Disclosed herein are bactericidal compositions that are effective against pathogenic biofilms, especially against biofilms formed by Pseudomonas aeruginosa. The disclosed compositions comprise escapin intermediate products which can reduce the biofilm viability and biofilm matrix of P. aeruginosa.
Biofilms are microbial communities encased in a matrix of extracellular polymeric substance composed of extracellular DNA, proteins, lipids, and polysaccharides which adhere to and grow on biotic and abiotic surfaces. Biofilm formation is a genetically controlled process in the life cycle of bacteria that produces numerous changes in the cellular physiology of the organism, often including increased antibiotic resistance (of up to 100 to 1000 times), as compared to growth under planktonic (free floating) conditions. Diverse microorganisms form biofilms in response to environmental stress, nutritional starvation, oxygen depletion, or exposure to chemicals including antibiotics. Biofilms begin to form when cells attach to the substratum, form a monolayer then proliferate to form microcolonies and extensive networks of extracellular polymeric substances. The microcolony matures into a more complex three dimensional structure of biofilm.
As the organisms grow, problems with overcrowding and diminishing nutrition trigger shedding of the organisms to seek new locations and resources. The newly shed organisms quickly revert back to their original free-floating phase and are once again vulnerable to antibiotics. Free-floating organisms, however, in the context of site infections such as wounds, surgical sites and burns, can enter the bloodstream of a patient, creating bloodstream infections and serious infection-related consequences. Sessile rafts of biofilm may slough off and may attach to tissue surfaces, such as heart valves, causing proliferation of biofilm and serious problems, such as endocarditis.
As such, biofilms have profound health and environmental implications. Biofilms on medical devices such as catheters or implants can result in chronic infections that are resistant to therapeutic drugs. Moreover, nosocomial infections have been associated with biofilm formation on human surfaces such as teeth, skin, and urinary tract.
Biofilms are more resistant to antimicrobial agents such as antibiotics than are their planktonic counterparts. Moreover, biofilms contain persister cells that neither grow nor die in the presence of antimicrobial agents, and thus confer on them multidrug resistance. This resistance can result from the thickness of the biofilm matrix preventing penetration of antimicrobials through the biofilm, resulting in cells in the biofilm being protected from external treatment. Additionally, bacteria living in biofilms adopt an altered metabolic state, including increasing extracellular enzymatic activity inside the biofilms which confers on them more resistance to antimicrobials. Extracellular polymeric substances may form barriers or make complexes with the antimicrobials, thus preventing or reducing the antimicrobial action. Moreover, biofilms can generate different microenvironments within their layers with altered levels of CO2, oxygen, cations, pH, and other variables, which may affect the activity of antimicrobials. For these reasons, biofilms represent an important challenge for public health, necessitating the development of novel antimicrobial and therapeutic agents.
In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C.) unless otherwise specified.
A weight percent of a component, unless specifically stated to the contrary, is based on the total weight of the composition in which the component is included.
By “effective amount” as used herein means “an amount of the disclosed escapin intermediate products, effective at dosages and for periods of time necessary to achieve the desired result.”
Throughout the description and claims of this specification, the word “comprise” and other forms of the word, such as “comprising” and “comprises,” means including but not limited to, and is not intended to exclude, for example, other additives, components, integers, or steps.
As used in the description and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
The antecedent “about” indicates that the values are approximate. The range of “about 1 μM to about 50 μM” includes approximate and specific values, e.g., the range includes about 1 μM, 1 μM, about 50 μM and 50 μM.
The terms such as “comprises”, “comprised”, “comprising”, “contains”, “containing” and the like have the meaning attributed in U.S. Patent law; these terms are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. Terms such as “consisting essentially of” and “consists essentially of” have the meaning attributed to them in U.S. Patent law; these terms allow for the inclusion of additional ingredients or steps that do not materially affect the basic and novel characteristics of the claim invention. The terms “consists of” and “consisting of” have the meaning ascribed to them in U.S. Patent law; these terms are close ended.
When a range is described, the range includes both the endpoints of the range as well as all numbers in between. For example, “between 1 μM and 10 μM” includes 1 μM, 10 μM and all amounts between 1 μM and 10 μM. Likewise, “from 1 μM to 10 μM” includes 1 μM, 10 μM and all amounts between 1 μM and 10 μM.
Disclosed herein are bactericidal compositions effective for treating biofilms formed by, or otherwise comprising, Pseudomonas aeruginosa, said compositions comprising:
The “one or more escapin intermediate products” are also referred to herein as the “antimicrobial component.” It has been found that a mixture of compounds formed in situ as a result of a defense mechanism of the sea snail, Aplysia californica, can be used as an antimicrobial component in compositions useful in treating bacterial biofilms. See, for example, Kamio M. et al. “The Chemistry of Escapin: Identification and Quantification of the Components in the Complex Mixture Generated by an
The escapin intermediate products mixture can be formed by preparing an aqueous solution of the compound Δ1-piperidine-2-carboxylic acid having the formula (1):
This compound in solution undergoes as series of equilibria as indicated in Scheme I below:
Depending upon the pH of the solution, the equilibrium can be shifted in a manner that favors one or more species. For example, at lower pH compounds (2) (α-keto-ε-aminocaproic acid), (4) (2-hydroxypiperidine-2-carboxylic acid) and (5) (6-amino-2-hydroxyhex-2-enoic acid) are favored, while compound (3) (Δ2-piperideine-2-carboxylic acid) is favored at higher pH. Compound (1), however, is the major component of the equilibria at all pH values.
For the purposes of the present disclosure the term “Δ1-piperidine-2-carboxylic acid and the equilibrium products thereof” is defined as the compounds that are formed in solution when Δ1-piperidine-2-carboxylic acid is dissolved in an aqueous based carrier. Although, as described herein, the relative amounts of the compounds in the equilibrium mixture are dependent upon pH of the solution, the source of the products derives from Δ1-piperidine-2-carboxylic acid.”
As stated herein above, the disclosed compositions further comprise a source of hydrogen peroxide. The addition of hydrogen peroxide introduces several irreversible transformations which are also dependent on the pH of the composition. These products of these irreversible reactions are the result of the equilibrium components reacting with hydrogen peroxide to convert escapin intermediate products (EIP) to escapin end products (EEP), compounds (7) and (8), as depicted in Scheme II herein below.
For the purposes of the present disclosure a composition comprising Δ1-piperidine-2-carboxylic acid is defined herein as a composition that comprises Δ1-piperideine-2-carboxylic acid and all equilibrium species as described in Schemes I and II. For example, a composition comprising about 10 μM of Δ1-piperideine-2-carboxylic acid, comprises all compounds 1 to 6 as described herein above such that the sum total concentration of these compounds is about 10 μM. Likewise, for compositions wherein a source of hydrogen peroxide has been added, the composition can comprise all of the compounds 1 to 8 as described herein above such that the sum total concentration of these compounds is about 10 μM.
As stated hereinabove, disclosed are bactericidal compositions effective for treating biofilms formed by, or otherwise comprising, Pseudomonas aeruginosa, said compositions comprising:
Dissolving Δ1-piperidine-2-carboxylic acid in water or other aqueous carrier will result in the equilibria disclosed in Schemes I and II, however, the relative amounts of each intermediate, or lack thereof, will be affected by the pH of the composition. The present disclosure relates to compositions which are pre-formulated and to compositions which are prepared at the time of use.
The amount of hydrogen peroxide necessary to affect the bactericidal activity of the disclosed compositions is far below the amount that is necessary for achieving bactericidal activity using hydrogen peroxide alone.
In one aspect the present disclosure relates to pre-formulated antimicrobial compositions that are effective for treating biofilms that comprise Pseudomonas aeruginosa, the compositions comprising:
Stated another way, the compositions comprise:
In one embodiment of this aspect, the composition comprises:
In one iteration of this aspect, the composition comprises:
The following are non-limiting examples of this iteration.
An antimicrobial composition, comprising:
An antimicrobial composition, comprising:
An antimicrobial composition, comprising:
An antimicrobial composition, comprising:
An antimicrobial composition, comprising:
An antimicrobial composition, comprising:
Table 1 depicts non-limiting examples of the disclosed pre-formulated bactericidal compositions.
Further disclosed herein are compositions which are prepared or formulated by the user prior to applying the composition to a situs; for example, a medical professional who is applying the composition to a wound or other potential site of infection. Other examples of users who can reconstitute the compositions include workers sanitizing surfaces. Kits for re-formulation can further comprise instructions that allow for the user to modify or choose the relative concentration of the escapin intermediate products and/or the amount of hydrogen peroxide.
In one iteration of this aspect, the composition comprises:
The water can be delivered as part of a 3% solution of hydrogen peroxide. For example, a 3% w/w solution of hydrogen peroxide is approximately 1.27 M in H2O2.
To a 1 L volumetric flask containing 750 mL of distilled water is charged Δ1-piperidine-2-carboxylic acid (6.4 mg, 50 μmol) and the solution is shaken to dissolve the solids. A 0.03% solution of hydrogen peroxide (2.3 μL) is added and the solution is diluted to 1 liter.
The disclosed compositions have a pH of from about 3 to about 8. In one embodiment the pH is from about 5 to about 7. In another embodiment, the pH is from about 5 to about 6. In a further embodiment, the pH is from about 4.5 to about 5.5. In a further embodiment, the pH is about 5. In a still further embodiment, the pH is about 6. The compositions, however, can have any pH from about 3 to about 8 or any fractional part thereof, for example, a pH of 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, and 8.
The disclosed compositions can comprise a buffer system to maintain the pH of the compositions whether pre-formulated as a liquid, diluted at the time of use, or whether constituted at the time of use, at a pH of from about 3 to about 8. In one embodiment the pH is from about 5 to about 7. In another embodiment, the pH is from about 5 to about 6. In a further embodiment, the pH is from about 4.5 to about 5.5. In a further embodiment, the pH is about 5. In a still further embodiment, the pH is about 6. The compositions, however, can comprise a buffer system to buffer the pH from about 3 to about 8 or any fractional part thereof, for example, a pH of 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, and 8.
The formulator, depending upon the level of antimicrobial activity desired, can adjust the pH of the solution to be compatible with the type of microorganism being treated or the situs of application, for example, the skin of a burn victim, an open wound, an inert surface, or a food surface.
Noon-limiting examples of suitable organic acid buffer systems include acetic acid/sodium acetate, glycolic acid/sodium glycolate, lactic acid/sodium lactate, succinic acid/mono sodium succinate, adipic acid/mono sodium adipate, malic acid/mono sodium malate, tartaric acid/mono sodium tartrate, and the like. Non-limiting examples of suitable inorganic buffer systems include phosphate buffer systems.
Because the source of oxidizer, for example, hydrogen peroxide in the disclosed compositions are susceptible to degradation in the presence of metals, the compositions can comprise one or more compatible metal chelants. Organic acids, for example, citric acid can be used as a metal chelant. The use of organic acids can have the added benefit as acting as a part of a buffer system to regulate the pH of the activator composition. Non-limiting examples of organic acids includes malonic acid, succinic acid, adipic acid fumaric acid, malic acid, maleic acid, citric acid, ethylenediamine tertraacetic acid, N-(hydroxyethyl)-ethylenediaminetriacetic acid, and the like.
Disclosed herein are methods for treating P. aeruginosa biofilms or biofilms comprising P. aeruginosa. One aspect of the disclosed methods relates to contacting P. aeruginosa biofilms, comprising contacting the biofilm with a bactericidal composition as described herein, for example, a composition comprising:
Another aspect relates to a method for treating P. aeruginosa biofilms with a composition that is prepared at the time of use. For example, a method for treating a P. aeruginosa biofilm, comprising:
One aspect of the disclosed methods relates to the treatment of human skin infections. As such, disclosed herein is a method for treating human skin infections, comprising contacting a subject having an infection caused by a pathogen. In one embodiment, the pathogen is P. aeruginosa.
Disclosed is a method for treating a skin infection or wound wherein P. aeruginosa is present, comprising contacting the infection or wound with a composition comprising:
One iteration of this method relates to contacting a skin infection or wound wherein P. aeruginosa is present, comprising contacting the infection or wound with a composition comprising:
Another iteration, the compositions comprise:
Compositions according to this iteration can be conveniently used to treat larger or deeper wounds. One advantage of the present methods relates to the fact that wounds have a naturally occurring amount of hydrogen peroxide. In cases wherein the level of hydrogen peroxide is naturally elevated, the formulator can adjust the amount of the composition applied to a wound or modify the amount of hydrogen peroxide. As described herein above, the user can prepare the formulation prior to use and at that time adjust the amount of hydrogen peroxide in the formulation.
The compositions for treating a wound or infection can be applied at the time the infection is first treated and at any time subsequent to the first treatments. The volume of the composition applied can vary depending upon the extent of the wound or infection. The compositions can be administered alone or in combination with other wound or infection treatments, for example, other antibacterial agents, dressings or skin treatment agents.
A further aspect of the disclosed methods relates to cleaning hard surfaces wherein a biofilm comprising P. aeruginosa is present. As such, disclosed are methods for treating a surface wherein P. aeruginosa is present. The method comprising contacting the surface with a composition comprising:
One iteration of this method relates to contacting a surface wherein P. aeruginosa is present, comprising contacting the surface with a composition comprising:
Another iteration, the compositions comprise:
In a further aspect of the disclosed methods the surfaces to be treated are any surfaces which comprise a biofilm formed by a pathogen, especially a bacterial biofilm. As such, the present disclosure also relates to compositions for treating a surface that can have any biofilm present. Disclosed are methods for treating a surface having a biofilm that is formed by a pathogen, the composition comprising:
Δ1-Piperidine-2-carboxylic acid was synthesized as described in Kamio (see, Kamio M. et al. “The Chemistry of Escapin: Identification and Quantification of the Components in the Complex Mixture Generated by an
Pseudomonas aeruginosa strain PAO1 was used for the disclosed examples. The P. aeruginosa was stored as a frozen stock in 20% glycerol at −80° C. Cultures were grown on Luria Bertani (LB) agar on plates incubated at 37° C. for 16-18 hours. To produce biofilms, the overnight culture was diluted to OD600 of 0.01 in Pseudomonas basal mineral media (PBM), which comprises the following in a total volume of 1 liter:
Biofilms were cultivated in flow cells as described elsewhere (Gilbert and Keaslin, 2004; Niu and Gilbert, 2004; Pittman et al., 2010) except with PBM as growth medium.
After growing biofilms in flow cells for 24 hours, they were rinsed with a sterile 50 mM KCl—NaCl solution (pH 7.0) for 20 min. After rinsing, control solutions (saline), compositions comprising Δ1-piperidine-2-carboxylic acid (escapin intermediate products, EIP), EIP and hydrogen peroxide, and hydrogen peroxide were pumped for 30 minutes through the flow cells, and then the biofilms were rinsed for 10 minutes. To assess cell viability of biofilms, each flow cell received 1 mL of a 1:1,000-diluted LIVE/DEAD™ Baclight™ nucleic acid stain (SYTO 9, 3.34 mM; propidium iodide, 20 mM) for 15 minutes, followed by rinsing with 50 mM KCl/NaCl solution for another 5 minutes, and then examined using Zeiss LSM 510 confocal laser scanning microscope. Argon and helium lasers were used with excitation/emission wavelengths of 480/500 nm for SYTO 9 and 490/635 nm for propidium iodide. Long-pass and dual emission filters were used for simultaneous viewing of SYTO 9 and propidium iodide stains. SYTO 9 is a green fluorescent label of nucleic acids that is permeant to cell membranes of normal cells and is thus used to label live and undamaged cells. Propidium iodide is a red-fluorescent label of nucleic acids, and since the intact cell membranes of live and undamaged cells are not normally permeant to propidium iodide, propidium iodide is used to detect cells that are dead or with damaged membranes. At least four image stacks were collected from each biofilm and at least three independent biofilms were cultivated for each of the tested conditions.
Biofilms grown in flow cells were harvested by pumping the liquid and cells out of flow cells into sterile 1.5 mL microcentrifuge tube. The recovered cells were centrifuged at 8,000 rpm for 2 minutes. The supernatant was discarded and the resulting pellet was re-suspended in 1 mL of 50 mM KCl/NaCl solution. The suspended bacterial culture was serially diluted and plated on LB agar media. Viable cell counts were determined by enumeration of colony-forming units (CFUs) with appropriate dilutions on LB agar media after 24 hour of bacterial growth.
To assess cell viability of biofilms, each flow cell received 1 ml of a 1:1,000-diluted LIVE/DEAD™ Baclight™ nucleic acid stain (SYTO 9, 3.34 mM; propidium iodide, 20 mM) for 15 min, followed by rinsing with 50 mM KCl—NaCl solution for another 5 min, and then examined using Zeiss LSM 510 confocal laser scanning microscope. Argon and helium lasers were used with excitation/emission wavelengths of 480/500 nm for SYTO 9 and 490/635 nm for propidium iodide. Long-pass and dual emission filters were used for simultaneous viewing of SYTO 9 and propidium iodide stains. SYTO 9 is a green fluorescent label of nucleic acids that is permeant to cell membranes of normal cells and is thus used to label live and undamaged cells. Propidium iodide is a red-fluorescent label of nucleic acids, and since the intact cell membranes of live and undamaged cells are not normally permeant to propidium iodide, propidium iodide is commonly used to detect cells that are dead or with damaged membranes.
C). As depicted in
Histogram bar C in
As indicated in
Number | Date | Country | |
---|---|---|---|
62141492 | Apr 2015 | US |