cell or tissue which may be: a leaf, a stem, a flower, a fruit, a tuber, a rhizome, a corm, a root, or any combination thereof.


In some aspects, the present description relates to a method for producing a composition as defined herein, the method comprising culturing viable cells from the bacterial and/or fungal species to produce the metabolites; and harvesting the metabolites produced therefrom. In some embodiments, the viable cells may be cultured in Landy medium or Tryptic Soy Broth (TSB). In some aspects, the present description relates to an antimicrobial composition produced by a method defined herein. In some aspects, the present description relates to a method for controlling the growth of a pathogenic microorganism on a target plant or tissue; the method comprising contacting the target plant or tissue with a composition as defined herein. In some embodiments, the contacting comprising spraying, irrigating, painting, daubing, and/or fogging, onto and/or into the target plant or tissue, the target plant or tissue's hydroponic substrate, and/or the target plant or tissue's agricultural earth.


In some aspects, the present description relates to a kit for preparing an aqueous solution for use in controlling pathogens on a plant tissue of a growing plant, the kit comprising: (a) an organism as defined herein which produces metabolites having antimicrobial activity against Xanthomonas species, and/or a composition as defined herein; and (b) a suitable container. In some embodiments, the container may be a pouch, a tablet, or a bucket. In some embodiments, the kit may be for use in controlling infection by the pathogenic microorganism on a plant. In some embodiments, the pathogenic microorganism may be a Xanthomonas species.


Deposit of Biological Material

Purified cultures of each of the bacterial strains Bacillus amyloliquefaciens subsp. plantarum 71; Paenibacillus peoriae To99; and Paenibacillus peoriae TFr101 were deposited at the Agricultural Research Service Culture Collection (NRRL) (USDA, ARS, 1815 North University Street, Peoria, Ill., 61604, USA) on Mar. 9, 2015. The deposits were made under the terms of the Budapest Treaty. “Bacillus amyloliquefaciens subsp. plantarum 71” has been assigned Accession number NRRL B-67021; “Paenibacillus peoriae To99” has been assigned Accession number NRRL B-67020; and “Paenibacillus peoriae TFr101” has been assigned Accession number NRRL B-67019. At the time of the deposit, isolates To99 and TFr101 were initially identified as “Paenibacillus polymyxa”. Further whole genome sequencing analyses presented herein (Example 7) subsequently revealed that these isolates may be more accurately classified as “Paenibacillus peoriae”. Thus, in some sections of the present description, while the isolates To99 and/or TFr101 may be still be referred to as Paenibacillus polymyxa, it is understood that they may also be referred to as Paenibacillus peoriae, while still referring to the same deposited organisms.





BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:



FIG. 1 shows the results of a phylogenetic analysis of bacteria within the genus Xanthomonas and the related genera Xylella and Stenotrophomonas.



FIG. 2 shows an example of how the isolated bacterial strains were screened to identify those having antagonistic activity against X. campestris ED740 (A) and X. campestris ED1985 (B). Halo boundaries are delineated by dotted circles.



FIG. 3 shows antagonistic activity of the bacterial strain “To65” against X. campestris ED1985. The halo boundary around the bacterial colony of strain “To65” is indicated with a dotted circle.



FIG. 4 shows an example of how isolated fungal strains were screened to identify those having antagonistic activity against X. campestris ED1985. The halo boundary around the fungal colony of strain “TAu20” is indicated with a dotted circle.



FIG. 5 shows the antimicrobial activity of three bacterial strains against X. perforans T4: Bacillus amyloliquefaciens subsp. plantarum 71 (“71”); P. polymyxa TFr101 (“TFr101”); and P. polymyxa To99 (“To99”). Halo boundaries are delineated by dotted circles.



FIG. 6 shows the antimicrobial activity of several fungal strains against X. perforans T4: (A) Penicillium sp. VFr37 (“VRf37”); and (B) Giberella sp. TFr4 (“TFr4”), Fusarium sp. F13S (“F13 S”). Halo boundaries are delineated by dotted circles.



FIG. 7 shows the agarose gel electrophoresis profiles of a PCR-amplified 390-bp region of the recA gene in two bacterial isolates: “19” and “153”. “+” is Burkholderia cepacia ATCC 25416, “−” is a negative control. Molecular sizes in base pairs of the DNA standard (GeneRuler™ 1 Kb DNA Ladder, Fermentas) are indicated in the left-hand margin.



FIG. 8 shows the bactericidal effect of a solution of copper:mancozeb (2:1) against Xanthomonas perforans T4. The halo boundary is indicated with a dotted circle.



FIG. 9 presents photographs showing the effects of different treatments on leaf spots on the leaves of tomato seedlings. In the individual panels, A: not-infected and treated by water; B: infected by X. perforans T4 and treated by Tryptic Soy Broth (TSB); C & D: infected by X. perforans T4 and treated by water—upper (C) and lower (D) leaves surfaces are shown; E & F: infected by X. perforans T4 and treated by copper plus mancozeb—upper (E) and lower (F) leaves surfaces are shown; G & H: infected by X. perforans T4 and treated by cell-free supernatant of B. amyloliquefaciens subsp. plantarum 71—upper (G) and lower (H) leaves surfaces are shown; I & J: infected by X. perforans T4 and treated by cell-free supernatant of P. polymyxa To99—upper (I) and lower (J) leaves surfaces are shown; K & L: infected by X. perforans T4 and treated by cell-free supernatant of P. polymyxa TFr101: upper (K) and lower (L) leaves surfaces are shown; M: not-infected and treated by cell-free supernatant of B. amyloliquefaciens subsp. plantarum 71; and N: not-infected and treated by cell-free supernatant of P. polymyxa To99; 0 & P: infected by X. perforans T4 and treated with cell-free supernatant of B. amyloliquefaciens subsp. plantarum VFb49: adaxial (O) and abaxial (P) leaves surfaces are shown; Q & R: infected by X. perforans T4, treated with cell-free supernatant of P. polymyxa 273: adaxial (Q) and abaxial (R) leaves surfaces.



FIG. 10 shows the antimicrobial activity of Bacillus amyloliquefaciens subsp. plantarum 10-fold diluted cell-free supernatants against Xanthomonas species.



FIG. 11 shows the antimicrobial activity of Paenibacillus polymyxa 10-fold diluted cell-free supernatants against Xanthomonas species.



FIG. 12 shows a typical print of an untreated tomato leaf in panel (A), and one treated with B. amyloliquefaciens subsp. plantarum 71 in panel (B) after 24 hours of incubation.



FIG. 13 shows microbial viability of bacterial isolates on tomato leaves as evaluated by the leaf print method. A whitish film on tomato leaves formed by Bacillus and Paenibacillus isolates 6 days after respective treatments (panels A, C, E, G, I), as well as leaf shape of their live bacterial colonies after leaf printing (panels B, D, F, H, J) are shown.



FIG. 14 shows the quantity of CFUs per leaf at 1 h or 6 h following treatment of tomato leaves with live bacterial cells of the indicated Bacillus and Paenibacillus isolates, as compared to untreated tomato leaves.



FIG. 15 shows the colonies formed on TSA by microorganisms isolated from untreated tomato leaves after 6 days (panel C), or from tomato leaves treated 6 days prior with B. amyloliquefaciens subsp. plantarum 71 (panel A) or P. polymyxa To99 (Panel B).



FIG. 16 shows yellow-brownish lesions caused by X. perforans T4 on tomato leaves, susceptible reaction caused by X. gardneri DCOOT7A manifested 10 days after infestation as well-defined brown spots appeared on leaves (panels A and B) and stems (panels C and D). Brown spot are indicated with arrows.



FIG. 17 shows the preventative effect of pre-treating the leaves of tomato seedlings with live cells of Bacillus and Paenibacillus isolates, or their metabolites (supernatants), followed by infection with X. gardneri DCOOT7A. Results are expressed as the quantity of spots per plant.



FIG. 18 shows the results of agar disc diffusion assays performed in order to evaluate the sensitivity of bacterial metabolites (cell-free supernatants) to light exposure for 0 to 12 weeks. Antimicrobial activity was then tested weekly by placing the paper discs saturated with 10-fold diluted cell-free supernatants on a lawn of Xanthomonas gardneri DCOOT7A and measuring the inhibition area (in mm2). (A) B. amyloliquefaciens subsp. plantarum 71 and VFb49; (B) P. polymyxa To99, TFr101, and 273.



FIG. 19 shows the antimicrobial activities of Paenibacillus and Bacillus 10-fold diluted cell-free supernatants against X. gardneri DCOOT7A after storage at −20° C. for 0, 6 or 12 months.



FIGS. 20-23 show the results of four greenhouse trials that were conducted to determine the efficacy of metabolites and/or live bacterial strains to control bacterial leaf spots, as compared to standard chemicals agents.





DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In some aspects, the present invention relates to a composition comprising metabolites from a bacterial and/or fungal species, wherein said metabolites have antimicrobial (e.g., bactericidal) activity against Xanthomonas species.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one” but it is also consistent with the meaning of “one or more”, “at least one”, and “one or more than one”.


As used herein, the term “metabolites” refers to any compound, substance or by-product obtainable by the culture or fermentation of a microorganism as described herein. In some embodiments, the metabolites of the present description may be produced by culturing microorganisms and harvesting extracellular metabolites produced therefrom (e.g., released into the culture supernatants). In other embodiments, the metabolites of the present description may be produced using recombinant DNA technology (e.g., recombinant proteins). In some embodiments, the metabolite may be a proteinaceous substance (i.e., a substance comprising a linear polymer chain of at least 3 amino acids bonded together by peptide bonds), bacteriocins, lantibiotics, lipopeptides and/or polyketides. In some embodiments, the metabolites may be extracellular bacterial and/or extracellular fungal secondary metabolites. As used herein, “secondary metabolites” refers to compounds that are not directly involved in normal growth, development, or reproduction. Unlike primary metabolites, the absence of secondary metabolites does not result in immediate death, but rather in long-term impairment of survivability, fecundity or aesthetics.


As used herein, the expression “antimicrobial” refers to the ability of the metabolites of the present description to prevent, inhibit, and/or destroy the growth of pathogenic microbes such as pathogenic bacteria and/or pathogenic fungi. In some embodiments, the expression “antimicrobial” encompasses agents or compounds exhibiting antagonistic activity against pathogenic microbes. In some embodiments, the antimicrobial activity may be in vitro antimicrobial activity or in vivo antimicrobial activity.


In some embodiments, the present description relates to metabolites having antimicrobial activity against phytopathogenic Xanthomonas species. As used herein, term “pathogen” or “pathogenic” refers to an organism capable of producing a disease in a plant or animal. The term “phytopathogen” as used herein refers to a pathogenic organism that infects a plant.


As used herein, the expression “Xanthomonas species” refers to a microorganism belonging to the genus Xanthomonas (including pathogenic Xanthomonas species). Phylogenetic analysis of bacteria within the genus Xanthomonas and the related genera Xylella and Stenotrophomonas is shown in FIG. 1. In some embodiments, “Xanthomonas species” includes the Xanthomonas species listed in FIG. 1. Without being bound by theory, the virulence of Xanthomonas species may be due to their secretion of extracellular enzymes such as endoglucanases (e.g., carboxymethylcellulases) that hydrolyze cellulose. Xanthomonas species produce also high molecular weight exopolysaccharides (EPS) xanthan and effectors of type III secretion that contribute to its virulence (Ray et al., 2000).


In some embodiments, the metabolites of the present description may have antimicrobial activity against Xanthomonas campestris and/or Xanthomonas perforans. In more particular embodiments, the Xanthomonas campestris may comprise Xanthomonas campestris MAPAQ #901 and/or Xanthomonas campestris ED1985.


There are at least five races of Xanthomonas spp. (T1, T2, T3, T4, and T5), which were described as causal agents of bacterial spot in tomato. Jones et al. (2004) proposed a new classification for the genus, as follows: race T1 was identified as X. euvesicatoria; race T2 as X. vesicatoria, and the races T3, T4 and T5 were identified as Xanthomonas perforans (Jones et al., 2004). Race T4 came about as a result of a mutation in the X. perforans avrXv3 gene, and has become prevalent and a major problem on tomato in the state of Florida (USA). Accordingly, in some embodiments, the metabolites of the present description may have antimicrobial activity against Xanthomonas perforans T1, T2, T3, T4, T5, or any combination thereof. In a more particular embodiment, the metabolites of the present description may have antimicrobial activity against Xanthomonas perforans T4. In some instances, new phylogenic analyses of bacterial and/or fungal species (and others) have resulted in taxonomic reclassifications. Such changes in taxonomic classification are within the scope of the present invention and, regardless of future reclassifications, a person of skill in the art would be able to identify the organisms of the present description using methods described herein and other methods within the capabilities of the skilled person.


In some embodiments, the present description relates to metabolites which may be extracellular bacterial and/or extracellular fungal metabolites. As used herein, the term “extracellular” refers to the compounds that are secreted or released (either actively or passively) into the extracellular medium upon culture of viable cells, but may also include compounds that contact the extracellular medium, but which remain associated with the cell membrane.


In some embodiments, the present description relates to metabolites from a: Bacillus species; Paenibacillus species; Burkholderia species; Mortierella species; Giberella species; Fusarium species; Aspergillus species; Penicillium species; or any combination thereof. As use herein, the expression “from a [genus] species” or “obtainable from a [genus] species”, refers to a compound that may be obtained (i.e., that is obtainable) from the culture or fermentation of a species belonging to the recited genus, but does not necessarily mean that the metabolite must be obtained from that particular species or from the culture of a microorganism per se. For example, compounds produced recombinantly or synthetically, but which have a structure substantially corresponding to the metabolite from the recited species, are also encompassed in the aforementioned expressions. In contrast, as used herein, the expression “produced from” is intended to refer to a compound which is obtained from the culture or fermentation of a microorganism of the present description.


In some embodiments, the present description relates to metabolites from an organism that is naturally-occurring and/or that has not been genetically modified using recombinant DNA technology, and thus qualifies as a natural biopesticide and/or natural bioproduct.


In some embodiments, the present description relates to metabolites are from a: Bacillus species; Paenibacillus species; Burkholderia species; Mortierella species; Giberella species; Fusarium species; Aspergillus species; Penicillium species; or any combination thereof.


In some embodiments, the present description relates to metabolites from: Paenibacillus polymyxa; Paenibacillus peoriae; Bacillus amyloliquefaciens; Burkholderia cepacia; Mortierella alpine; Giberella moniliformis; Fusarium oxysporum; Aspergillus niger Tiegh; Aspergillus hiratsukae; Penicillium ochrochloron; or any combination thereof. In a more particular embodiment, the metabolites may be from Burkholderia cepacia, Paenibacillus polymyxa; Paenibacillus peoriae; and/or Bacillus amyloliquefaciens. In a more particular embodiments, the metabolites may be from: Paenibacillus polymyxa T1B; Paenibacillus polymyxa 44; Paenibacillus sp. 62; Paenibacillus polymyxa 273 (since renamed as Paenibacillus peoriae 273); Paenibacillus polymyxa 329; Paenibacillus sp. 344; Paenibacillus polymyxa 390; Paenibacillus polymyxa To99 (NRRL B-67020; since renamed as Paenibacillus peoriae To99); Paenibacillus polymyxa TP12; Paenibacillus polymyxa TP29; Paenibacillus polymyxa TP77; Paenibacillus polymyxa V25T; Paenibacillus polymyxa TFr60; Paenibacillus sp. TFr101 (NRRL B-67019; since renamed as Paenibacillus peoriae TFr101); Paenibacillus polymyxa TAul; Paenibacillus polymyxa TM54; Bacillus amyloliquefaciens subsp. plantarum 16; Bacillus amyloliquefaciens subsp. plantarum 33; Bacillus amyloliquefaciens subsp. plantarum 71 (NRRL B-67021); Bacillus amyloliquefaciens subsp. plantarum 237; Bacillus amyloliquefaciens subsp. plantarum 335; Bacillus amyloliquefaciens subsp. plantarum VFb49; Burkholderia cepacia BC19; Burkholderia cepacia BC153; Mortierella sp. VFb1; Giberella sp. TFr4; Fusarium sp. F13 S; Aspergillus sp. 8PT; Aspergillus sp. FG; Penicillium sp. VFr37; or any combination thereof.


In some embodiments, the present description relates to metabolites that may have further antimicrobial, bactericidal, and/or fungicidal activity against a plant and/or a human pathogenic microorganism, such as a virus, bacteria, fungus, yeast, mold, or any combination thereof. In some embodiments, the antimicrobial activity may comprise antagonistic activity. As used herein the terms “bactericidal” or “fungicidal” refers to the ability of a composition or substance to increase mortality or inhibit the growth rate of bacteria or fungi, respectively. In some embodiments, the pathogenic microorganism may be: Xanthomonas euvesicatoria; Xanthomonas fragariae; Xanthomonas perforans; Xanthomonas campestris; Xanthomonas gardneri, Pseudomonas syringae; Envinia amylovora; Burkholderia glumae; Escherichia coli; Bacillus subtilis; Staphylococcus aureus; Pseudomonas aeruginosa; or any combination thereof. In a more particular embodiment, the pathogenic microorganism may be: Xanthomonas euvesicatoria R4; Xanthomonas gardneri DCOOT7A; Xanthomonas fragariae LMG 708; Pseudomonas syringae DC3000; Erwinia amylovora 435; Burkholderia glumae LMG10905; Escherichia coli O157:H7 EDL933; Bacillus subtilis ED66; Staphylococcus aureus ED711; Pseudomonas aeruginosa PA416A; or any combination thereof. In some embodiments, “mold” refers to a fungus that grows in the form of multicellular filaments called hyphae.


In some embodiments, the present description relates to metabolites that may exhibit higher antimicrobial activity against Xanthomonas species, as compared to other species (e.g., non-Xanthomonas species). In some embodiments, the metabolites of the present description are specifically active against Xanthomonas species. In used herein, “specifically active” means that metabolites of the present description show relatively higher antimicrobial activity against Xanthomonas species, than phytopathogenic non-Xanthomonas species.


In some embodiments, the present description relates to metabolites that may comprise lipopeptides and/or siderophores having anti-Xanthomonas activity such as lipopeptides and/or siderophores from Bacillus and/or Paenibacillus. In some embodiments, the lipopeptides may be non-ribosomal lipopeptides (NRPs). In some embodiments, the lipopeptides and/or siderophores may comprise one or more of surfactin, fengycin, plipastatin, iturin, bacilysin, bacillibactin, bacillomycin, locillomycin, paenilarvin, pelgipeptin, polymyxin, paenibacterin, fusaricidin, bacitracin, and tridecaptin. In some embodiments, the metabolites may comprise plipastatin and/or locillomycin.


In some embodiments, the compositions of the present description may further comprise an agriculturally acceptable excipient. As used herein, the phrase “agriculturally acceptable excipient” refers to an essentially inert substance that can be used as a diluent and/or carrier for an active agent (e.g., antimicrobial metabolites of the present description) in a composition for treatment of plants. In some embodiments, the compositions of the present description may further comprise one or more of: non-toxic carriers, surfactants, preservatives, nutrients, UV protectants, stickers, spreaders and chelating agents.


In some embodiments, the compositions of the present description may lack viable cells of the bacterial and/or fungal species from which the antimicrobial metabolites originate. In some embodiments, the compositions of the present description may be a cell-free composition (e.g., a cell-free supernatant). Cells can be removed by, for example, filtration and/or centrifugation. In some embodiments, the compositions of the present description may comprise killed cells from the bacterial and/or fungal species. In some embodiments, the compositions of the present description may comprise viable cells and/or spores from the bacterial and/or fungal species.


In some embodiments, the compositions of the present description may be in the form of a liquid, concentrate, powder, tablet, gel, paste, pellets, granules, or any combination thereof.


In some embodiments, the compositions of the present description, once applied to a target plant, may have no detectable phytotoxic effect on the target plant, or on the fruits, nuts, or leaves thereof, as compared to a control plant that is untreated (e.g., treated with water or with another agent).


In some embodiments, the compositions comprise an effective amount of antimicrobial metabolites of the present description. An “effective amount”, as used herein, is an amount sufficient to effect beneficial or desired results. An effective amount can be administered in one or more administrations. In terms of treatment, inhibition or protection, an effective amount is that amount sufficient to ameliorate, stabilize, reverse, slow or delay progression of the target infection or disease states.


In some embodiments, the compositions may comprise at least 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 3500 ppm, 4000 ppm, 4500 ppm, 5000 ppm, 5500 ppm, 6000 ppm, 6500 ppm, 7000 ppm, 8000 ppm, 8500 ppm, 9000 ppm, or 9500 ppm of the metabolites of the present description. In some embodiments, the compositions may comprise between about 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 3500 ppm, 4000 ppm, 4500 ppm, 5000 ppm, to about 10 000 ppm of said metabolites of the present description. The term “about” is used herein to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value. In general, the terminology “about” is meant to designate a possible variation of up to 10%. Therefore, a variation of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% of a value is included in the term “about”.


In some embodiments, compositions of the present description may be used as an anti-microbial (e.g., bactericidal and/or fungicidal) agent against a plant and/or human pathogenic microorganism, or for the manufacture of an anti-microbial agent for same. In some embodiments, the pathogenic microorganism may be a Xanthomonas species. In some embodiments, antimicrobial compositions, bacterial or fungal strains of the present description may be used for biological control. As used herein, the expression “biological control” refers to the control of a pathogen or any other undesirable organism by the use of at least a second organism other than man. An example of known mechanisms of biological control is the use of microorganisms that control root rot by out-competing fungi for space on the surface of the root, or microorganisms that either inhibit the growth of or kill the pathogen. The “host plant” in the context of biological control is the plant that is susceptible to disease caused by the pathogen. In the context of isolation of an organism, such as a bacterium or fungal species, from its natural environment, the host plant is a plant that supports the growth of the bacterium or fungus, for example, a plant of a species the bacterium or fungus is an endophyte of.


In some embodiments, the compositions defined herein may be a biopesticide or biological pesticide. As used herein, the expressions “biopesticide” and “biological pesticide” refer to non-naturally occurring commercial products that include naturally occurring metabolites/microorganisms which are formulated to have anti-microbial activity when applied to plants. Such formulations may increase the stability and/or concentrations of the metabolites/miroorganisms, which enable them to be useful as plant pesticides.


In some embodiments, the present description relates to an isolated strain of antimicrobial bacterial or fungal strains as defined herein. As used herein, an “isolated” strain of a microbe is a strain that has been removed from its natural milieu. As such, the term “isolated” does not necessarily reflect the extent to which the microbe has been purified. But in different embodiments an “isolated” culture has been purified at least 2×, 5×, 10×, 50× or 100× from the raw material from which it is isolated. As a non-limiting example, if a culture is isolated from soil as raw material, the organism can be isolated to an extent that its concentration in a given quantity of purified or partially purified material (e.g., soil) is at least 2×, 5×, 10×, 50× or 100× that in the original raw material. A “substantially pure culture” of the strain of microbe refers to a culture which contains substantially no other microbes than the desired strain or strains of microbe. In other words, a substantially pure culture of a strain of microbe is substantially free of other contaminants, which can include microbial contaminants as well as undesirable chemical contaminants. Further, as used herein, the expression “enriched culture” of an isolated microbial strain refers to a microbial culture wherein the total microbial population of the culture contains more than 50%, 60%, 70%, 80%, 90%, or 95% of the isolated strain.


In some embodiments, the present description relates to genetically modified or mutant antimicrobial bacterial or fungal strains as defined herein. As used herein, the term “mutant” making reference to a microorganism refers to a modification of the parental strain in which the desired biological activity (e.g., ability to produce antimicrobial metabolites as defined herein) is similar to or higher than that expressed by the parental strain.


In some embodiments, compositions of the present description may be applied to a growing plant, such as a fruit plant, nut, cereal, vegetable, or flower. Examples of fruit plants include: apple, apricot, banana, blackberry, blueberry, cantaloupe, cherry, cranberry, currant, grapes, greengage, gooseberry, honeydew, lemon, mandarin, melon, orange, peach, pears, pineapple, plum, raspberry, strawberry, tomatoes, watermelon, grapefruit, pepper, olive, or lime. Examples of nuts include: almond, beech nut, Brazil nut, butternut, cashew, chestnut, chinquapin, filbert, hickory nut, macadamia nut, pecan, walnut, or pistachio. Examples of cereals include: amaranth, breadnut, barley, buckwheat, canola, corn, fonio, kamut, millet, oats, quinoa, cattail, chia, flax, kañiwa, pitseed goosefoot, wattleseed, rice, rye, sorghum, spelt, teff, triticale, wheat, or colza. Examples of vegetables include: artichoke, bean, beetroot, broad bean, broccoli, cabbage, carrot, cauliflower, celery, chicory, chives, cress, cucumber, kale, dill, eggplant, kohlrabi, lettuce, onion, pepper, parsnip, parsley, pea, potato, pumpkin, radish, shallot, soybean, spinach, turnip, or peanut. Examples of flowers include: species of the Euphorbiaceae (e.g., Euphorbia pulcherrima (poinsettia), Euphorbia milii (crown-of-thorns), Codiaeum variegatum (croton)), members of the family Rosaceae (Rosoideae/Rosa), Begoniaceae (Begonia), Araceae (e.g., Dieffenbachia, Anthurium, Philodendreae (Philodendron), and Caladieae (Syngonium), English ivy and other Araliaceae species, Pelargonium (geranium), Ficus, Hydrangea, Zinnia, ornamental Prunus species, ornamental Peppers, as well as other flowers and/or ornamental plants susceptible to infection by Xanthamonas.


In particular embodiments, compositions of the present description may be applied to a tomato plant, a pepper plant, a berry plant (e.g., strawberry plant), lettuce, a citrus plant, a walnut plant, a rice plant, a kiwi plant, or any combination thereof.


In particular embodiments, compositions of the present description may be applied to a plant cell or tissue or organ obtained from: a leaf, a stem, a flower, a fruit, a tuber, a rhizome, a corm, a root, or any combination thereof, or a part thereof.


In some aspects, the present description relates to a method for producing a composition as defined herein, the method comprising culturing viable cells from a suitable bacterial and/or fungal species to produce the metabolites; and harvesting the metabolites of the present description produced therefrom. The term “culturing”, as used herein, refers to the propagation of organisms on or in media of various kinds.


The culture media and/or culture/fermentation conditions may be modified and/or optimized to increase the anti-Xanthomonas activity of the metabolites that are produced. In some embodiments, Landy medium or variations thereof may be used to enhance the anti-Xanthomonas activity of metabolites produced by B. amyloliquefaciens (e.g., subsp. plantarum isolates 71 and VFb49). Such medium may typically contain: glucose (e.g., 20 g/L), L-glutamic acid (e.g., 5.0 g/L), yeast extract (e.g., 1.0 g/L), K2HPO4 (e.g., 1.0 g/L), MgSO4.7H2O (e.g., 0.5 g/L), KCl (e.g., 0.5 g/L), CuSO4 (e.g., 1.6 mg/L), Fe2(SO4)3 (e.g., 1.2 mg/L), MnSO4 (e.g., 0.4 mg/L). Without being bound by theory, Landy medium or variations thereof may facilitate the production of polyketides and lipopeptides (Chen et al., 2009), as well as to enhance the production of biosurfactant (e.g., Ben Ayed, Jemil et al. 2015). Furthermore, without being bound by theory, Landy medium or variations thereof may increase the production of fusaricidin-family antibiotics (e.g., Vater et al., 2015) and/or siderophore bacillibactin (e.g., Li et al., 2014). In some embodiments, tryptic soy broth (TSB) (Kim et al., 2015) or variations thereof may be used to enhance the anti-Xanthomonas activity of metabolites produced by P. polymyxa isolates (e.g., To99, TFr101 and 273). In some embodiments, fermentation may be conducted at about 30° C. (e.g., with shaking at 250 rpm). Without being bound by theory, optimization of the culture media and/or culture/fermentation conditions may improve the production and/or relative concentrations of lipopeptides (e.g., surfactin, fengycin, and/or iturin) and/or other metabolites having anti-Xanthomonas activity.


In some aspects, the present description relates to an antimicrobial composition produced by the aforementioned method.


In some aspects, the present description relates to a method for controlling the growth of a pathogenic microorganism on a target plant or tissue, the method comprising contacting the target plant or tissue with the composition of the present description. In some embodiments, the contacting may comprise spraying, irrigating, painting, daubing, and/or fogging, onto and/or into the target plant or tissue, the target plant or tissue's hydroponic substrate, and/or the target plant or tissue's agricultural earth.


In some aspects, the present description relates to a kit for preparing an aqueous solution for use in controlling pathogens on a plant tissue and/or plant cells of a growing plant, the kit comprising the composition as defined herein, and a suitable container. In some embodiments, the container may be a pouch, a tablet, or a bucket. In some embodiments, the kit may be used for controlling infection by the pathogenic microorganism (e.g., Xanthomonas species) on a plant.


In some embodiments, the compositions of the present description may be used or formulated with other antimicrobial agents, such as one or more of the agents described in Table 1.









TABLE 1







Commercially available biopesticides composed of active microorganisms















Company-






Registered and



Mode of
Target

commercialized


Product: Bioagent
action
pathogens
Crop
-Reference





Actinovate:
Antibiosis
Soilborne
Greenhouse
Natural



Streptomyces
lydicus


disease
and nursery
Industries Inc.,





crops, turf
USA






McSpadden






Gardner B.B.






2002


Bacillus SPP ®:
Antibiosis

Xanthomonas

Several
Bio



Bacillus spp.



campestris pv.

crops
InsumosNativa





vesicatoria,


Ltda., Chili





Pseudomonas


Cawoy H. et al.,





syringae pv.


2011





syringae





Ballad ®:
Antibiosis,

Xanthomonas

Cereals, oil
AgraQuest Inc.,



Bacillus
pumilus

competition,
spp.
plants, sugar
USA



growth

beet
Cawoy H. et al.,



promotion,


2011



resistance






induction





BioPro ®:
Antibiosis

Erwinia

Apple, pear,
Germany, USA



Bacillus
subtilis



amylovora

oriental
Zeller W., 2006


StrainBsBD170


pear, quince,






loquat



Biosubtilin:
Antibiosis,

Xanthomonas

Cotton,
Biotech



Bacillus
subtilis

competition
spp.
cereals,
International





ornamental
Ltd., India





plants and
Cawoy H. et al.,





vegetable
2011





crops



BlightBanA506 ™:
Competition

Erwinia

Almond,
NuFarm Inc.,



Pseudomonas

of sites and

amylovora and

apple,
USA



fluorescens A506

nutrients
russet-inducing
apricot,
Cawoy H. et al.,




bacteria
tomato
2011





blueberry,






cherry ,






peach, pear,






potato,






strawberry,



BloomtimeBiological ™:
Antibiosis

Erwinia

Apple, pear,
Northwest Agri



Pantoea
agglomerans

(herbicolin,

amylovora

oriental
Products, USA


(syn. Erwiniaherbicola)
pantocin A

pear, quince,
Grantastein 2014



and B)

loquat



BlossomProtect ™:
Antibiosis

Erwinia

Apple,
Bio-ferm GmbH,



Aureobasidium



amylovora

crabapple,
Austria



pullulans



pear,
Germany, USA,


(strains DSM 14940 and


oriental
New Zealand


DSM 14941)


pear, quince,
Grantastein 2014





loquat
and Kunz et al.,






2011


Botrycid ®:
Antibiosis

Xanthomonas sp.,

Several
Safer



Burkholderia



Erwinia sp.,

crops
Agrobiologicos,



cepacia



Agrobacterium sp.


Colombia






Cawoy H. et al.,






2011


Cease ®:
Antibiosis

Xanthomonas spp.

Several
BioWorks Inc.



Bacillus
subtilis



crops
USA, Mexico






Cawoy H. et al.,






2011


Cedomon ™:
Antibiosis

Pseudomonas

Barley and
BioAgri AB



Pseudomonas



syringae

oats; other
Sweden



chlororaphis



cereals
McSpadden






Gardner B.B.,






2002


Companion ®:
Antibiosis,

Xanthomonas

Cotton,
Growth Products



Bacillus
subtilis

competition,

campestris,

bean, pea,
Ltd.,



growth

Pseudomonas

soybean,
USA



promotion,

syringae

peanut, corn
Cawoy H. et al.,



resistance

and others
2011



induction





Galltrol ™:
Antibiosis

Agrobacterium

Fruit, nut,
AgBioChem Inc.,



Agrobacterium



tumefaciens

and
USA



radiobacter Strain 84



ornamental
McSpadden





nursery stock
Gardner B.B.,






2002


Messenger ™:
Plant
Many
Field
EDEN



Erwinia
amylovora

activator

ornamental
Bioscience


(HrpNharpin protein)


and
Corporation,





vegetable
USA





crops
McSpadden






Gardner B.B.






2002


NacillusPro ™:
Antibiosis,

Pseudomonas

Tomato,
Bio



Brevibacillus
parabrevis

competition

syringae pv.

peppers,
InsumosNativa


strain N4,


syringae,

cucurbits,
Ltda., Chili



Bacillus
subtilis



P. syringae pv.

walnut,
Valdes et al.,


strain N5,

tomato,
peanut, hop,
2012



Bacillus
cereus



Xanthomonas

leafy



strain N6,


campestris pv.

vegetables




Bacillus
cereus



vesicatoria,





strain N7


X. campestris pv.








coralina,








Xanthomonas








juglandis,








Clavibacter








michiganensis







sub sp.







michiganensis,








Acetobacter sp.,








Erwinia








caratovora





Nogall ™:
Antibiosis

Agrobacterium

Fruit, nut,
Bio-care



Agrobacterium



tumefaciens

and
Technology,



radiobacter K1026



ornamental
Australia/





nursery
New





stock
BioProducts Inc.,






Australia, USA






McSpadden






Gardner B.B.






2002


Serenade ®:
Antibiosis

Xanthomonas

Grape,
AgraQuest Inc.,



Bacillus
subtilis


spp.
apples, pear,
Chile, USA,


strain QST 713

(bacterial spot),
banana, cherry,
New Zealand,





Xanthomonas

walnut,
Mexico, Japan,





campestris

peanut, hop,
Israel, Costa




(walnut blight),
leafy
Rica,





Erwinia

vegetables,
Philippines,





amylovora

tomato,
Guatemala,




(fire blight)
peppers,
Honduras,





cucurbits,
Argentina, Italy,





mango,
France, Turkey,





bean, onion
Switzerland,





garlic,
Korea, Ecuador,





potato,
Peru





broccoli,
Cawoy H. et al.,





carrot
2011









Although the present invention has been described hereinabove by way of specific embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.


EXAMPLES
a) Example 1
Isolation and Antagonistic/Antimicrobial Screening of Microorganisms

i. 1.1 Samples for Isolation of Microorganisms


Different plant organs (leaves, stems and fruits) and seeds of tomatoes, peppers, onions, corns, eggplants, strawberries and raspberries, as well as soil samples from agricultural fields were collected in 2011-2013 from various locations (Table 2).









TABLE 2







Characteristics of environmental samples collected for isolation of microorganisms









Sample
Location and date of sampling
Quantity












Soil of agricultural fields
Laval (Québec, Canada), November 2012
60


Soil of agricultural fields
Sherrington (Québec, Canada), November 2011
11


Soil from vegetable garden of INRS-
Laval (Québec, Canada), November 2012
2


Institut Armand-Frappier




Soil from a strawberries field
Florida Area (USA), April 2013
2


Dead plant leaves, stems and roots
Laval (Québec, Canada), November 2012
12


from agricultural fields




Dead plant leaves, stems and roots
Sherrington (Québec, Canada), November 2011
4


from agricultural fields




Fruits and leaves of fresh plants from
Laval (Québec, Canada), June 2012
6


vegetable garden of INRS-Institut




Armand-Frappier




Fruits and leaves of fresh plants
Sherrington (Québec, Canada), November 2011
4


Fruits and leaves of tomatoes
Florida Area (USA), June and July 2012
4


Fruits and leaves of citrus
Florida Area (USA), June 2012
2


Leaves of garden strawberries
Florida Area (USA), July 2012
2


Vegetables seeds (tomatoes, peppers,
Provided by farmers from Laval
8


onions)
(Québec, Canada), November 2012



Ditch water
Sherrington (Québec, Canada), November 2011
2


Mud from a river
Rivière des Prairies, Laval
2



(Québec, Canada), June 2012



Soil of rhizosphere from vegetable
Laval (Québec, Canada), June 2012
2


garden of INRS-Institut Armand-Frappier





Total
123









ii. 1.2 Isolation of Microorganisms from Environmental Samples


Media. Three solid nonselective media (R2A, Tryptic Soy Agar (TSA) agar and Plate Count Agar) and three selective media (Benedict, BCSA and Gould) with cycloheximide (50 mg/mL) were used for isolation of bacteria from environmental samples. Potato Dextrose Agar (PDA) and Malt Extract Agar (MEA) with a mix of antibiotics (streptomycin, penicillin and chloramphenicol in concentrations of 1.0, 0.5 and 0.05 mg/mL, respectively) were used for isolation of microscopic fungi.


Isolation of microorganisms from plants. Ten seeds and 3 segments (0.5 cm2) randomly cut out from each leaf, stem, root and fruit were resuspended by vortexing in 5 mL of 0.85% NaCl. Aliquots (100 μL) of each suspension were spread on nonselective media and selective media plates. Plates for isolation of bacteria were incubated in the dark for 2 days at room temperature (approximately 21° C.). PDA and MEA plates were incubated in the dark for 7-10 days at 25±2° C. [Roberts and Koenraadt, 2014; International Seed Federation, 2011; Remeeus and Sheppard, 2006; Yin et al., 2011; Pusey et al., 2009; Yoshida et al., 2001].


Isolation of microorganisms from soil and water. Suspensions were prepared with 1 g of soil or 1 mL of water added to 9 mL of Phosphate-Buffered Saline (PBS), under agitation for 30 min. For isolation of sporulating bacteria, soil suspensions were preheated at +80° C. for 30 min. Sample suspensions were submitted to serial dilutions. Hundred μL of each dilution (10−2, 10−3 and 10−4) were spread on nonselective media and selective media plates for isolation of bacteria and fungi. Plates were incubated under the same conditions described above [Zanatta et al., 2007]. Isolation of microorganisms was performed in triplicate.


Preservation of isolated bacteria and fungi. Colonies of bacteria with different morphological characteristics were transferred to tubes containing 3 mL of Tryptic Soy Broth (TSB) and were cultivated overnight at 30° C. Bacteria were preserved in 15% of glycerol at −80° C. for further manipulations.


A fragment of mycelium from a fungus colony which was morphologically different from others was picked up and transferred into a 20-mL tube with PDA slant, incubated at 25±2° C. for 14 days to form a new colony, and stored at +4° C. under a layer of mineral oil for further manipulations [Humber, 1997].


iii. 1.3 Strains Used to Evaluate the Antimicrobial Activity of Isolates


Pathogenic strains used as indicators for evaluating antagonistic and antimicrobial activity of bacterial and fungal isolates are the following: Xanthomonas campestris ED1985 was isolated from Sherrington lettuce leaves. Xanthomonas campestris 901 was received from MAPAQ-Agri-Réseau-Phytoprotection. Xanthomonas perforans T4 and Xanthomonas euvesicatoria R4 were provided by University of Florida, Plant Pathology Faculty (USA). Xanthomonas gardneri DCOOT7A was provided by Agriculture and Agri-Food Canada (London, ON, Canada). Xanthomonas fragariae LMG 708 and Burkholderia glumae LMG10905 were received from the Belgian co-ordinated collections of microorganisms (BCCM). Erwinia amylovora 435 was provided by Institut de recherche et de développement en agroenvironnement (IRDA, QC, Canada). Multi-drug resistant, clinical strains Pseudomonas aeruginosa PA416A and Staphylococcus aureus ED711, as well as Pseudomonas syringae DC3000 and Bacillus subtilis ED66 were used from the Déziel lab collection, INRS-Institut Armand-Frappier (Laval, QC, Canada). Escherichia coli O157:H7 EDL933 was also tested. All strains are stored in 15% glycerol at −80° C.


iv. 1.4 First Step of Screening: Antagonistic Activity Assays


Antagonistic activity of bacterial isolates against Xanthomonas was determined by various Petri dish plate assays.


Bacteria

Method 1. Individual bacterial colonies were picked for each bacterial strain and incubated in 3 mL of Tryptic Soy Broth (TSB) overnight at 30° C. Five μL of each bacterial suspension was dropped on a lawn of target bacteria X. campestris ED1985 or X. campestris ED740 (OD620=0.2) on TSA plates. Petri dishes were incubated at room temperature (approx. 21° C.) for 2 days. Bacterial strains which formed a clear halo (inhibition zone) around of the colonies on the lawn of X. campestris, (e.g. see FIGS. 2A and B) were selected for determination of antimicrobial activity against X. perforans T4, the second step of screening (see below).


Method 2. Bacterial colonies appeared on Petri dishes with nonselective and selective media after 2 days of incubation at room temperature (approx. 21° C.) were covered by a layer of 5 mL of Top Agar containing 100 μL of X. campestris ED1985 (OD620=0.2). Bacterial strains which formed a halo around of theirs colonies, zones of growth inhibition of X. campestris, (e.g., FIG. 3) were selected for determination of antimicrobial activity against X. perforans T4, the second step of screening (see below).


Fungi





    • estimate antagonistic activity of fungi against X. campestris, block-agar diffusion assay was used [Yoshida et al., 2001; Agarry, 2005]. First of all, 50 μL of X. campestris ED1985 (OD620=0.2) grown overnight in TSB at 30° C. and resuspended in sterile water was spread on TSA plates to obtain a lawn of pathogenic bacteria. The mycelial plug (10×10 mm) of fungal colony appeared after 10 days of incubation at 25±2° C. on PDA plate and was placed at the center of a lawn of X. campestris ED1985. All plates were incubated at room temperature (approx. 21° C.) for 2 days. After this period, the plates were checked for the presence or absence of X. campestris ED1985 growing inhibition halo, indicating the occurrence of antibiosis between the microorganisms tested (FIG. 4). Fungal strains formed a halo were used for determination of antimicrobial activity against X. perforans T4, the second step of screening.





v. 1.5 Second Step of Screening: Antimicrobial Activity Assays


For evaluation of extracellular antimicrobial activity, bacterial strains were cultivated in 3 mL of TSB at 30° C., 150 rpm for 2 days. Fungal strains were grown in 250 mL Erlenmeyer flasks containing 50 mL of Czapek-Dox Broth at 25±2° C., 150 rpm. After 10 days of incubation, fungal biomass was discarded. The cultures of bacteria and fungi were centrifuged at 18 000×g for 10 min at 20° C. To get cell-free fermentation filtrate, the supernatants of bacterial and fungal strains were separately collected and filtered (0.22 μm pore diameter) [Velmurugan, 2009; Rashid and Khan, 2000].


The antimicrobial activity against X. perforans T4 was assessed using well-diffusion inhibition assay [Obradovic et al., 2002; WO/2012/051699; Lindow et al., 2003]. First, a lawn of indicator bacteria was produced on the surface of the agar plates. Fifty μL of X. perforans T4 (OD620=0.2) grown overnight in TSB at 30° C. and resuspended in sterile water was spread on TSA plates. Wells were bored into the agar layer with a sterile glass tube (10 mm diameter) and filled with 200 μL of cell-free fermentation filtrate, taking care to avoid spillage on the surface of the medium. The plates were then incubated at room temperature (approx. 21° C.) and the inhibition diameter of X. perforans T4 growth around the wells was measured after 2 days. To establish the controls, 200 μL of TSB and Czapek-Dox liquid medium were added to the wells on the lawn of X. perforans T4 instead of cell-free fermentation filtrates. Plates were incubated under the same conditions described above. Three replicates were performed for each treatment.


vi. 1.6 Results


A total of 123 environmental samples (seeds, different vegetable tissues, and soil) from different geographic locations were used for isolation of microorganisms during the period from November 2011 to August 2013. About 5000 isolated bacterial and 333 fungal strains were tested against X. campestris ED740 and X. campestris ED1985 using antagonistic activity assay (the 1st step of screening), as described in Example 1.4.


According to the results of the 1st step of screening, 612 bacterial and 124 fungal strains showed inhibition zones with different areas for different strains and were considered as possessing antagonistic activity against X. campestris ED740 and X. campestris ED1985 (e.g., FIG. 2A, 2B, FIG. 3, and FIG. 4). All these isolates were stored in glycerol at −80° C. These strains were chosen for estimation of their cell-free filtrate activity against both phytopathogenic indicators.


During the 2nd step of screening (Example 1.5), antimicrobial activity was observed in 108 bacterial and 6 fungal strains which showed growth inhibition zones with different areas for different strains (Table 2 and 3). Among them, cell-free filtrate of Paenibacillus and Bacillus species showed the strongest antimicrobial activity against X. perforans T4 and X. campestris ED740 no matter where these strains were isolated from.


Clear inhibition halos with diameter 29.0-33.0 mm were formed by cell-free filtrate of 3 bacterial and 3 fungal strains, and were retained for further analysis (FIG. 5 and FIG. 6 A, B). The same antimicrobial activity was shown against X. campestris ED740 (Table 3). The active strains described in Table 3 and 4 were identified using various techniques as will be discussed later.









TABLE 3







Characteristics of the most active bacterial strains against Xanthomonas perforans T4















Diameter of






growth inhibition






zone (including


N
Bacterial isolates
Environmental sample
Medium
well diameter)*, mm










Phylum Firmicutes, Class Bacilli, Order Bacilliales, Family Paenibacilliaceae











1

Paenibacillus
polymyxa T1B

Soil from vegetable garden
TSA
 29.5 ± 0.85




(pepper) of INRS-Institut






Armand-Frappier, Laval,






(Québec), 2011




2

Paenibacillus
polymyxa 44

Lettuce leaves, Sherrington
R2A
 25.5 ± 0.28




(Québec), 2011




3

Paenibacillus sp. 62

Soil of rhizosphere from
R2A
 19.5 ± 0.28




lettuce, Sherrington






(Québec), 2011




4

Paenibacillus
polymyxa 273

Soil of rhizosphere,
Benedict
 29.7 ± 0.85




Sherrington (Québec), 2011




5

Paenibacillus
polymyxa 329

Soil from tomato field of
TSA
 34.0 ± 0.91




INRS-Institut Armand-






Frappier, Laval, (Québec), 2011




6

Paenibacillus sp. 344

Dead lettuce plants,
TSA
 29.5 ± 0.28




Sherrington (Québec), 2011




7

Paenibacillus
polymyxa 390

Stems and leaves of lettuce
Benedict
 32.0 ± 0.28




plants, Sherrington






(Québec), 2011




8

Paenibacillus
polymyxa To99

Soil from onion field, Laval
TSA
 30.5 ± 0.21




(Québec), 2012




9

Paenibacillus
polymyxa TP12

Soil from pepper field, Laval
PCA
 26.5 ± 0.29


10

Paenibacillus
polymyxa TP29

(Québec), 2012
TSA
 28.3 ± 0.21


11

Paenibacillus
polymyxa TP77


TSA
 23.5 ± 0.29


12

Paenibacillus
polymyxa V25T

Soil from tomato field, Laval
PCA
 27.5 ± 0.85




(Québec), 2012




13

Paenibacillus
polymyxa TFr60

Soil from strawberry field,
TSA
 24.5 ± 0.29




Laval (Québec), 2012




14

Paenibacillus sp. TFr101

Soil from strawberry field,
TSA
 32.3 ± 0.21




Laval (Québec), 2012




15

Paenibacillus
polymyxa TAu1

Soil from eggplant field,
TSA
 24.7 ± 0.25




Laval (Québec), 2012




16

Paenibacillus
polymyxa TM54

Soil from corn field, Laval
TSA
 24.0 ± 0.41




(Québec), 2012









Phylum Firmicutes, Class Bacilli, Order Bacilliales, Family Bacilliaceae











1

Bacillus
amyloliquefaciens

Soil of rhizosphere from
R2A
 16.5 ± 0.28



subsp. plantarum 16
lettuce garden, Sherrington






(Québec), 2011




2

Bacillus
amyloliquefaciens

Stems and leaves of lettuce
R2A
 19.5 ± 0.28



subsp. plantarum 33
plants,






Sherrington (Québec), 2011




3

Bacillus
amyloliquefaciens

Soil of rhizosphere from
R2A
 25.1 ± 0.31



subsp. plantarum 71
lettuce garden, Sherrington






(Québec), 2011




4

Bacillus
amyloliquefaciens

Mud from a river, Rivière
R2A
 21.0 ± 0.41



subsp. plantarum 237
des Prairies, Laval






(Québec), 2012




5

Bacillus
amyloliquefaciens

Dead lettuce plants,
TSA*
 17.7 ± 0.28



subsp. plantarum 335
Sherrington (Québec), 2011




6

Bacillus
amyloliquefaciens

Soil from raspberry field,
TSA
 20.5 ± 0.22



subsp. plantarum VFb49
Laval (Québec), 2012









Phylum Proteobacteria, Class Betaproteobacteria, Order Burkholderiales, Family Burkholderiaceae











1

Burkholderia
cepacia BC19

Tomato leaves,
BCSA
 20.0 ± 0.16




Florida Area (USA), 2012




2

Burkholderia
cepacia BC153

Tomato leaves,
BCSA
17.8 ± 0.6




Florida Area (USA), 2012







Nonselective media: R2A, Tryptic Soy Agar (TSA), Plate Count Agar (PCA).


Selective media: (BCSA), Burkholderiacepacia selective agar (BCSA), Benedict (for Steptomyces species),


± Standard Error of Mean (SEM),


*Diameter of well is 10 mm.













TABLE 4







Characteristics of the most active fungal strains against Xanthomonasperforans T4















Diameter of





Similarity with type
growth inhibition



Isolated fungal
Environmental
isolates based on BLAST
zone (including


N
strains
sample
database, %
well diameter)*, mm










Zygomycota, Mucoromycotina, Mortierellales, Mortierellaceae











1

Mortierella sp.

Soil from strawberry

Mortierella
alpina

15.6 ± 0.21



VFb1
bed, Laval, Québec, 2012
Peyronel, 99%








Ascomycota, Pezizomycotina, Sordariomycetes, Hypercreomycetidae, Hypocreales, Nectriaceae











2

Giberella sp. TFr4

Soil from strawberry

Giberella
monihformis

32.7 ± 0.90




bed, Laval, Québec, 2012
Wineland, 99%



3

Fusarium sp.F135

Soil from strawberry bed,

Fusarium
oxysporum

31.5 ± 0.60




Florida Area(USA), 2012
Schldtl., 99%








Ascomycota, Pezizomycotina, Eurotiomycetes, Eurotiomycetidae, Eurotiales, Trichocomaceae











4

Aspergillus sp.

Soil pepper field,

Aspergillus
niger Tiegh.,

15.5 + 0.22



8PT
Laval, Québec, 2012
99%



5

Aspergillus sp.

Tissue sample

Neosartorya
hiratsukae

21.6 + 0.21



FG

Udagawa, Tsub. & Y.






Horie(Aspergillus







hiratsukae), 99%




6

Penicillium sp.

Soil from strawberry

Penicillium
ochrochloron

31.5 + 0.6



VFr37
bed, Laval, Québec, 2012
Biourge, 98%





± Standard Error of Mean (SEM),


*Diameter of well is 10 mm






In summary, thousands of microorganisms were screened from 123 different environmental samples collected from different geographical areas for their activity against phytopathogenic Xanthomonas species. High anti-Xanthomonas activity was observed in 108 bacterial and 6 fungal isolates, which showed growth inhibition zones with different areas for different strains. The most active isolates were identified using microscopic diagnostic, biochemistry assays, fatty acid analysis and genes sequencing. Unexpectedly, most of the bacterial isolates having the highest activity against Xanthomonas species belonged to the genus Paenibacillus (16 isolates) and Bacillus (6 isolates). Interestingly, fifteen isolates of Paenibacillus were identified as Paenibacillus polymyxa and one isolate was identified as Paenibacillus jamilae. All six isolates of the genus Bacillus were identified as B. amyloliquefaciens subsp. plantarum. Thus, not only Paenibacillus species but also Bacillus species were found to be active against pathogenic Xanthomonas bacteria.


It is worth mentioning, that fungi and other bacteria such as Burkholderia (Tables 3 and 4) were also found to be active against Xanthomonas species. Thus, activity against Xanthomonas pathogenic strains is not limited to Bacillus and Paenibacillus species but it is most prevalent in these two species.


b) Example 2
Identification of Bacterial and Fungal Isolates

i. 2.1 DNA Extraction of the Isolates


A 1.5 mL of overnight culture in TSB was pelleted in a microcentrifuge tube at 13000 rpm for 10 minutes. The supernatant was then discarded and the pellet was resuspended in 1 mL of extraction buffer (50 mM Tris-HCl, 5 mM EDTA, 3% SDS, pH 8). The resuspended cells were transferred in a microtube containing 150-200 mg of sterile glass beads. The tubes were then placed in the Fastprep™ for 50 seconds at a 4 m/s speed, for two rounds and put on ice for 2 minutes between the rounds. The broken cells were then centrifuged at 13000 rpm for 10 minutes and the supernatant was mixed with 1:5 volume of ammonium acetate 10 N. The mixture was vortexed, placed on ice for 5 minutes, and centrifuged at 13000 rpm for 15 minutes at 4° C. The supernatant was placed on ice for 5 minutes and centrifuged again at 13000 rpm for 15 minutes at 4° C. The supernatant was then mixed with 1:1 volume of ice-cold isopropanol, and the DNA was precipitated for 1-2 hours at 4° C. The tubes were centrifuged at 13000 rpm for 15 minutes at 4° C. and the supernatant was discarded. 500 μL of ice-cold 70% was added to the pellet to wash the precipitated DNA and centrifuged at 13000 rpm for 15 minutes at 4° C. The supernatant was discarded and the pellet was dried under the biosafety cabinet. The dry DNA pellet was resuspended in 50 μL of sterile ddH2O and kept at −20° C. All the DNA samples were dosed and diluted to a final concentration of 50 ng/μL [Nakamura, 1987; Aguilera et al., 2001; Priest et al., 1987].


ii. 2.2 16S rRNA and 18S rRNA Gene Sequence Analysis


In order to identify the isolates that showed the strongest anti Xanthomonas perforans activity, PCR amplification of the gene coding for 16S rRNA (for 18 bacterial isolates) or 18S rRNA (for 6 fungal isolates) was performed using primers well described in the literature (Table 5) [Priest et al., 1987; Frank et al., 2008].









TABLE 5







Primers used to determine 16S and 18S rRNA gene


sequences of bacterial and fungal isolates














Product



Primers
Target
Sequence 5′→3′
size
Reference





pA-27f-
16S
AGAGTTTGATYMTGGCTCAG
1.6 kb
Frank et al., 2008


YM
rDNA
(SEQ ID NO: 1)







pH

AAGGAGGTGATCCARCCGCA






(SEQ ID NO: 2)







ITS1-F
18S
CTTGGTCATTTAGAGGAAGTA
750 bp
Martin and



rDNA,
A (SEQ ID NO: 3)

Rygiewicz, 2005





ITS4
ITS
TCCTCCGCTTATTGATATGC





regions
(SEQ ID NO: 4)









PCR-amplifications were carried out in a 50-μL, reaction mixture (Table 6) containing Feldan Taq DNA Polymerase (Bio Basic Canada Inc., Markham, Ontario, Canada).









TABLE 6





Reaction mixture


Reaction mixture


In a final volume of 50 μL



















1X
Taq buffer




 200 μM
dNTPs mix




 0.4 μM
Primer(s)F




 0.4 μM
Primer(s) R




1 unit
Taq polymerase
DNA



50 ng
DNA extract










The amplifications were performed in a C1000 Touch Thermal Cycler (Bio-Rad Laboratory Inc., Canada) using specific PCR temperature protocol (Table 7).









TABLE 7







PCR program for amplification of 16S and 18S rRNA


fragments of bacterial and fungal isolates









Protocol










Step
16S
18S






1
5 min 95° C.
5 min 95° C.
initial denaturation


2
30 s 95° C.
30 s 95° C.
denaturation


3
40 s 55° C.
30 s 59° C.
annealing


4
1.5 min 72° C.
50 s 72° C.
elongation


5
Repeat steps 2 to 4
Repeat steps 2 to 4
29 times


6
10 min 72° C.
10 min 72° C.
final elongation


7
∞ 4° C.
∞ 4° C.
stop PCR reaction and





refrigerate DNA products



end
end









After DNA amplification, PCR products were analyzed by agarose gel electrophoresis (1.0% of agarose, 100V, 60 min), DNA was stained by ethidium bromide (0.5 μg/mL), and visualized under UV illumination.


All PCR products were purified on a 1% agarose gel using a Gel extraction kit (Bio Basic Canada Inc., Markham, Ontario, Canada) and sent to the sequencing platform to Institut de recherches cliniques de Montréal (IRCM). The same primers were used for the initial PCR reaction and the sequencing reactions.


The obtained sequences of each isolate were processed with the BioEdit™ sequence alignment editor and analyzed using the basic local alignment search tool (BLAST) sequence alignment system (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome), using the 16S ribosomal RNA sequences for Bacteria and Archaea and the nucleotide collection (nr/nt) for Fungi databases. This search tool was developed by the National Center for Biotechnology Information (NCBI) (US). If the sequence identity is above 99%, we could conclude that bacterial isolate belongs to the same species, and if the identity is higher than 97, strains are classified into the same genus or the same family.


A 1.6 kb 16S rRNA and 750 bp 18S rRNA and ITS regions fragments were amplified and sequenced from bacterial and fungal isolates respectively. Twenty-four bacterial and six fungal isolates were identified by gene sequencing (Table 8). Thus, using the BLAST alignment system, 2 bacterial isolates belong to the Burkholderia cepacia complex, 16 isolates belong to the Paenibacillus genus and 6 isolates belong to the Bacillus subtilis group. The 6 fungal isolates were identified as Mortierella alpina Peyronel; Gibberella moniliformis Wineland; Fusarium oxysporum Schltdl; Aspergillus niger Tiegh; Neosartorya hiratsukae Udagawa, Tsub. & Y. Horie (Aspergillus hiratsukae); and Penicillium ochrochloron Biourge (Table 8).


BLAST analysis of pairwise alignment of 16S rDNA sequences were highly similar to each other within the same genus and could not be used to distinguish different but closely related bacterial species, as P. polymyxa, P. peoriae, P. jamilae and P. kribbensis (Table 8). Thus, the next step was the strain identification by sequencing of specific genes of Burkholderia cepacia complex, Paenibacillus species and Bacillus subtilis group.









TABLE 8







16S and 18S rRNA gene sequence identification of bacterial and fungal isolates









Isolate
Microorganism
% of similarity










Bacteria









19

Burkholderia
cepacia complex

 99%


153

Burkholderia
cepacia complex

 99%


62

Paenibacillus
polymyxa/P. peoriae

 99%


344

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

   96-97%


TFr101

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


V25T

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TP77

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


329

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


T1B

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TP12

Paenibacillus
polymyxa/P. peoriae

 99%


390

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


273

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TAu1

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


44

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


To99

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TFr60

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TM54

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


TP29

Paenibacillus
polymyxa/P. peoriae/P. jamilae/P. kribbensis

 99%


VFb49

Bacillus
subtilis group

 99%


33

Bacillus
subtilis group

100%


335

Bacillus
subtilis group

 97%


71

Bacillus
subtilis group

 98%


16

Bacillus
subtilis group

 99%


237

Bacillus
subtilis group

 99%







Fungi









VFb1

Mortierella
alpina Peyronel

 99%


TFr4

Gibberella
monihformis Wineland

 99%


FI3S

Fusarium
oxysporum Schltd1.

 99%


8PT

Aspergillus
niger Tiegh.

 99%


FG

Neosartorya
hiratsukae Udagawa, Tsub. & Y. Hone

 99%



(Aspergillushiratsukae)



VFr37

Penicillium sp., Penicilliumochrochloron Biourge

99%-98%









iii. 2.3 Amplification of Specific Genes from Burkholderia and Paenibacillus species



Burkholderia

Isolates 19 and 153 of the Burkholderia cepacia complex were identified by recA sequence analysis. Fragment of recA gene was amplified in a 25-μL, reaction mixture (Table 9) using recA_FS/recA_RS primer pairs (Table 10) and specific temperature protocol (Table 11). After DNA amplification, recA fragments were analyzed by agarose gel electrophoresis, stained by ethidium bromide, and visualized under UV illumination.


Gel electrophoresis of PCR products was done using 1.0% agarose in the presence of a molecular size standard (GeneRuler™ 1 Kb DNA Ladder, Fermentas) and sent for sequencing. Burkholderia cepacia ATCC 25416 was used as positive control. The same primers were used for the initial PCR reaction and the sequencing reactions.


The obtained sequences of recA gene were processed with the BioEdit™ sequence alignment editor and analyzed using NCBI BLAST sequence alignment system (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).









TABLE 9





Reaction mixture


In a final volume of 25 μL



















1X
Taq buffer




 200 μM
dNTPs mix




 0.4 μM
Primer(s)F




 0.4 μM
Primer(s) R




1 unit
Taq polymerase
DNA



50 ng
Bacterial extract
DNA

















TABLE 10







Primers used to determine the recA gene of  



Burkholderia cepacia complex isolates













Tar-

Product



Primers
get
Sequence 5′→3′
size
Reference





recA_FS
recA
TGACCGCCGAGAAGAGCAA
390 bp
Baldwin et



gene
(SEQ ID NO: 5)

al., 2005





recA_RS

GACCGAGTCGATGACGAT






(SEQ ID NO: 6)
















TABLE 11







Temperature program for amplification of recA


DNA fragments of Burkholderia isolates









Step
Protocol






1
5 min 95° C.
initial denaturation


2
30 s 95° C.
denaturation


3
45 s 58° C.
annealing


4
1 min 72° C.
elongation


5
Repeat steps 2 to 4
29 times


6
10 min 72° C.
final elongation


7
∞ 4° C.
stop PCR reaction and refrigerate DNA products


8
end









Based on the 390 bp sequence of recA gene, bacterial isolates 19 and 153 showed 99% similarity with Burkholderia cepacia strains from GeneBank data base of NCBI. Thus, they were identified as B. cepacia (FIG. 7).



Paenibacillus

In order to refine the identification of Paenibacillus sp. isolates, the rpoB gene was amplified using the primer pair rpoB1698f/rpoB2041r (Table 12). PCR-amplifications were carried out in a 25-μL, reaction mixture (Table 13). The amplifications were performed using specific PCR temperature protocol (Table 14).









TABLE 12







Primers used to determine the rpoB gene of



Paenibacillus isolates















Prod-




Tar-

uct
Refer-


Primers
get
Sequence 5′→3′
size
ence





rpoB1698f
rpoB
AACATCGGTTTGATCAAC
240
Dahllof 



gene
(SEQ ID NO: 7)
bp
et al.,  






2000;






da Mota 






et al.,






2005





rpoB2041r

CGTTGCATGTTGGTACCCAT 






(SEQ ID NO: 8)
















TABLE 13





Reaction mixture


In a final volume of 25 μL



















1X
Taq buffer




 200 μM
dNTPs mix




 0.4 μM
Primer rpoB1698f




 0.4 μM
Primer rpoB2041r




1 unit
Taq
DNA




polymerase




  50 ng
Bacterial
DNA




extract

















TABLE 14







Temperature program for amplification of rpoB


DNA fragments of Paenibacillus isolates









Step
Protocol






1
5 min 95° C.
initial denaturation


2
30 s 95° C.
denaturation


3
40 s 55° C.
annealing


4
35 s 72° C.
elongation


5
Repeat steps 2 to 4
29 times


6
10 min 72° C.
final elongation


7
∞ 4° C.
stop PCR reaction and




refrigerate DNA products


8
end









After DNA amplification, rpoB fragments were analyzed by agarose gel electrophoresis, stained by ethidium bromide and visualized under UV illumination.


All PCR products were purified on a 1% agarose gel using a Gel extraction kit (Bio Basic Canada Inc., Markham, Ontario, Canada) and sent for sequencing. The same primers were used for the initial PCR reaction and the sequencing reactions. The obtained sequences of the rpoB gene of Paenibacillus sp. were processed with the BioEdit™ sequence alignment editor and analyzed using the basic local alignment search tool (BLAST) sequence alignment system: (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).


Based on the sequence of the rpoB gene, 16 isolates of Paenibacillus sp. were divided in three groups based on their similarity with species from GeneBank data base (NCBI). The first group includes four isolates 44, To99, TM54 and TP29 which showed 100% similarity with P. polymyxa. The second group represents nine isolates that had 99% nucleotide identity with P. polymyxa. Thus, thirteen isolates were preliminary identified as Paenibacillus polymyxa. The third group includes isolates 62, 344 and TFr101 showed 94-96% of similarity with P. polymyxa and P. peoriae (Table 15).


Since the identification of these 3 isolates based on rpoB DNA sequence identification were not clear enough, biochemical methods using Biolog™ microbial identification system (BIOLOG Inc., Hayward, USA) and fatty acid analysis (Keystone Labs Inc., Edmonton, Alberta, Canada) were performed to refine the identification.









TABLE 15







Identification of Paenibacillus sp. isolates by rpoB DNA sequencing









Isolate
Microorganism
% of similarity





62

Paenibacillus
polymyxa/P. peoriae

95-96%


344

Paenibacillus
polymyxa/P. peoriae

94-96%


TFr101

Paenibacillus
polymyxa/P. peoriae

95-96%


V25T

Paenibacillus
polymyxa

 99%


TP77

Paenibacillus
polymyxa

 99%


329

Paenibacillus
polymyxa

 99%


T1B

Paenibacillus
polymyxa

 99%


TP12

Paenibacillus
polymyxa

 99%


390

Paenibacillus
polymyxa

 99%


273

Paenibacillus
polymyxa

 99%


TAu1

Paenibacillus
polymyxa

 99%


44

Paenibacillus
polymyxa

100%


To99

Paenibacillus
polymyxa

100%


TFr60

Paenibacillus
polymyxa

 99%


TM54

Paenibacillus
polymyxa

100%


TP29

Paenibacillus
polymyxa

100%









iv. 2.3a Biolog™ Analyses of Paenibacillus Species


To refine the identification of Paenibacillus species, the biochemical test system Biolog™ GENIII MicroPlate (OmniLog) was used. It allows analyzing a microorganism in 94 phenotypic tests: 71 carbon source utilization assays and 23 chemical sensitivity assays. Several isolates from each group mentioned above were chosen for performing this test. Well known Paenibacillus polymyxa and P. peoriae strains (P. polymyxa ATCC7070, P. polymyxa CR1, P. peoriae LMG 16104, P. peoriae LMG 16111), as well as type strains: P. polymyxa LMG 13294, P. peoriae LMG 14832 and P. jamilae LMG 21667 were used for comparison with our isolates.


The isolates to be identified were grown on TSA and then resuspended in a special gelling inoculating fluid. Then, bacterial cell suspension was inoculated into the GENIII MicroPlate and incubated at 34° C. for 24 h to allow the phenotypic fingerprint to form. After incubation, the phenotypic fingerprints of purple wells were compared within isolates, known Paenibacillus polymyxa and P. peoriae strains and type strains of these species.


The carbohydrate utilization capabilities and chemical sensitivity of bacterial isolates are shown in Table 16. In general, obtained results of 94 biochemical tests revealed 11 differences between bacterial isolates and P. polymyxa LMG 13294 type strain, while there were less differences between the presently tested isolates and P. polymyxa CR1 (non type strain), as well as P. jamilae LMG 21667 (type strain). In two cases, utilization of methyl pyruvate, L-malic acid, bromo-succinic acid, and sensitivity to pH 5, 4% NaCl, rifamycin SV, lithium chloride varied within strains of tested bacterial isolates, type strains and well known non type strains (Table 16).









TABLE 16







Phenotypic characterization of Paenibacillus isolates and known Paenibacillus strains

























P.




P.




P.














polymyxa




peoriae


P.


P.


jamilae













LMG

P.


P.

LMG

peoria e


peoriae

LMG












13294

polymyxa


polymyxa

14832
LMG
LMG
21667











Test
(type)
ATCC7070
CR1
(type)
16104
16111
(type)
TP29
To29
390
273
329
V25T
62
344
TFr101










carbon source utilization assays























Dextrin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Maltose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Trehalose
+
+
+



+
+
+
+
+
+
+
+
+
+


D-Cellobiose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


Gentiobiose
+
+
+
+
+
+
+
/
+
+
+
+
+
+
+
+


Sucrose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Turanose
+
+
+
+
/
+
+
+
+
+
+
+
+
+
+
+


Stachyose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Raffinose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


α-D-Lactose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Melibiose

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


β-Methyl-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


DGlucoside


















D-Salicin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


N-Acetyl-
+

















DGlucosamine


















N-Acetyl-β-


















DMannosamine


















N-Acetyl-


















DGalactosamine


















N-Acetyl-


















Neuraminic Acid


















α-D-Glucose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Mannose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Fructose
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Galactose

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


3-Methyl Glucose


















D-Fucose


















L-Fucose


















L-Rhamnose




+













Inosine

+

+














D-Sorbitol
+

















D-Mannitol
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Arabitol


















myo-Inositol
+

















Glycerol
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Glucose-6-PO4


















D-Fructose-6-PO4


















D-Aspartic Acid



+
+
+












D-Serine


















Gelatin


















Glycyl-L-Proline


















L-Alanine
+

















L-Arginine
+

















L-Aspartic Acid
+


+
+
+












L-Glutamic Acid
+

















L-Histidine


















L-Pyroglutamic


















Acid


















L-Serine


















Pectin

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Galacturonic
+
+

+
+
+








+



Acid


















L-Galactonic
+
+
+
+
+
+
+






+
+
+


Acid Lactone


















D-Gluconic Acid

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


D-Glucuronic


















Acid


















Glucuronamide


















Mucic Acid


















Quinic Acid


















D-Saccharic


















Acid


















p-Hydroxy-


















Phenylacetic


















Acid


















Methyl Pyruvate
+

+
+
+
+


+
+
+

+





D-Lactic Acid


















Methyl Ester


















L-Lactic Acid
+

















Citric Acid
+

















α-Keto-Glutaric


















Acid


















D-Malic Acid


















L-Malic Acid
+
/
+
+
+
+
+

+
+
+
+
+





Bromo-Succinic



+
/
+






+





Acid


















Tween 40


















γ-Amino-Butryric


















Acid


















α-Hydroxy-


















Butyric Acid


















β-Hydroxy-D,L-


















butyric Acid


















α-Keto-Butyric


















Acid


















Acetoacetic Acid


















Propionic Acid


















Acetic Acid


















Formic Acid























chemical sensitivity assays























pH 6
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


pH 5
+
+
+
+
+
+

+
+
+








1% NaCl
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


4% NaCl
+



+




+


+
+
+



8% NaCl
+

















1% Sodium
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


Lactate


















Fusidic Acid


















D-Serine


















Troleandomycin


















Rifamycin SV

+




+
+





+
+
+


Minocycline


















Lincomycin


















Guanidine HCl
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+


Niaproof 4


















Vancomycin


















Tetrazolium


















Violet


















Tetrazolium


















Blue


















Nalidixic Acid


















Lithium
+
+




+
+
+

+


+
+
+


Chloride


















Potassium
+
+
+
+
/
+
+
+
+
+
+
+
+
+
+
+


Tellurite


















Aztreonam
+
+
















Sodium Butyrate
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


Sodium Bromate






/














+: positive result; −: negative result; /: borderline result (BIOLOG ™, OmniLog)






In order to more easily understand these results, the percentage of similarity between isolated bacteria and the most closely related references strains P. polymyxa CR1, P. jamilae LMG 21667 (type strain) and P. peoriae LMG 16111 (type strain) was calculated (Table 17). Only the highest percentage of similarity for each isolate is indicated in this table. Thus, isolates 62, 344, TFr101 and TP12 showed the highest similarity (about 97%) to P. jamilae LMG 21667. The isolates To99, 399 and V25T were more similar to P. polymyxa CR1 with 97.5% and 95.7% of similarity, respectively. Bacterial isolates 329 and 273 showed the same similarity (96.8%) to P. polymyxa CR1 and P. jamilae LMG 21667 (Table 17). Due to these differences, fatty acid analyses were performed for further bacterial isolate identification.









TABLE 17







Similarity of Paenibacillus sp. isolates with the most closely related


reference strains based on their phenotypical characteristics


BIOLOG identification of Paenibacillus sp. isolates









Isolate
Microorganism
% of similarity





62

Paenibacillus
jamilae

97.9%




Paenibacillus
polymyxa

93.6%


344

Paenibacillus
jamilae

96.8%




Paenibacillus
polymyxa

94.7%


TFr101

Paenibacillus
jamilae

98.9%




Paenibacillus
polymyxa

94.7%


V25T

Paenibacillus
polymyxa

95.7%




Paenibacillus
jamilae

93.6%


329

Paenibacillus
polymyxa,

96.8%




Paenibacillus
jamilae

96.8%




Paenibacillus
peoriae

95.7%


390

Paenibacillus
polymyxa

97.9%




Paenibacillus
jamilae

93.6%


273

Paenibacillus
polymyxa,

96.8%




Paenibacillus
jamilae

96.8%




Paenibacillus
peoriae

91.5%


To99

Paenibacillus
polymyxa

97.9%




Paenibacillus
jamilae

95.7%


TP29

Paenibacillus
jamilae

96.8%




Paenibacillus
polymyxa

94.7%





The percentage of similarity is calculated as follows: (number of similar characteristics/total number of tests (94))*100.






v. 2.4 Fatty Acid Analyses of Paenibacillus Isolates


Fatty acids analysis was performed to confirm the identification of the Paenibacillus isolates (Keystone Labs Inc., Edmonton, Alberta, Canada). The fatty acids analysis is accomplished with the MIDI™ method (which analyzes fatty acid methyl esters in bacterial samples by gas chromatography) and then compared with the Sherlock libraries consisting in more than 100,000 analyses of strains obtained from experts and from culture collections (www.midi-inc.com). Microbial identification results from the MIDI system are expressed as a similarity index. The similarity index (SI) is a numerical value which is an expression of the relative distance from the population mean. An exact match of the fatty acid makeup of the unknown and the mean of the library entry would result in a SI of 1.000. As each fatty acid varies from the mean percentage, the SI will decrease in proportion to the cumulative variance between the composition of the unknown and the library entry.


Identification of Paenibacillus isolates based on the analysis of their fatty acid content was performed with the aim to distinguish closely related species within the same genus (Table 14). Based on the data of SI of fatty acid profiles, all bacterial isolates were identified as Paenibacillus polymyxa (SI ranged 0.7-0.9) with the exception of isolate TP29 with the lowest SI (0.598) that is closely related to Rothia dentocariosa (Table 18). According to the literature, this species is part of the normal community of microbes residing in the mouth and respiratory tract, while bacterial isolate TP29 was isolated from soil samples. Of note, there is no entry in the database to compare the isolates with the Paenibacillus jamilae strains. In fact, the fatty acid analysis of the P. jamilae LMG 21667 type strain gives an identification close to P. polymyxa (SI=0.632) and to Arthrobacter globiformis (SI=0.617).









TABLE 18







Identification of Paenibacillus isolates based


on the analysis of their fatty acid content









Isolate
Identification
Similarity index





62

Paenibacillus
polymyxa

0.808




Arthrobacter
globiformis GC subgroup A

0.676


344

Paenibacillus
polymyxa

0.799




Arthrobacter
globfformis GC subgroup A

0.676


TFr101

Paenibacillus
polymyxa

0.861




Arthrobacter
globfformis GC subgroup A

0.675


329

Paenibacillus
polymyxa

0.777




Artrhobacter
globiformis GC subgroup A

0.622




Rothia
dentocariosa

0.473


273

Paenibacillus
polymyxa

0.934




Arthrobacter
globiformis GC subgroup A

0.692


To99

Paenibacillus
polymyxa

0.865




Arthrobacter
globiformis GC subgroup A

0.685


V25T

Paenibacillus
polymyxa

0.815




Arthrobacter
globiformis GC subgroup A

0.723


TP29

Rothia
dentocariosa

0.598




Brevibacterium
liquefaciens

0.593




Paenibacillus
polymyxa

0.572




Arthrobacter
globiformis GC subgroup A

0.381









vi. 2.5 Amplification of Specific Genes from Bacillus Species


The rpoB, gyrA and gyrB gene fragments were used as molecular diagnostic markers to specifically identify bacterial isolates within the Bacillus subtilis group. To this end, specific primers for amplification of each gene were used (Table 19). PCR-amplifications were carried out in a 25-μL, reaction mixture (Table 20). The amplifications were performed using specific PCR temperature protocol (Table 21).


After DNA amplification, rpoB, gyrA and gyrB fragments were analyzed by agarose gel electrophoresis, stained by ethidium bromide, and visualized under UV illumination.


All PCR products were purified on a 1% agarose gel using a Gel extraction kit (Bio Basic Canada Inc., Markham, Ontario, Canada). The rpoB fragments were cloned into a pGEM-T-Easy Vector™ (pGEM-t easy kit, Promega, Medison, USA) and sent for sequencing using the Sp6 and T7 primers (Table 19). The gyrA fragments were sequenced with the same primers that were used for the initial PCR reaction. The gyrB fragments were amplified with the universals UP-1 and UP-2r primers and sequenced with the UP-1S and the UP-2Sr primers (Table 19).


The obtained sequences were processed with the BioEdit sequence alignment editor and analysed by NCBI BLAST program: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).









TABLE 19







Primers used to determine specific genes of



Bacillus isolates















Prod-






uct






size



Primers
Target
Sequence 5′→3′
(bp)
Ref.





rpoB-f
rpoB
AGGTCAACTAGTTC
 579
De Clerck,



gene
AGTATGGAC

et al.


rpoB-r

(SEQ ID NO: 9)

2004;




AAGAACCGTAACCG

Gonzalez




GCAACTT

et al.,




(SEQ ID NO: 10)

2013





gyrA-f
gyrA
CAGTCAGGAAATGC
1025
De Clerck



gene
GTACGTCCTT

et al.,




(SEQ ID NO: 11)

2004;


gyrA-r

CAAGGTAATGCTCC

Gonzalez




AGGCATTGCT

et al.,




(SEQ ID NO: 12)

2013





UP-1
gyrB
GAAGTCATCATGAC
1200
Wang et 



gene
CGTTCTGCAYGCNG

al., 2010;



(ampli-
GNGGNAARTTYGA

Yamamoto 


UP-2r
fica-
(SEQ ID NO: 13)

and



tion
AGCAGGGTACGGAT

Harayama,




GTGCGAGCCRTCNA

1995 &




CRTCNGCRTCNGTCAT

1998




(SEQ ID NO: 14)







UP-1S
gyrB
GAAGTCATCATGAC
1200
Yamamoto 



gene
CGTTCTGCA

and


UP-2Sr
(se-
(SEQ ID NO: 15)

Harayama,



quenc-
AGCAGGGTACGGAT

1995



ing)
GTGCGAGCC






(SEQ ID NO: 16)







Sp6
pGEM-T-
AGC TAT TTA GGT  

Promega, 


T7
Easy 
GAC ACT ATA G

2010



vector
(SEQ ID NO: 17) 






TTG TAA TAC GAC






TCA CTA TAG GG






(SEQ ID NO: 18)
















TABLE 20





Reaction mixture


In a final volume of 25 μL



















1X
Taq buffer




 200 μM
dNTPs mix




 0.4 μM
Primer F




 0.4 μM
Primer R




1 unit
Taq
DNA




polymerase




  50 ng
Bacterial
DNA




extract

















TABLE 21







Temperature program for amplification of DNA fragments of Bacillussubtilis


group specific genes by PCR










Protocol












Step
rpoB
gyrA
gyrB






1
5 min 95° C.
5 min 95° C.
5 min 95° C.
initial denaturation


2
1 min 95° C.
30 s 95° C.
1 min 95° C.
denaturation


3
1 min 51° C.
45 s 51° C.
1 min 60° C.
annealing


4
1 min 72° C.
1 min 72° C.
2 min 72° C.
elongation


5
Repeat steps 2 to 4
Repeat steps 2 to 4
Repeat steps 2 to 4
29 times


6
10 min 72° C.
10 min 72° C.
10 min 72° C.
final elongation


7
∞ 4° C.
∞ 4° C.
∞ 4° C.
stop PCR reaction and






refrigerate DNA products


8
end
end
end









Based on gyrA sequence analysis, all six isolates of Bacillus subtilis group showed the closet similarity relative to Bacillus amyloliquefaciens, with sequence similarity of 99% and even 100% for isolates 71 and 237 (Table 22). Also, isolates 16 and 335 were high similar to B. velezensis that is a later heterotrophic synonym of B. amyloliquefaciens [Wang et al., 2008].


The partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) analysis and the sequence of rpoB DNA fragment showed the highest similarity (98-100%) of B. subtilis group isolates with B. amyloliquefaciens subsp. plantarum.


Thus, based on the results the sequencing of three specific genes from Bacillus subtilis group, all of the isolates belong to Bacillus amyloliquefaciens species and most likely to the plantarum subspecies.









TABLE 22







Identification of Bacillus sp. isolates based on sequencing of specific genes








Isolate
% of similarity














gyrA

gyrB

rpoB






VFb49

B.
amyloliquefaciens

 99%



B. amyloliquefaciens subsp.

 99%








plantarum




 33

B.
amyloliquefaciens

 99%

B.
amyloliquefaciens

 98%

B. amyloliquefaciens subsp.

 99%





subsp. plantarum


plantarum










B. amyloliquefaciens

 99%







subsp. amyloliquefaciens



335

B.
amyloliquefaciens

 99%

B.
amyloliquefaciens

 99%

B. amyloliquefaciens subsp.

100%





subsp. plantarum


plantarum






B. velezensis

 99%






 16

B.
amyloliquefaciens

 99%

B.
amyloliquefaciens

 99%

B. amyloliquefaciens subsp.

100%





subsp. plantarum


plantarum






B. velezensis

 99%






 71

B.
amyloliquefaciens

100%

B.
amyloliquefaciens

 99%

B. amyloliquefaciens subsp.

 99%





subsp. plantarum


plantarum










B. amyloliquefaciens

 99%







subsp. amyloliquefaciens



237

B.
amyloliquefaciens

100%

B.
amyloliquefaciens

100%

B. amyloliquefaciens subsp.

100%





subsp. plantarum


plantarum










vii. 2.6 Detection of Genes Coding for Metabolites by PCR


Different strains of B. amyloliquefaciens may produce enzymes and antibiotics, specially bacteriocins, lipopeptides and polyketides. In order to better characterize the B. amyloliquefaciens subsp. plantarum isolates, polymerase chain reactions were performed to determine the presence of metabolite genes involved in their biosynthesis. PCR-amplifications were carried out in a 25-μL, reaction mixture (Table 23) with specific primers for each gene of interest (Table 24) and specific temperature protocol for each amplification reaction (Table 25). After DNA amplification, PCR products were analyzed by agarose gel electrophoresis (1.0% of agarose, 100V, 60 min), DNA was stained by ethidium bromide (0.5 μg/mL), and visualized under UV illumination.









TABLE 23





Reaction mixture


In a final volume of 25 μL



















1X
Taq buffer




 200 μM
dNTPs mix




 0.4 μM
Primer F




 0.4 μM
Primer R




1 unit
Taq
DNA




polymerase

















TABLE 24







Amplification primers used to determine the presence of


different metabolite genes in Bacillus sp. isolates














Product



Primers
Target
Sequence 5′→3′
size
Reference





OsboP1N
Subtilosin
CCTCATGACCAGGACTTCGCCTT
1220 bp
Kabore et al.,




(SEQ ID NO: 19)

2012


OsboP2N

CGGTGCCGAGCGCTTCAGGT






(SEQ ID NO: 20)







SpaS_F
Subtilin
CAAAGTTCGATGATTTCGATTTGGAT
152 bp
Sutyak et al.,




GT (SEQ ID NO: 21)

2008


SpaS_R

GCAGTTACAAGTTAGTGTTTGAAGGA






A (SEQ ID NO: 22)







Eric_F
Ericin
TCAACTGACCGGGCAGGAGC
1440 bp
Kabore et al.,




(SEQ ID NO: 23)

2012


Eric_R

AAGTATTTGGCCTACAGCGACTCG






(SEQ ID NO: 24)







SUNT-
Sublancin
GCTTTGTTAGAAGGGGAGGAAT
974 bp
Chung et al.,


F1

(SEQ ID NO: 25)

2008


SUNT-

CTTGTCCCAACCCATAGGATAA




R1

(SEQ ID NO: 26)







ITUC-
Iturin
CCCCCTCGGTCAAGTGAATA
594 bp
Chung et al.,


F1

(SEQ ID NO: 27)

2008


ITUC-

TTGGTTAAGCCCTGATGCTC




R1

(SEQ ID NO: 28)







ITUD1
IturinA
GATGCGATCTCCTTGGATGT
647 bp
Athukorala et al.,


F

(SEQ ID NO: 29)

2009;


ITUD1

ATCGTCATGTGCTGCTTGAG

Ramarathnam et


R

(SEQ ID NO: 30)

al., 2007





SRFA-
Surfactin
AGAGCACATTGAGCGTTACAAA
626 bp
Chung et al.,


F1

(SEQ ID NO: 31)

2008


SRFA-

CAGCATCTCGTTCAACTTTCAC




R1

(SEQ ID NO: 32)







Am1-F
Mycosub-
CAKCARGTSAAAATYCGMGG
419 bp
Tapi et al.,



tilin
(SEQ ID NO: 33)

2010


Tm1-R

CCDASATCAAARAADTTATC






(SEQ ID NO: 34)







Af2-F
Fengycin
GAATAYMTCGGMCGTMTKGA
542 bp
Tapi et al., 2010




(SEQ ID NO: 35)




Tf1-R

GCTTTWADKGAATSBCCGCC






(SEQ ID NO: 36)







Ap1-F
Plipastatin
AGMCAGCKSGCMASATCMCC
959 bp
Tapi et al., 2010




(SEQ ID NO: 37)




Tp1-R

GCKATWWTGAARRCCGGCGG






(SEQ ID NO: 38)







baeR_F
Bacillaene
ATGTCAGCTCAGTTTCCGCA
688 bp
Compaore et al.,




(SEQ ID NO: 39)

2013


baeR_R

GATCGCCGTCTTCAATTGCC






(SEQ ID NO: 40)







mlnA_F
Macrolactin
CCGTGATCGGACTGGATGAG
668 bp
Compaore et al.,




(SEQ ID NO: 41)

2013


mnlA_R

CATCGCACCTGCCAAATACG






(SEQ ID NO: 42)







bacA/B_F
Bacilysin
TGCTCTGTTATAGCGCGGAG
910 bp
Compaore et al.,




(SEQ ID NO: 43)

2013


bacA/B_R

GTCATCGTATCCCACCCGTC






(SEQ ID NO: 44)







bmyA_F
Bacillo-
CTCATTGCTGCCGCTCAATC
853 bp
Compaore et al.,



mycin
(SEQ ID NO: 45)

2013


bmyA_R

CCGAATCTACGAGGGGAACG






(SEQ ID NO: 46)







dfnA_F
Difficidin
GGATTCAGGAGGGCATACCG
653 bp
Compaore et al.,




(SEQ ID NO: 47)

2013


dfnA_R

ATTGATTAAACGCGCCGAGC






(SEQ ID NO: 48)
















TABLE 25







PCR program for amplification of DNA fragments of genes involved in


metabolite production in Bacillus sp. isolates
















initial



number of
final
Stop and



Step
denaturaton
denaturaton
annealing
elongation
cycles
elongation
refrigerate



Metabolite
1
2
3
4
5
6
7
8






Subtilosin

5 min
1 min
1 min
90 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
58° C.
72° C.

72° C.





Subtilin

5 min
1 min
1 min
30 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
55° C.
72° C.

72° C.





Ericin

5 min
1 min
1 min
90 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
58° C.
72° C.

72° C.





Sublancin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
55° C.
72° C.

72° C.





Iturin

5 min
1 min
1 min
40 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
55° C.
72° C.

72° C.





IturinA

5 min
1 min
1 min
50 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
60° C.
72° C.

72° C.





Surfactin

5 min
1 min
1 min
50 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
55° C.
72° C.

72° C.





Mycosubtilin

5 min
1 min
1 min
30 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
45° C.
72° C.

72° C.





Fengycin

5 min
1 min
1 min
30 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
45° C.
72° C.

72° C.





Plipastatin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
58° C.
72° C.

72° C.





Bacillaene

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
57° C.
72° C.

72° C.





Macrolactin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
57° C.
72° C.

72° C.





Bacililysin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
57° C.
72° C.

72° C.





Bacillomycin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
57° C.
72° C.

72° C.





Difficidin

5 min
1 min
1 min
60 s
30
10 min
∞ 4° C.
end



95° C.
95° C.
57° C.
72° C.

72° C.









As shown in Table 26, all the B. amyloliquefaciens subsp. plantarum isolates were found to be negative for the genes involved in the biosynthesis of subtilosin (ywiB, sboA), subtilin (spaS), ericin (eriC, eriSa, eriSb), sublancin (sunT), surfactin (srfA) and plipastatin (pps). Genes involved in the production of iturin (ituA) was detected in B. amyloliquefaciens subsp. plantarum isolates VFb49, 71 and 237. Only isolate 335 of this species does not have the gene involved in the biosynthesis of fengycin (fen). Gene involved in the production of bacilysin (bacA/B, bacB) was detected in B. amyloliquefaciens subsp. plantarum isolates VFb49, 237 and 16, while bacillomycin gene (bmyA) was detected in isolates VFb49, 237 and 16 of this species (Table 26). All isolates of B. amyloliquefaciens subsp. plantarum have genes involved in biosynthesis of iturinA (ituA), mycosubtilin (myc/itu), bacillaene (baeA), macrolactin (mnlA) and difficidin (dfnA) (Table 26). The detection of macrolactin, bacillomycin and difficidin genes is specific to B. amyloliquefaciens subsp. plantarum, since the primers were specifically designed for the type strain of this subspecies (B. amyloliquefaciens subsp. plantarum FZB42) [Compaore et al., 2013].









TABLE 26





Presence of metabolite production genes in Bacillus sp. isolates.

























Isolate

Subtilosin


Subtilin


EricitN


Sublancin


Iturin


IturinA


Surfactin


Mycosubtilin


Fengycin


Plipastatin






VFb49
N
N
N
N
Y
Y
N
Y
Y
N


71
N
N
N
N
Y
Y
N
Y
Y
N


237
N
N
N
N
Y
Y
N
Y
Y
N


16
N
N
N
N
N
Y
N
Y
Y
N


33
N
N
N
N
N
Y
N
Y
Y
N


335
N
N
N
N
N
Y
N
Y
N
N












Bacillaene


Macrolactin


Bacililysin


Bacillomycin


Difficidin












Y
Y
Y
Y
Y








Y
Y
Y
N
Y








Y
Y
N
Y
Y








Y
Y
Y
Y
Y








Y
Y
N
N
Y








Y
Y
N
Y
Y





Y: presence of the gene coding metabolite production; N: No absence or no detection of gene






c)
d) Example 3
Testing Supernatants Against Different Plant and Human Pathogens

One strain of Bacillus and two strains of Paenibacillus species were selected for further analysis on crops (tomato and lettuce) because of their high antibacterial activity against pathogenic Xanthomonas bacteria. The supernatants of Bacillus amyloliquefaciens subsp. plantarum 71, Paenibacillus sp. TFr101, and Paenibacillus polymyxa To99 were tested against plant pathogens (X. perforans T4, X. campestris 901, X. euvesicatoria R4, X. gardneri DCOOT7A, X. fragariae LMG 708, E. amylovora 435, B. glumae LMG10905, and P. syringae DC3000), as well as against B. subtilis ED66 and human pathogens (Escherichia coli O157:H7 EDL933, and S. aureus ED711, P. aeruginosa PA416A), as shown in Table 27.









TABLE 27







Activity of bacterial supernatants against plant and human pathogens









Diameter (mm) of growth inhibition zone(including well diameter)*












B. amyloliquefaciens





Bacterial strains
subsp. plantarum 71

P. polymyxa To99


P. polymyxa TFr101







X. campestris 901

34.0 ± 0.5
31.0 ± 0.5
29.5 ± 0.31



X. perforans T4

31.0 ± 0.5
30.5 ± 0.21
32.3 ± 0.21



X. euvesicatoria R4

25.1 ± 0.31
26.0 ± 0.5
25.0 ± 0.5



X. gardneri DC00T7A

24.0 ± 0.5
34.0 ± 0.5
24.0 ± 0.5



X. fragariae LMG 708

n/a
n/a
n/a



Pseudomonas
syringae

18.0 ± 0.5
20.0 ± 0.5
17.0 ± 0.5


DC3000





Envinia amylovora 435
20.0 ± 0.5
20.0 ± 0.5
17.0 ± 0.5



Burkholderia
glumae

21.0 ± 0.5
No activity
14.0 ± 0.5


LMG10905






Escherichia
coli O157:H7

No activity
20.0 ± 0.5
17.0 ± 0.5


EDL933






Bacillus
subtilis ED66

13.0 ± 0.5
No activity
19.0 ± 0.5



Staphylococcus
aureus

No activity
No activity
16.5 ± 0.29


ED711






Pseudomonas
aeruginosa

No activity
17.0 ± 0.41
13.5 ± 0.29


PA416A









Based on the results in Table 27, the supernatants of B. amyloliquefaciens subsp. plantarum 71, P. polymyxa To99, and P. polymyxa TFr101 were highly active against all four Xanthomonas species tested. However, they were less active against other plant pathogenic bacteria such as B. glumae which causes panicle blight in rice, Envinia amylovora which causes fire blight in apples and pears, and finally against Pseudomonas syringae that causes bacterial specks in many crops.


Some of the supernatants were also active against a species of Gram-positive Bacillus, as well as other human pathogens such as Escherichia coli O157:H7 and Staphylococcus aureus. It is clear from above experiments that these supernatants produced by B. amyloliquefaciens subsp. plantarum 71, P. polymyxa To99 and P. polymyxa TFr101 are specifically active against Xanthomonas species.


The cell free supernatants of B. amyloliquefaciens subsp. plantarum 71, P. polymyxa To99 and P. polymyxa TFr101 stored for 1 year at −80° C. were tested against plant and human pathogens. The zone of inhibition using the well diffusion test was equal to 25 mm in diameter against Xanthomonas perforans T4, indicating the long-term stability of supernatants.


e) Example 4
Testing Interspecies and Inter-Strains Antibacterial Activity of Cell-Free Supernatants

Following the screening for antimicrobial activity-producing bacteria against Xanthomonas perforans T4, the inhibitory effect of cell-free supernatants was tested within the most active bacterial species and strains (Table 28).









TABLE 28







Interspecies and inter-strains antibacterial activity of cell-free supernatants









Diameter (mm) of growth inhibition zone (including well diameter)*












B. amyloliquefaciens





Bacterial strains
subsp. plantarum 71

P. polymyxa To99


P. polymyxa TFr101















B. amyloliquefaciens

 0.00 ± 0.00
26.83 ± 0.47
26.16 ± 0.31


subsp. plantarum 71






P. polymyxa To99

25.16 ± 0.31
37.16 ± 0.31
 0.00 ± 0.00



P. polymyxa TFr101

29.00 ± 0.36
 12.5 ± 0.22
 0.00 ± 0.00





“±” Standard Error of Mean (SEM)


*Diameter of well is 10 mm






Thus, B. amyloliquefaciens subsp. plantarum 71 inhibited the growth of P. polymyxa To99 and P. polymyxa TFr101 showing a clear halo with diameter 26 mm, while these two strains of P. polymyxa showed the antimicrobial activity against B. amyloliquefaciens subsp. plantarum 71 with 25.16 and 29.00 mm growth inhibitory zones, respectively (Table 28).


Inter-strains activity was shown within P. polymyxa. P. polymyxa TFr101 inhibited the growth of P. polymyxa To99 showing a clear halo with diameter 12.5 mm, whereas P. polymyxa To99 was not capable of inhibiting P. polymyxa TFr101 (Table 28).


Auto-antimicrobial activity was not confirmed for B. amyloliquefaciens subsp. plantarum 71 and P. polymyxa TFr101, while P. polymyxa To99 showed the biggest auto-antimicronial activity, with a growth inhibition zone 37.16 mm in diameter. Also, P. polymyxa To99 showed a large growth inhibition zone (25.16 mm) against B. amyloliquefaciens subsp. plantarum 71 (Table 28).


Without being bound by theory, these data suggest that cell-free supernatant of P. polymyxa To99 contains compounds (e.g., proteinaceous compounds such as bacteriocins or lantibiotics) produced by the bacteria to inhibit the growth of similar or closely related bacterial strains. Metabolites resembling bacteriocins or lantibiotics in structure would likely kill pathogens by binding to lipids on their cell membranes and making the cells porous. This would cause intracellular fluid to leak out, which would destroy the pathogen. Another example of such a molecule is nisin, produced by bacteria found in dairy products. Normally, lantibiotics are only effective against Gram-positive bacteria, but they can be induced to destroy Gram-negative pathogens such as those that cause plant diseases, by being combined with a chelator like EDTA. It is clear from above experiments that supernatants produced by these active species have wide-spectrum activity against other bacteria and even against bacteria within the same genus and the same species as the active bacteria.


f) Example 4.1
Enhancing the Anti Xanthomonas Activity of P. polymyxa and B. amyloliquefaciens by Fermentation in Optimized Media

i. 4.1.1 Fermentation in Optimized Media


The precultures of P. polymyxa and B. amyloliquefaciens subsp. plantarum isolates were prepared as follows: 5 μL of the respective bacterial culture stored at −80° C. was inoculated into 3 mL of Tryptic Soy Broth (TSB) and incubated in a rotary shaker at 250 rpm overnight at 30° C. The appropriate aliquots of each culture broth were used to inoculate production media to start with an initial optical density of 0.01, corresponding to about 8×106 CFU/mL.


With the goal of identifying more optimal nutrient medium and fermentation conditions for enhancing anti-Xanthomonas activity of the metabolites, optimization experiments were performed (data not shown) comparing 10 different nutrient media, as well as different fermentation conditions. For example, the different conditions tested included: various time periods of incubation (48 h, 72 h, 96 h, etc.); different volumes of medium (e.g., 250 mL or 500 mL); and difference Erlenmeyer flask sizes (e.g., 1 L or 2 L flask). The results of these experiments revealed that the optimal media for Bacillus and Paenbacillus isolates were Landy medium and TSB, respectively. Thus, TSB was used as a production medium for P. polymyxa isolates, while Landy's medium was used for cultivation of B. amyloliquefaciens subsp. plantarum isolates. Landy's medium contains: glucose 20 g/L, L-glutamic acid 5.0 g/L, yeast extract 1.0 g/L, K2HPO4 1.0 g/L, MgSO4 (7H2O) 0.5 g/L, KCl 0.5 g/L, CuSO4 1.6 mg/L, Fe2(SO4)3 1.2 mg/L, MnSO4 0.4 mg/L.


The production of metabolites was carried out in 2 L conical flasks with 500 mL of TSB or 200 mL of Landy's medium, and shaken at 250 rpm at 30° C. for 48 h. Culture media were then centrifuged at 25 000 rpm for 1 hour. The pellets were discarded and the supernatants were filtered using stericup vacuum filtration system (0.2 μm). The supernatants were collected and stored at −20° C. until usage.


ii. 4.1.2 Anti Xanthomonas Activity of Cell-Free Supernatants Following Culture in Optimized Media


Cell-free supernatants of a number of different B. amyloliquefaciens subsp. plantarum isolates (including VFb49, 71, 237, 16, 33, and 335), as well as 16 different P. polymyxa isolates (including To99, TFr101, T1B, 44, 273 and 329) were obtained by culturing in optimized media as described in Example 4.1.1. The supernatants were diluted 10-fold and tested for activity against X. gardneri DCOOT7A, X. perforans T4, and X. campestris 901 using a well-diffusion inhibition assay (Obradovic et al., 2002; WO/2012/051699; Lindow et al., 2003).


As shown in FIG. 10, 10-fold diluted cell-free supernatants of B. amyloliquefaciens subsp. plantarum isolates 71 and VFb49 showed the highest antimicrobial activity amongst the supernatants tested against X. gardneri DCOOT7A, X. perforans T4, and X. campestris 901. Ten-fold diluted supernatants of B. amyloliquefaciens subsp. plantarum isolates 237, 16, and 33 were about 2-fold less active against all thee Xanthomonas species tested, while 10-fold diluted supernatant of B. amyloliquefaciens subsp. plantarum 335 showed no detectable anti-Xanthomas activity in this assay.


Among the 16 P. polymyxa isolates that were tested in the Example, 10-fold diluted supernatants of 6 isolates (To99, TFr101, T1B, 44, 273 and 329) showed the highest anti-Xanthomonas activity (FIG. 11). Based on these results, B. amyloliquefaciens subsp. plantarum isolates VFb49 and 71, as well as P. polymyxa isolates To99, TFr101, and 273 were selected for further characterization of their metabolites.


g) Example 5
Efficacy of Bacterial Cell-Free Supernatants and their Live Cells in Controlling Tomato Bacterial Spot Disease Caused by Xanthomonas Species

i. 5.1 Bacterial Cell-Free Supernatants


The five bacterial isolates from Examples 4 and 4.1 that showed the highest activities against Xanthomonas species were used in this example: Bacillus amyliquefaciens subsp. plantarum isolates 71 and VFb49, and Paenibacillus polymyxa isolates To99, 273, and TFr101. Of note, the pathogen growth inhibition zone caused by cell-free supernatants of these strains was more than 30 mm in diameter (Table 3, FIG. 5), or the inhibition area of pathogen caused by 10-fold diluted bacterial supernatant was more than 200 mm2. This result is comparable to the efficacy of copper plus mancozeb (2 g/L and 1 g/L, respectively; diameter of growth inhibition zone: 28.41±0.51; see FIG. 8), which is used by growers to control bacterial spot disease caused by Xanthomonas species. Production of secondary metabolites by Bacillus and Paenibacillus isolates for testing their efficacy in controlling tomato bacterial spot disease was performed as described above in Example 4.1.1.


ii. 5.2 Plant Pathogens


Bacterial spot of tomato is one of the most pervasive diseases that faces tomato production all over the world. It is caused by four closely related species of Xanthomonas: X. gardneri, X. euvesicatoria, X. vesicatoria, and X. perforans. After a number of early revisions, they were classified for some time as Xanthomonas campestris pv. vesicatoria (Xcv) [Dye, 1978]. Comparative studies of whole genome sequences from reference strains, as well as data of carbon utilization, amylolitic and pectolytic activities of these four species showed considerable diversity between these pathogens, especially the difference between X. gardneri and other three Xanthomonas species [Potins et al., 2011; EPPO Bulletin, 2013]. Also, Race T1, caused by X. euvesicatoria was the endemic race in Florida until 1991, when X. perforans race T3 (antagonistic to race T1), emerged. Race T4 came about as a result of a mutation in the X. perforans avrXv3 gene, and has recently become prevalent [Jones et al., 2004; Jones et al., 2005]. Thus, X. perforans race T4 and X. gardneri DCOOT7A were used herein.



X. perforans T4 or X. gardneri DCOOT7A was incubated in TSB at 30° C. for 16h (overnight). Cell culture medium was centrifuged at 10,000×g for 5 min. The supernatant was discarded and bacterial cells were resuspended in sterile distilled water. The NanoDrop™ ND-1000 spectrophotometer was set to measure absorbance at 600 nm wavelength, and the suspension was adjusted to an optical density (OD600nm) of 0.2, which was empirically determined to represent 2×108 CFU/mL by plating serial dilutions of the suspension and counting colonies. Prior to spraying tomato seedlings, cell suspension of pathogen was mixed with the surfactant Silwet L-77 at 0.025% (v/v) to help in the penetration and infection of the plants.


iii. 5.3 Plant Materials


Tomato Solanum lycopersicum L. var. cerasiforme (Dunal) (D. M. Spooner et al.) cv. Bonny Best (OSC Seeds, Waterloo, Ontario, Canada) or Florida 47 (Harris seeds, Rochester, N.Y., US) seeds were planted in Pro-Mix™ BX Mycorrhizae™ (Premier horticulture Inc., Quakertown, Pa., USA) with adding all-purpose NPK (20-20-20) fertilizer (Plant Products Co. LTD., Brampton, Ontario, Canada).


Tomato seedlings were grown in plastic pots (6.0×6.0 cm) in a growth chamber (25° C., relative humidity (RH) 40%, with a photoperiod of 16 hours (light intensity is about 200.0 lum/sqf) for two weeks (the four-true-leaf stage) prior to infestation by X. perforans T4 or X. gardneri DCOOT7A.


Temperature, relative humidity (RH), and lightness were monitored hourly during the research using Hobo™ digital system (Onset computer corporation) that was located in the center of the shelf with tomatoes.


iv. 5.4 Experimental Design


The trials under growth chamber conditions were carried out on tomato seedlings to assess the efficacy of cell-free bacterial supernatants of B. amyliquefaciens subsp. plantarum and P. polymyxa isolates in controlling artificial infections caused by X. perforans T4, as compared to a mix of copper and mancozeb (2 and 1 g/L, respectively).


Each treatment was replicated 3 times with four seedlings per replicate, according to a randomized blocks design. The same number of not-inoculated and treated by water, not-inoculated and treated by TSB plants served as negative controls. Inoculated and treated by water, inoculated and treated by TSB tomato seedlings served as positive controls. Bacterial cell-free supernatants from each strain were applied for testing their phytotoxic effect in plants.


Tomato seedlings were sprayed on abaxial and adaxial leaf surfaces to leaf wetness with a hand sprayer, applying approximately 2 mL of X. perforans T4 suspension per plant. After 1 h of inoculation, seedlings were treated by spraying cell-free supernatants, water, or TSB, respectively, using a hand-pump up to run-off of plants. Tomato seedlings were maintained for 48h under plastic bags and then placed in a growth chamber (30° C., RH 60% with a photoperiod of 16 hours) for one week.


The plants were assessed for disease severity by visual estimation of the percentage of leaf tissue with spots and lesions 10 days after infestation. Symptoms on the leaves were recorded for each plant by two persons independently. Disease severity assessments were made based on leaf rating compiled from three separate experiments.


v. 5.5 Curative Effect of Cell-Free Bacterial Supernatants


Reduction of Leaf Spots

All treatments with bacterial cell-free supernatants were effective in controlling leaf spot caused by X. perforans T4 on tomato seedlings (FIG. 9 A-R).


Thus, severity disease was evaluated as 70% in plants infected by X. perforans T4 and treated by water, and 90% in plants infected by X. perforans T4 and treated by TSB, comparative to not-infected tomato seedlings (FIG. 9 A-D). Susceptible reactions manifested 7 days after infestation as small, greasy water-soaked spots (about ⅛ inch) on leaflets. Older spots became dry and brown, and often surrounded by yellow halos. Spots increased in size to form large, irregular dead spots. Lesions were frequently surrounded by large chlorotic haloes and perforations, referring to the holes in the leaf following infection by the bacterium (FIG. 9 A-L, O-R).


Treatment with bacterial cell-free supernatant of B. amyloliquefaciens subsp. plantarum isolates 71 (FIG. 9 G-H) and VFb49 (FIG. 9 O-P), as well as P. polymyxa isolates TFr101 (FIG. 9 K-L) and 273 (FIG. 9 Q-R) reduced disease severity by almost 4 times compared to the water-treated control (FIG. 9 C, D). Thus, only 20% of leaf surface was infected by X. perforans T4 after tomato treatment by cell-free supernatants of these isolates (FIG. 9 G, H, K, L, O, P, Q, R).


Almost the same effect in controlling bacterial spot disease was shown for cell-free supernatants of B. amyloliquefaciens subsp. plantarum VFb49 (FIG. 9 O, P) and P. polymyxa 273 (FIG. 9 Q, R), reducing disease severity by about 4.6-fold as compared to the water-treated control. Only 40% of leaf surfaces of tomato seedlings treated by metabolites of these isolates were infected by X. perforans T4.


The cell-free supernatant of P. polymyxa To99 reduced disease severity by about 2-fold as compared to positive control (FIG. 9 I, J). Thus, about 40% of leaf surfaces of tomato seedlings were infected by X. perforans T4, which is comparable with treatment by copper and mancozeb (FIG. 9 C-F, I, J). Of note, spots and lesions appeared on only one of six leaves per plant infected by X. perforans T4 and treated by bacterial cell-free supernatants, while infected and not-treated plants had four of six leaves with these disease symptoms.


Bacterial cell-free supernatant of all strains sprayed as is with no dilution did not cause any phytotoxic effect in tomato plants (e.g., FIG. 9 M, N).


In conclusion, cell-free supernatants of bacterial isolates showed suppression of bacterial spot disease caused by X. perforans T4, comparable to copper-mancozeb, suggesting that they may be potentially suitable replacements to chemical biocides.


vi. 5.6 Preparation of Live Cell Suspensions of Bacterial Isolates and Application to Tomato Leaves



P. polymyxa and B. amyloliquefaciens subsp. plantarum isolates were removed from frozen stock vials and 5 μL of each isolate was added to 3 mL of TSB. Bacteria were cultivated at 30° C. for 16h (overnight). Cell culture medium was centrifuged at 10,000×g for 5 min and washed twice by 0.85% NaCl. The supernatant was discarded and bacterial cells were resuspended in sterile 0.85% NaCl adjusting to the final concentration 3×108 CFU/mL (OD=0.3). Live cell suspension of bacterial isolates was applied on tomato leaves immediately after preparing.


Foliar treatment of tomato seedlings was performed by suspension of live bacterial cells (3×108 CFU/mL) of Bacillus and Paenibacillus isolates, and respective control solutions using a hand trigger sprayer with application on abaxial and adaxial leaf surfaces until run-off. To confirm the presence of live bacterial isolates on tomato leaves, leaf print on Tryptic Soy Agar (TSA) plates and serial dilution method were performed 1 hour and 6 days after treatment.


For the leaf print method, one tomato leaf from each plant treated by a respective bacterial isolate was cut and put directly onto TSA plate. Plates were incubated overnight in the dark at 30° C. Then leaves were removed and plates were incubated at 30° C. for 48h. FIG. 12 shows a typical print of an untreated tomato leaf in panel (A), and one treated with B. amyloliquefaciens subsp. plantarum 71 panel (B) after 24 hours of incubation.


For the serial dilution method, one leaf from each plant was cut onto segments (0.5 cm2), placed in tubes containing 5 mL of 0.85% NaCl and 0.01% Triton-100, resuspended by vortexing for 5 min. Then, 100 μL of each dilution (10−2, 10−3 and 10−4) were spread on TSA plates for isolation of bacteria. Plates were incubated in the dark at 30° C. for 2 days. Quantity of grown colonies was counted and CFU/leaf was calculated. Isolation of microorganisms was performed in triplicate.


vii. 5.7 Microbial Viability of Bacterial Isolates on Tomato Leaves


The leaf print method used in this study (Example 5.6) allowed us to confirm the formation of bacterial biofilm on tomato leaves. FIG. 13 shows a whitish film on tomato leaves formed by Bacillus and Paenibacillus isolates 6 days after respective treatments (panels A, C, E, G, I), as well as leaf shape of their live bacterial colonies after leaf printing (panels B, D, F, H, J).


Bacterial cells of all Bacillus and Paenibacillus isolates tested in this Example were still alive on tomato leaves even 6 days following treatments, but the quantity of CFUs per leaf was different depending on the isolates. As shown in FIG. 14, 1 hour after treatment, the leaves treated by B. amyloliquefaciens subsp. plantarum 71 contained the highest quantity (log of CFU/leaf reached 3.77) of bacterial live cells, while the quantity of P. polymyxa 273 live cells was 1.6-fold less (log of CFU/leaf reached up 2.33). Six days after treatment, the quantity of CFU/leaf of Bacillus and Paenibacillus isolates increased by about 1.5 fold. There was no significant difference in the quantity of live bacterial cells on untreated tomato leaves after 1 hour and 6 days (FIG. 14, “untreated”), while the CFU/leaf of X. gardneri DCOOT7A was 1.3-fold higher after 6 days of inoculation (FIG. 14, “X. gardneri DCOOT7A”).


Of note, the colonies formed on TSA by bacteria isolated from untreated tomato leaves were morphologically different from those treated by Bacillus and Paenibacillus isolates. Using the serial dilution method (Example 5.6), 2 fungal and 4 bacterial morphologically different colonies were isolated from untreated tomato leaves after 6 days (FIG. 15C), while only B. amyloliquefaciens subsp. plantarum 71 and P. polymyxa To99 colonies appeared on TSA after their isolation from respectively treated tomato leaves (FIG. 15A, B).


viii. 5.8 Preventive Effect of Bacterial Live Cells and their Supernatants in Controlling Bacterial Spot Disease Caused by X. gardneri DCOOT7A


Tomato seedlings were sprayed on abaxial and adaxial leaf surfaces to leaf wetness with a hand sprayer, applying approximately 2 mL of cell-free bacterial supernatants or live cell suspension per plant. Water and TSB were used as controls. After treatment, plants were placed in a growth chamber (30° C., RH 60% with a photoperiod of 16 hours) for one week. Then, tomato seedlings were infected by X. gardneri DCOOT7A in the same way using a hand-pump up to run-off of plants and placed in a growth chamber. After 10 days, the effectiveness of cell-free supernatants and live cells was evaluated as the reduction of spot numbers per plant compared to the pathogen-only control. The results were compiled from three separate experiments.


In contrast to yellow-brownish lesions caused by X. perforans T4 on tomato leaves, susceptible reaction caused by X. gardneri DCOOT7A manifested 10 days after infestation as well-defined brown spots appeared on leaves (FIG. 16 A, B) and stems (FIG. 16 C, D). Brown spot are indicated with arrows. Thus, the preventive effect of live cells of B. amyloliquefaciens subsp. plantarum (isolates 71 and VFb49) and P. polymyxa (isolates To99, Tfr101 and 273) and their metabolites was evaluated as the reduction of spot numbers per plant.


As shown in FIG. 17, treatment of the leaves of tomato seedlings with live cells of Bacillus and Paenibacillus isolates (as well as by their metabolites) 6 days before X. gardneri DCOOT7A infection reduced bacterial spot disease by about 2-5 fold as compared to untreated plants. The metabolites of B. amyloliquefaciens 71 and P. polymyxa 273 were twice more effective in controlling this disease than their live cells, while metabolites of P. polymyxa To99 were 1.6 fold less effective than their live cells. There was no statistical difference between the efficacy of live cells and their metabolites of P. polymyxa TFr101 and B. amyloliquefaciens VFb49 in reduction of bacterial spots caused by X. gardneri DCOOT7A. All Bacillus and Paenibacillus isolates (live cells as well as metabolites) showed 2-fold suppression of bacterial spot disease caused by X. gardneri DCOOT7A, as compared to copper:mancozeb.


h) Example 6
Characterization of Secondary Metabolites Produced by Bacillus and Paenibacillus Isolates

Cell-free supernatants of the B. amyloliquefaciens subsp. plantarum isolates VFb49 and 71, as well as the P. polymyxa isolates To99, TFr101, 273 and 329) were obtained by culturing in optimized media as described in Example 4.1.1.


i. 6.1 Sensitivity of Metabolites to Light Exposure


An agar disc diffusion assay was performed in order to evaluate the sensitivity of bacterial metabolites to light exposure. Paper blank discs (diameter=6 mm) were saturated with 10-fold diluted cell-free supernatants (20 μL), air-dried overnight in the biological cabinet, and exposed to light at room temperature (22° C.) for 3 months. Antimicrobial activity was then tested weekly by placing the saturated discs on a lawn of Xanthomonas gardneri DCOOT7A and measuring the inhibition area (in mm2). The results are shown in FIGS. 18 A and B.


As shown in FIG. 18A-B, the anti-Xanthomonas activities of the 10-fold diluted cell-free supernatants of almost all of the tested isolates gradually decreased with increasing exposure to light. The cell-free supernatants exhibiting the highest resistance to light exposure were those from the tested strains of Paenibacillus polymyxa, whose activity began to decrease only after 3 weeks of light exposure. In fact, the P. polymyxa-derived supernatants exhibited activity against X. gardneri DCOOT7A even after 12 weeks of light exposure, in contrast to those from the B. amyloliquefaciens subsp. plantarum strains. Among the supernatants from the different Paenibacillus polymyxa strains tested, P. polymyxa To99 exhibited the highest activity against X. gardneri DCOOT7A.


ii. 6.2 Thermal Stability of Metabolites


To determine the thermal stability of the metabolites, aliquots of each cell-free supernatants were heated at 40° C., 60° C., 80° C. or 100° C. for 30 min, or autoclaved (121° C.) for 15 min (Kabore et al., 2012; Meng et al., 2012; Compaore et al, 2013). The aliquots of each supernatant were also exposed to 4° C. and room temperature (about 22° C.) for 6 weeks, and to −20° C. for 1 year. The antimicrobial activity was then tested by the agar-well diffusion method by measuring the inhibition area (mm2) of Xanthomonas gardneri DCOOT7A, as described in Example 6.1. The results are shown in Tables 29 and 30.









TABLE 29







Effect of heating on the antimicrobial activity of 10-fold diluted Bacillus


and Paenibacillus cell-free supernatants against X. gardneri DC00T7A









Inhibition area (mm2)












Bacillus






amyloliquefaciens



Temperature/

Paenibacillus
polymyxa

subsp. plantarum












incubation time
To99
273
TFr101
71
VFb49





Untreated
284 ± 30
 255 ± 20
 212 ± 29
 285 ± 14
514 ± 22


 40° C. for 30 min
186 ± 13
172 ± 9
149 ± 9
 241 ± 11
430 ± 20


 60° C. for 30 min
177 ± 16
172 ± 9
 145 ± 11
144 ± 9
433 ± 20


 80° C. for 30 min
163 ± 12
 156 ± 10
137 ± 9
144 ± 9
430 ± 20


100° C. for 30 min
144 ± 12
150 ± 9
0
137 ± 9
296 ± 27


121° C. for 15 min
0
0
0
137 ± 9
0





“ ±” Standard Error of Mean (SEM)






As shown in Table 29, 10-fold diluted cell-free supernatants from all the tested Paenibacillus and Bacillus isolates were at least somewhat sensitive to heating, as their anti-Xanthomonas activities decreased with increasing temperature. Those most sensitive to high temperatures were the cell-free supernatants from the P. polymyxa isolates and B. amyloliquefaciens subsp. plantarum VFb49, which completely lost their activities after autoclaving at 121° C. for 15 minutes. In contrast, 10-fold diluted cell-free supernatant of B. amyloliquefaciens subsp. plantarum 71 was still active against X. gardneri DCOOT7A even after autoclaving.









TABLE 30







Effect of storage of Bacillus and Paenibacillus cell-free supernatants at different


temperatures on their antimicrobial activity against X .gardneri DC00T7A









Inhibition area* (mm2)




Paenibacillus polymyxa























Bacillus amyloliquefaciens











To99
subsp. plantarum













4° C.
273
TFr101
71
VFb49

















Weeks
514 ± 28
22° C.
4° C.
22° C.
4° C.
22° C.
4° C.
22° C.
4° C.
22° C.





control

475 ± 21

514 ± 22
394 ± 19
394 ± 18
327 ± 17
327 ± 17
314 ± 22
314 ± 17
607 ± 19
607 ± 19


1
437 ± 20
506 ± 22
366 ± 18
360 ± 18
308 ± 13
290 ± 25
314 ± 22
302 ± 17
607 ± 19
589 ± 23



p = 0.004











2

430 ± 20


380 ± 24


314 ± 22


314 ± 22

308 ± 18
290 ± 32
302 ± 20

121 ± 11

598 ± 23

531 ± 29





p = 0.001
p-0.003
p = 0.003



p = 0.002




3

366 ± 18


380 ± 24


314 ± 22


302 ± 17


243 ± 15


254 ± 20


255 ± 20

0
598 ± 23

498 ± 17








p = 0.001
p = 0.003
p = 0.002


p = 0.001


4

254 ± 20


290 ± 25


314 ± 22


302 ± 17


249 ± 12


227 ± 19


255 ± 11

0
589 ± 23

483 ± 17



5

248 ± 12


216 ± 14


249 ± 12


249 ± 12


196 ± 11


201 ± 18


206 ± 18

0

555 ± 22


437 ± 20



6





“±“ Standard Error of Mean (SEM)


*Inhibition area represent the effect of 10-fold diluted supernatants


Values in bold are significantly different (at the indicated p value) from the corresponding control value. The control is the anti-Xanthomonas activity of fresh supernatants after 1 h storage at 4° C. and 22° C., respectively.






The antimicrobial activities of Paenibacillus and Bacillus 10-fold diluted cell-free supernatants against X. gardneri DCOOT7A after storage at −20° C. are shown in FIG. 19. The most resistant to the storage at −20° C. were metabolites of P. polymyxa To99 and B. amyloliquefaciens subsp. plantarum VFb49. There was no statistically significant difference (p<0.05) between anti-Xanthomonas activity of P. polymyxa To99 supernatants, even after 6 and 12 months comparing to control. The control was the anti-Xanthomonas activity of fresh supernatant that was tested against Xanthomonas on the same day when it was obtained; and it was not subjected to any of the indicated conditions (i.e., 4° C., 22° C. and −20° C.).


iii. 6.3 Extraction of Secondary Metabolites and their Effects on Anti-Xanthomonas Activity


Extraction of secondary metabolites by butanol allowed for the detection of particular types compounds (e.g., lipopeptides) produced by Bacillus and Paenibacillus isolates. This method was performed according to Wulf et al. (2002) and Yokota et al. (2012) with some modifications. Briefly, 2 mL of culture supernatant was extracted using 2 mL of 2-butanol by vortex mixing for 20 seconds. After centrifugation at 10 000×g for 5 min at 20° C., the organic (upper) layer was collected into glass vials. The remaining aqueous layer was extracted twice adding 500 μL of 2-butanol. The organic fractions were combined and evaporated at 30° C. under a gentle stream of nitrogen. The dried sample was dissolved in 2 mL of dH2O. The antimicrobial activity of undiluted and 10-fold diluted fractions was estimated using well diffusion method by measuring the inhibition area (mm2) of Xanthomonas gardneri DCOOT7A, as described in Example 6.1. The results are shown in Table 31.









TABLE 31







Antimicrobial activity of Bacillus and Paenibacillus metabolite extractions


against X. gardneri DC00T7A









Inhibition area* (mm2)



Supernatant











100%
Organic phase
Aqueous phase













Bacterial isolates
572 ± 30
10%
100%
10%
100%
10%






P. polymyxa To99

445 ± 31
549 ± 23
584 ± 30
0
708 ± 86
243 ± 15



P. polymyxa TFr101

564 ± 35
191 ± 13
145 ± 11
0
539 ± 34
172 ± 19



P. polymyxa 273

547 ± 36
243 ± 15
191 ± 13
0
539 ± 34
238 ± 15



B. amyloliquefaciens subsp.

1110 ± 32 
227 ± 19
438 ± 33
141 ± 18
206 ± 21
0



plantarum 71










B. amyloliquefaciens subsp.










plantarum VFb49










The anti-Xanthomonas activity of organic and aqueous phases of all 5 bacterial isolates indicates that they produce several compounds, including lipopeptides, with different diffusion abilities. For example, 100% organic phase (lipopeptides) of P. polymyxa To99 supernatant showed the same anti-Xanthomonas activity as 100% crude supernatant, while 100% aqueous phase of its supernatant was 1.2-fold more active against X. gardneri DCOOT7A. Regarding P. polymyxa isolates TFr101 and 273, the aqueous phases of their supernatants were more active against X. gardneri DCOOT7A than their organic phases. In contrast, the aqueous phases of Bacillus supernatants were less active against X. gardneri DCOOT7A than their corresponding organic phases. Among all 5 bacterial isolates, the organic phase of B. amyloliquefaciens subsp. plantarum VFb49 supernatant, as well as its crude supernatant, showed the highest anti-Xanthomonas activity (Table 31).


i) Example 7
Complete Genome Sequencing

The whole genome sequencing was performed to further confirm the taxonomic identification of the isolates, in addition to the results already obtained from the sequencing of 16S rDNA (Example 2.2) and specific (gyrA, gyrB and rpoB) genes (Examples 2.3 and 2.5), biochemical tests of Biolog™ microbial identification system (Example 2.3a), and fatty acid analyses (Example 2.4).


i. 7.1 Materials and Methods


Genomic DNA was isolated from an overnight culture of each strain (71, VFb49, To99, TFr101, and 273) using a Qiagen DNeasy™ blood and tissue kit (Qiagen Inc., Valencia, Calif.). Genome sequencing was performed using Illumina MiSeg™ sequencing system (Illumina, San Diego, Calif.), achieving >50× average genome coverage. De novo assembly was created for each genome using SPAdes™ 3.0.0 (St. Petersburg genome assembler), and annotated with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). Taxonomy of each strain was assigned using Kraken™ (Wood and Salzberg, 2014), a metagenomics sequence classification tool (http://ccb.jhu.edu/software/kraken/). Genome mining of biosynthetic gene clusters, including non-ribosomal peptide synthetases (NRPSs) and other secondary metabolites, were predicted with antibiotics & Secondary Metabolite Analysis SHell™ (antiSMASH™) (Weber et al., 2015) web server (http://antismash.secondarymetabolites.org/).


ii. 7.2 Results



Bacillus amyloliquefaciens subsp. plantarum isolates 71 and VFb71, as well as Paenibacillus polymyxa isolates To99, TFr101 and 273 possessing the highest anti-Xanthomonas activity were subjected to the whole genome sequence analysis. Genome annotations for these bacterial isolates are summarized below.


High genome coverage (88-119%) and very low (2.06-10.47%) percentage of unclassified reads of all isolates reflect the accuracy of the species identification (Table 32.1).









TABLE 32.1







Genome sequencing and annotation details of the most active


isolates against Xanthomonasperforans











Bacillus






amyloliquefaciens





subsp. plantarum

Paenibacillus
polymyxa













Isolates
71
VFb49
To99
TFr101
273





Genome
   97
   119
  110
   109
   88


coverage







(%)







N50 (bp)
93,762
589,918
92,187
141,501
364,236


Number of
  105
   53
  203
   188
   206


contigs







Unclassified
   2.06
    2.97
   4.53
   10.47
   7.37


reads (%)









The ANI calculator was used (http://enve-omics.ce.gatech.edu/ani/index) to compare the nucleotide identity of the bacterial isolates with already known and type strains of Paenibacillus and Bacillus species from the NCBI database (http://www.ncbi.nlm.nih.gov/nuccore). The ANI calculator estimates the average nucleotide identity using both best hits (one-way ANI) and reciprocal best hits (two-way ANI) between two genomic datasets, as calculated by Goris et al., 2007. Typically, the ANI values between genomes of the same species are above 95%.









TABLE 32.2





The average nucleotide identity (%) based on complete genome sequencing between



Bacillus (A) and Paenibacillus (B) isolates possessing anti-Xanthomonas activity and type strains








A










Bacterial


Bacillus
amyloliquefaciens subsp.


Bacillus
amyloliquefaciens



strains
VFb49

amyloliquefaciens DSM7

subsp. plantarum CC178





71
98.58
93.57
99.02


VFb49

93.52
98.60







B











Bacterial



Paenibacillus
peoriae

Paenibacilluspolymyxa


strains
TFr101
273
HS311
SC2





To99
95.17
99.20
99.03
89.24


TFr101

95.19
95.19
89.50


273


99.04
89.26









Thus, the VFb49 and 71 isolates showed about 99% nucleotide identity with Bacillus amyloliquefaciens subsp. plantarum (Table 32.2A), which confirms our previous identification based on sequencing of gyrA, gyrB and rpoB genes, specific for Bacillus subtilis group.


Comparing complete genome sequencing of Paenibacillus isolates To99, TFR101 and 273 with two closely related and well known strains Paenibacillus peoriae HS311 and Paenibacillus polymyxa SC2, we observed that nucleotide identity of both isolates To99 and 273 with Paenibacillus peoriae strain HS311 reached 99%, while isolate TFr101 showed 95% identity with this strain (Table 32.2B). All three Paenibacillus isolates showed only 89% nucleotide identity (<95%) with Paenibacillus polymyxa SC2. Thus, Paenibacillus isolates To99, 273 and TFr101 are more accurately re-identified as Paenibacillus peoriae, instead of Paenibacillus polymyxa.


Comparing complete genome sequencing of Bacillus and Paenibacillus isolates between themselves showed that isolates To99 and 273 are closely related isolates with nucleotide identity of 99.20%, while isolate TFr101 was different from both of them and its nucleotide identity with these isolates averaged only 95%. Taking into account that the ANI value between isolate TFr101 and Paenibacillus peoriae strain HS311 is on the border of 95%, probably Paenibacillus isolate TFr101 could be a new species, or it can be explained by high value (10.47%) of unclassified reads.


The antibiotics Secondary Metabolite Analysis Shell (antiSMASH™) tool allowed us to identify 3 polyketide synthetases (PKSs), 15 non-ribosomal peptide synthetases (NRPSs), and 3 hybrid PKSs/NRPSs genes that could be involved in the synthesis of secondary metabolites of Bacillus amyloliquefaciens subsp. plantarum and Paenibacillus polymyxa isolates possessing the highest anti Xanthomonas activity (Table 32.3). Genome of B. amyloliquefaciens subsp. plantarum (isolates 71 and VFb49) and P. polymyxa (isolates To99, TFr101 and 273) harboured different gene clusters responsible for the production of polyketides, lipopeptides, bacteriocins and lantibiotics putatively involved in controlling bacterial leaf spot caused by Xanthomonas species (Table 32.3).









TABLE 32.3







Presence of genes belonging to biosynthetic clusters encoding secondary metabolites


of Bacillusamyloliquefaciens subsp. plantarum and Paenibacilluspolymyxa isolates displaying


the highest anti-Xanthomonas activity


Isolates













Bacillus
amyloliquefaciens













Gene clusters
subsp. plantarum

Paenibacillus
polymyxa














71
VFb49
To99
TFr101
273










Polyketides, synthesized by Polyketide Synthetases (PKSs)












Bacillaene
+
+
+

+


Difficidin
+
+





Macrolactin
+











Polyketides, synthesized by hybrid PKSs and non-ribosomal peptide synthetases (NRPSs)












Kalimantacin/batumin
+






Myxovirescin




+


Nosperin


+

+







Lipopeptides, synthesized by NRPSs












Surfactin
+
+





Fengycin
+
+





Plipastatin

+





Iturin
+
+





Bacilysin
+
+





Bacillibactin
+
+





Bacillomycin


+
+



Locillomycin

+





Paenilarvin


+




Pelgipeptin


+
+



Polymyxin


+
+
+


Paenibacterin


+
+



Fusaricidin


+
+
+


Bacitracin



+
+


Tridecaptin



+
+







Peptides, synthesized by Ribosomal Peptide Synthetases (RPSs)












Plantathiazolicin/plantazolicin
+






Bacteriocin
+











Lantipeptides, ribosomally synthesized and post-translationally modified












Subtilin

+





Paenicidin B



+



Paenibacillin



+






“−”: absence or no detection of the gene cluster;


“+”: presence or detection of the gene cluster






For example, the genome of B. amyloliquefaciens subsp. plantarum 71 resulted in the identification of gene clusters for the synthesis of polyketides such as bacillaene, difficidin, macrolactin. It is interesting to note that B. amyloliquefaciens subsp. plantarum VFb49 does not possess gene cluster encoding macrolactin production, while bacillaene and difficidin gene clusters were revealed in its genome. Among gene clusters involved in polyketide production by P. polymyxa isolates, the genes clusters responsible for the synthesis of bacillaene and nosperin were revealed in P. polymyxa isolates To99 and 273. The genes encoding kalimantacin/batumin and myxovirescin were discovered in B. amyloliquefaciens subsp. plantarum 71 and P. polymyxa 273 genomes (Table 32.3).


Interestingly, only the genomes of B. amyloliquefaciens subsp. plantarum isolates 71 and VFb49 resulted in the identification of gene clusters responsible for the synthesis of non-ribosomal lipopeptides (NRPs) such as surfactin, fengycin, plipastatin (only for VFb49 isolate), iturin, bacilysin, bacillibactin, locillomycin (only for VFb49 isolate), while the genome of P. polymyxa isolates does not possess these gene clusters. In contrast, all three isolates (To99, TFr101 and 273) of P. polymyxa possess gene cluster responsible for the synthesis of NRPs such as polymyxin and fusaricidin. Gene clusters involved in bacillomycin and pelgipeptin biosynthesis were found in P. polymyxa isolates To99 and TFr101. Gene cluster responsible for tridecaptin and bacitracin synthesis was discovered in the genome of P. polymyxa isolates TFr101 and 273. Only the genome of P. polymyxa To99 possesses gene clusters involved in synthesis of paenilarvin and paenibacterin.


Gene clusters responsible for the peptide biosynthesis by RPSs such as plantathiazolicin/plantazolicin and bacteriocins were detected only in the genome of B. amyloliquefaciens subsp. plantarum 71. Among gene clusters involved in the biosynthesis of lantipeptides, B. amyloliquefaciens subsp. plantarum VFb49 possesses gene cluster for subtilin, while gene clusters encoding paenicidin B and paenibacillin biosynthesis are found in the genome of P. polymyxa TFr101 (Table 32.3).


The genomes of both isolates (71 and VFb49) of B. amyloliquefaciens subsp. plantarum possessing anti-Xanthomonas activity harbour gene clusters involved in the biosythensis of cyclic lipopeptides such as surfactin, fengycin, plipastatin and iturin; as well as of the siderophore, bacillibactin. The isolate VFb49 also harbour gene clusters involved in the biosythensis of locillomycin, a new family of cyclic lipopeptides (Luo et al., 2015).


j) Example 8
Greenhouse Trials

Two greenhouse trials were conducted to determine the efficacy of metabolites and/or live bacterial strains to control bacterial leaf spots, as compared to standard chemicals agents. The two greenhouse trials were conducted by FarmForest at the University of Ottawa, the first in 2014 and the second in 2015. In general, each plot consisted of at least 6 tomato plants raised from seed in the greenhouse. Each treatment was replicated at least 4 times (24 plants per treatment total). The plants were maintained in conditions similar to those of commercial greenhouse practice, with the appropriate use of fertilizers and insecticides. Plants were inoculated with a virulent strain of Xanthomonas gardneri, two days after the initial application of the treatments. The copper fungicide (Kocide™ 3000) was used at 1.68 kg/ha+Tanos at 0.42 kg/ha with 200 L/ha water volume. Initial treatments were applied 2 DBI as foliar spray, followed by foliar spray applications every 7 days+/−1 day for 4 more weeks for a total of 5 applications.


The results of the two greenhouse trials are shown below in Tables 33-35 and FIGS. 20-23. “LIVE” indicates that live strains were administered instead of only metabolites. In general, the results show that all treatments, whether metabolites or live strains, had an effect in controlling the Xanthomonas gardneri and were much better than untreated or Mock (Media used for growth). In some case, the treatments were even equal or better than Copper/Tanos standards. FIG. 20 shows the disease control percentage of the metabolites compared to Copper/Tanos mixture in both trials. FIG. 21 shows the disease control percentage of the live isolates compared to Copper/Tanos mixture in both trials. FIG. 22 shows the AUDPC disease control percentage of the metabolites compared to Copper/Tanos mixture in both trials. FIG. 23 shows the AUDPC disease control percentage of the live isolates compared to Copper/Tanos mixture in both trials.









TABLE 33







Efficacy of the treatments compared to Copper/Tanos mixture in two


consecutive greenhouse trials










FarmForest
FarmForest


Efficacy of treatments
2014
2015












Untreated
0
0


Mock
34
28


Control (Copper/Tanos)
67
75



B. amyloliquefaciens subsp. plantarum 71

72
81



P. peoriae To99

49
85



P. peoriae TFr101

47
84



B. amyloliquefaciens subsp. plantarum VFb49

Not tested
64



P. peoriae 273

Not tested
77



B. amyloliquefaciens subsp. plantarum 71-LIVE

41
76



P. peoriae To99-LIVE

79
63



B. amyloliquefaciens subsp. plantarum

Not tested
57


VFb49-LIVE





P. peoriae 273-LIVE

Not tested
56
















TABLE 34







Details of the first trial conducted by FarmForest at the


University of Ottawa














%

%


%


FarmForest Trial 2014
Damage
Sign
Ctrl
AUDPC
Sign
Ctrl
















UTC
17.7
a
0
202
a
0


Mock
10.2
b
42
132.7
a b
34


Kocide/Tanos
6.7
b c
62
66.4
b d c
67



P. peoriae TFr101

7.7
b c
56
108.6
b d c
46



P. peoriae To99

9
b c
49
104.3
b d c
48



B. amyloliquefaciens subsp.

4.8
c
73
56.1
b d c
72



plantarum 71










B. amyloliquefaciens subsp.










plantarum









VFB49









P. peoriae 273










P. peoriae To99-LIVE

4.6
c
74
42.3
c d
79



B. amyloliquefaciens subsp.

6.7
b c
62
119.6
b c
41



plantarum 71-LIVE










B. amyloliquefaciens subsp.










plantarum VFb49-LIVE










P. peoriae 273-LIVE






In the Table above, the letters a, b, c, and d indicate statistical significance.













TABLE 35







Details of the second trial conducted by FarmForest at the University of Ottawa














%

%


%


FarmForest Trial 2015
Damage
Sign
Ctrl
AUDPC
Sign
Ctrl
















UTC
29.2
a
0
364.6
a
0


Mock
22.5
ab
23
236.3
bc
35


Kocide ™ 3000
6.7
cd
77
89.7
de
75



P. peoriae TFr101

4.4
d
85
58.3
de
84



P. peoriae To99

5.4
cd
82
52.5
e
86



B. amyloliquefaciens subsp.

5.4
cd
82
70
de
81



plantarum 71










B. amyloliquefaciens subsp.

8.8
cd
70
130.5
e
64



plantarum VFb49










P. peoriae 273

5.8
cd
80
83.1
de
77



P. peoriae To99-LIVE

9
cd
69
134.2
cde
63



B. amyloliquefaciens subsp.

6.9
cd
76
86.8
de
76



plantarum 71-LIVE










B. amyloliquefaciens subsp.










plantarum VFb49-LIVE

12.5
cde
57
157.5
cd
57



P. peoriae 273-LIVE

13.8
cde
53
160.4
bcd
56





In the Table above, the letters a, b, c, and d indicate statistical significance.






The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.


REFERENCES



  • Agarry et al., “Antagonistic properties microorganisms associated with cassava (Manihotesculenta Crantz) products”. African Journ. Biotechnol. Vol. 4 (7). P. 627-632, 2005.

  • Aguilera et al., “Paenibacillus jamilae sp. nov, an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater”, Int J Syst Evol Microbiol, 2001. 51(Pt 5): p. 1687-92.

  • Athukorala et al., “Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry”. Can J Microbiol, 2009. 55(9): p. 1021-32.

  • Ayed et al., “Enhancement of solubilization and bidegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6.” International Biodeterioration and Biodegradation. 2015. 99: 8-14.

  • Baldwin et al., “Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex”. J Clin Microbiol, 2005. 43(9): p. 4665-73.

  • Ben Ayed et al. (2015). “Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6.” International Biodeterioration & Biodegradation 99: 8-14.

  • Cawoy et al. (2011). “Bacillus-based biological control of plant diseases.” Pesticides in the modern world pesticides use and management. InTech, Rijeka: 273-302.

  • Chen et al. (2008). “Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis.” Lett Appl Microbiol 47(3): 180-186.

  • Chen et al. (2009). “Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease.” J Biotechnol 140(1-2): 38-44.

  • Chung et al., “Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper”. Appl Microbiol Biotechnol, 2008. 80(1): p. 115-23.

  • Compaore et al., “Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of Bikalga, an alkaline fermented food”. J Appl Microbiol, 2013. 115(1): p. 133-46.

  • da Mota et al., “Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method”. FEMS Microbiol Ecol, 2005. 53(2): p. 317-28.

  • Dagher et al., “Synergistic activity of peracetic acid and at least one SAR inducer for the control of pathogens in and onto growing plants”, PCT patent appluccation ublication number: WO/2012/051699, 2012.

  • Dahllof et al., “rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity”. Appl Environ Microbiol, 2000. 66(8): p. 3376-80.

  • De Clerck et al., “Genotypic diversity among Bacillus licheniformis strains from various sources”. FEMS Microbiol Lett, 2004. 231(1): p. 91-8.

  • Dye et al., In: Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C G & Robbs C. F. “A proposed nomenclature and classification for plant pathogenic bactia.” New Zealand Journal of Agricultural Research. 1939. 39: 413-416.

  • Frank et al., “Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes”. Appl Environ Microbiol, 2008. 74(8): p. 2461-70.

  • Gonzalez et al., “Polyphasic identification of closely related Bacillus subtilis and Bacillus amyloliquefaciens isolated from dairy farms and milk powder”. Journal of Microbiology, Biotechnology and Food Science. 2013. 2(5): p. 2326-2331.

  • Gordillo et al., “Preliminary study and improve the production of metabolites with antifungal activity by a Bacillus sp. strain IBA 33.” Microbiology Insights. 2009; 2:15-24.

  • Goris et al., “DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.” Int J Syst Evol Microbiol. 2007 January; 57(Pt 1):81-91.

  • Grantastein, “Fire blight—current products, research grants and regulatory status”. Certis USA workshop, Oct. 8, 2014. Powerpoint slide 7.

  • Humber, “Fungi: preservation of cultures”. Chapter V-5: Manual of Techniques in Insect Pathology/Edited by Lauwrence Lacey. P. 269-278. 1997.

  • International Seed Federation, “Method for the detection of Xanthomonas spp. on Pepper Seed”, P. 1-7, 2011.

  • Jones et al., “Bacterial spot-worldwide distribution, importance and review”. Acta Horticulturae 695: 27-33, 2005.

  • Jones et al., Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol, 2004. 27(6): p. 755-62.

  • Kabore et al., “Bacteriocin formation by dominant aerobic sporeformers isolated from traditional maari”. Int J Food Microbiol, 2012. 154(1-2): p. 10-18.

  • Kim et al. (2015). “Biological characteristics of Paenibacillus polymyxa GBR-1 involved root rot of stored Korean ginseng.” Journal of Ginseng Research.

  • Kunz et al., “International Development of strategies for fire blight control in organic fruit growing”. Acta Horticulturae, 896: 431-436.

  • Li et al. (2014). “Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production.” Front Microbiol 5: 636.

  • Lindow et al., “Microbiology of the phyllosphere”, Appl Environ Microbiol, 2003. 69(4): p. 1875-83.

  • Luo et al. (2015). “Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916.” Appl Environ Microbiol 81(19): 6601-6609.

  • Martin and Rygiewicz, “Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts”. BMC Microbiol, 2005. 5: p. 28.

  • Meng et al., “Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application.” Journal of Applied Microbiology. 2012. 113: 1165-1175.

  • Nakamura, “Bacillus-Polymyxa (Prazmowski) Mace 1889 Deoxyribonucleic-Acid Relatedness and Base Composition”, International Journal of Systematic Bacteriology, 1987. 37(4): p. 391-397.

  • Obradovic et al., “Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers”, Phytopathology 92:S60, 2002.

  • PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. European and Mediterian Plant Protection Organization (EPPO). 2013. 43: 7-20.

  • Potnis et al., “Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper.” Genomics. 2011. 12: 146.

  • Priest et al., “Bacillus-Amyloliquefaciens Sp-Nov”, Nom Rev. International Journal of Systematic Bacteriology, 1987. 37(1): p. 69-71.

  • Promega, pGEM®-T and pGEM®-T Easy Vector Systems Technical Manual. 2010.

  • Pusey et al., “Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora”. Phytopathology, 2009. 99(5): p. 571-81.

  • Ramarathnam et al., “Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat”. Can J Microbiol, 2007. 53(7): p. 901-11.

  • Rashid and Khan, “Evaluation of antagonistic organisms against Xanthomonas campestris pv. malvacearum in vitro and on the inoculated cotton plant for the control of bacterial blight disease”, Pak. Agri. Sci., 37: 135-139, 2000.

  • Ray et al., “Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase”, Mol Plant Microbe Interact, 2000. 13(4): p. 394-401.

  • Remeeus and Sheppard, “Proposal for a new method for detecting Xanthomonas axonopodis pv. phaseoli on bean seeds”, 2006. ISTA Method Validation Report 3. pp. 1-11.

  • Roberts and Koenraadt, “Detection of Xanthomonas campestris pv. campestris on Brassica spp.”, 2014. International Rules for Seed Testing. Annexe to Chapter 7: Seed Health Testing Methods. 7-019-3/International Seed Testing Association (ISTA), Bassersdorf, Switzerland. P. 1-16.

  • Sutyak et al., “Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens”. J Appl Microbiol, 2008. 104(4): p. 1067-74.

  • Tapi et al., “New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction”. Appl Microbiol Biotechnol, 2010. 85(5): p. 1521-31.

  • Valdes et al., 2012, US patent publication number US/2012/0183517.

  • Vater et al., (2015). “Characterization of Novel Fusaricidins Produced by Paenibacillus polymyxa-M1 Using MALDI-TOF Mass Spectrometry.” J Am Soc Mass Spectrom 26(9): 1548-1558.

  • Velmurugan et al., Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J Microbiol, 2009. 47(4): p. 385-92.

  • Wang et al., “Bacillus velezensis is a later heterotrophic synonym of Bacillus amyloliquefaciens”. International Journal of Systematic and Evolutionary Microbiology (2008), 58, 671-675

  • Wang et al., “Pseudomonas taiwanensis sp. nov., isolated from soil”. Int J Syst Evol Microbiol, 2010. 60(Pt 9): p. 2094-8.

  • Weber et al., “antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters.” Nucl. Acids Res. 2015. doi: 10.1093/nar/gkv437

  • Wood and Salzberg. “Kraken: ultrafast metagenomic sequence classification using exact alignments.” Genome Biology. 2014. 15:R46. DOI: 10.1186/gb-2014-15-3-r46

  • Wulff et al., “Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris.” Plant Pathology. 2002; 51: 574-584.

  • Yamamoto and Harayama, “PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains”. Appl Environ Microbiol, 1995. 61(3): p. 1104-9.

  • Yamamoto. and Harayama, “Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes”. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 813-9.

  • Yin et al., “Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms”, African Journal of Microbiology Research. Vol. 5(4). P. 340-345, 2011.

  • Yokota et al., “Comparative study on sample preparation methods for the HPLC quantification of iturin from culture supernatant of an antagonistic Bacillus strain.” J ISSAAS 2012; Vol. 18,N1:70-75.

  • Yoshida et al., “Antimicrobial Activity of Culture Filtrate of Bacillus amyloliquefaciens RC-2 Isolated from Mulberry Leaves”, Phytopatholo, 2001. 91(2): p. 181-7.

  • Zanatta et al., “Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodi spv. phaseoli)”. Brazilian Journal of Microbiology. Vol. 38. P. 511-515, 2007.


Claims
  • 1. A method for controlling the growth of phytopathogenic Xanthomonas species on a target plant or tissue, said method comprising contacting said target plant or tissue with a biopesticide comprising fusaricidin and polymyxin, and one or more agriculturally acceptable excipients.
  • 2. The method of claim 1, wherein the biopesticide further comprises as least five of: bacillaene, myxovirescin, nosperin, bacillomycin, paenilarvin, pelgipeptin, paenibacterin, bacitracin, tridecaptin, paenicidin B, and paenibacillin.
  • 3. The method of claim 1, wherein the biopesticide further comprises: bacillomycin, pelgipeptin, bacitracin, tridecaptin, paenicidin B, and paenibacillin.
  • 4. The method of claim 3, wherein the biopesticide further comprises Paenibacillus peoriae TFr101 (NRRL B-67019) cells.
  • 5. The method of claim 1, wherein the biopesticide further comprises: bacillaene, nosperin, bacillomycin, paenilarvin, pelgipeptin, and paenibacterin
  • 6. The method of claim 5, wherein the biopesticide further comprises Paenibacillus peoriae To99 (NRRL B-67020) cells.
  • 7. The method of claim 1, wherein the biopesticide further comprises: bacillaene, myxovirescin, nosperin, paenibacterin, bacitracin, and tridecaptin.
  • 8. The method of claim 1, wherein said biopesticide has antimicrobial activity against Xanthomonas campestris, Xanthomonas perforans, X. euvesicatoria, and Xanthomonas gardneri.
  • 9. The method of claim 1, wherein the agriculturally acceptable excipient comprises a non-toxic carrier, surfactant, preservatives, nutrients, UV protectant, sticker, spreader, and/or chelating agent.
  • 10. A biopesticide having antimicrobial activity against phytopathogenic Xanthomonas species, said biopesticide comprising Paenibacillus peoriae TFr101 (NRRL B-67019) and metabolites thereof, and one or more agriculturally acceptable excipients, wherein said metabolites comprise fusaricidin and polymyxin
  • 11. The biopesticide of claim 10, wherein said metabolites further comprise bacillomycin, pelgipeptin, bacitracin, tridecaptin, paenicidin B, and paenibacillin.
  • 12. The biopesticide of claim 11, wherein said Paenibacillus peoriae TFr101 does not harbor gene clusters responsible for the production of bacillaene, difficidin, macrolactin, kalimantacin/batumin, myxovirescin, nosperin, surfactin, fengycin, plipastatin, iturin, bacilysin, bacillibactin, locillomycin, paenilarvin, paenibacterin, plantathiazolicin/plantazolicin, bacteriocin, and subtilin.
  • 13. The biopesticide of claim 10, wherein said biopesticide has antimicrobial activity against Xanthomonas campestris, Xanthomonas perforans, X. euvesicatoria, and Xanthomonas gardneri.
  • 14. The biopesticide of claim 10, wherein cell-free supernatant of said Paenibacillus peoriae TFr101 does not exhibit auto-antimicrobial activity.
  • 15. The biopesticide of claim 10, wherein the agriculturally acceptable excipient comprises a non-toxic carrier, surfactant, preservatives, nutrients, UV protectant, sticker, spreader, and/or chelating agent.
  • 16. The biopesticide of claim 10, wherein said composition is in the form of a liquid, concentrate, powder, tablet, gel, pellets, granules, or any combination thereof.
  • 17. A biopesticide having antimicrobial activity against phytopathogenic Xanthomonas species, said biopesticide comprising Paenibacillus peoriae TFr101 (NRRL B-67019) and metabolites thereof, and one or more agriculturally acceptable excipients, wherein said metabolites comprise bacillomycin, pelgipeptin, polymyxin, fusaricidin, bacitracin, tridecaptin, paenicidin B, and paenibacillin,wherein said Paenibacillus peoriae TFr101 does not harbor gene clusters responsible for the production of bacillaene, difficidin, macrolactin, kalimantacin/batumin, myxovirescin, nosperin, surfactin, fengycin, plipastatin, iturin, bacilysin, bacillibactin, locillomycin, paenilarvin, paenibacterin, plantathiazolicin/plantazolicin, bacteriocin, and subtilin,wherein said biopesticide has antimicrobial activity against Xanthomonas campestris, Xanthomonas perforans, X. euvesicatoria, and Xanthomonas gardneri, andwherein cell-free supernatant of said Paenibacillus peoriae TFr101 does not exhibit auto-antimicrobial activity.
  • 18. A method for controlling the growth of a pathogenic microorganism on a target plant or tissue, said method comprising contacting said target plant or tissue with the biopesticide of claim 17.
  • 19. The method of claim 18, wherein the pathogenic microorganism is a phytopathogenic Xanthomonas species.
  • 20. A method for producing the biopesticide of claim 1, the method comprising culturing viable cells of Paenibacillus peoriae TFr101 (NRRL B-67019) under conditions enabling the production of said metabolites; harvesting and/or concentrating said metabolites produced from said viable cells; and formulating said metabolites to produce said biopesticide.
RELATED APPLICATION(S)

This application is a Continuation of U.S. application Ser. No. 16/070,703, filed May 20, 2016, which is the U.S. National Stage of International Application No. PCT/CA2016/050571, filed May 20, 2016, which designates the U.S., published in English, and claims the benefit of U.S. Provisional Application No. 62/165,412, filed May 22, 2015. The entire teachings of the above applications are incorporated herein by reference. The present invention relates to anti-microbial metabolites from various bacterial and fungal species. More particularly, the present invention relates to bacterial and fungal metabolites having anti-microbial activity against Xanthomonas species.

Provisional Applications (1)
Number Date Country
62165412 May 2015 US
Continuations (1)
Number Date Country
Parent 16070703 Jul 2018 US
Child 17373703 US