1. Field of the Invention
The present disclosure relates to airfoils, and more particularly to vane assemblies for gas turbine engines, for example.
2. Description of Related Art
Traditionally, turbomachines, as in gas turbine engines, include multiple stages of rotor blades and vanes to condition and guide fluid flow through the compressor and/or turbine sections. Due to the high temperatures in the turbine section, turbine vanes are often cooled with cooling air ducted into an internal cavity of the vane through a vane platform. In order to reduce the amount of cooling air required to cool turbine vanes, space filling baffles can be provided in the vane cavity to reduce the cavity volume, thereby increasing Mach numbers and heat transfer coefficients for the cooling flow. In certain vane designs, Mach numbers and heat transfer coefficients are not always uniform across various regions of the vane.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved blades and vanes. The present disclosure provides a solution for these problems.
An airfoil includes an airfoil body extending from an inner diameter platform to an opposed outer diameter platform along a longitudinal axis. The airfoil body defines a leading edge and a trailing edge and has a cavity defined between the leading edge, the trailing edge, the inner diameter platform and the outer diameter platform. The cavity includes an airfoil protrusion extending inward from an inner surface of the airfoil body. The airfoil includes a baffle body within the cavity extending along a baffle body axis. The baffle body has a baffle protrusion extending along a central protrusion axis at an angle with respect to the baffle body axis. The end of the baffle protrusion abuts an end of the airfoil protrusion to maintain the position of the baffle body within the airfoil body.
A flow path can be defined between the inner surface of the airfoil body and the outer surface of the baffle body. The cross-sectional area of the flow path can vary along the baffle body axis to control Mach numbers and heat transfer in the flow path. The distance between the inner surface of the airfoil body and an outer surface of the baffle body varies along the baffle body axis to control heat transfer and Mach numbers of fluid flowing through the cavity. The cross-sectional area of the flow path can converge in a direction from the outer diameter platform toward the inner diameter platform to control Mach numbers and heat transfer in the flow path. The airfoil body can include a fluid inlet proximate to the outer diameter platform. The cross-sectional area of the flow path converges in a direction away from the fluid inlet to control Mach numbers and heat transfer in the flow path. The airfoil body can include a fluid inlet proximate to the inner diameter platform. The cross-sectional area of the flow path can converge in a direction away from the fluid inlet to control Mach numbers and heat transfer in the flow path.
In another aspect, the surface area of the end of one of the baffle protrusion or the airfoil protrusion can be greater than the surface area of the end of the other abutting protrusion. The inner surface of the airfoil body can include inwardly extending raised tripping portions. The airfoil protrusion can be one of a plurality of airfoil protrusions and wherein the baffle protrusion is one of a plurality of baffle protrusions. The baffle protrusion can be a first baffle protrusion proximate to a first end of the baffle body. The first baffle protrusion can be shorter than a second baffle protrusion proximate to a second end of the baffle body. The distance between an end of the first protrusion and an outer surface of the baffle body taken along the respective central protrusion axis of the first protrusion is less than that of the second protrusion. The protrusions can extend from a leading edge side of the baffle body, a trailing edge side of the baffle body, a suction side of the baffle body and/or a pressure side of the baffle body. Each airfoil protrusion can abut a respective baffle protrusion.
The distance between the inner surface of the airfoil body and the outer surface of the baffle body taken in a direction normal to the inner surface of the airfoil body can be smaller proximate the platform opposite the fluid inlet than proximate to the other platform to maintain a Mach number and heat transfer. The distance between the inner surface of the airfoil body and the outer surface of the baffle body taken in a direction normal to the inner surface of the airfoil body can be smaller proximate the inner diameter platform of the airfoil body than proximate to the outer diameter platform of the airfoil body to a maintain constant Mach numbers and heat transfer. The distance between the outer surface of the baffle body and the baffle body axis taken in a direction normal to the outer surface of the baffle body can vary along the baffle body axis. The maximum distance from the baffle body axis to the outer surface of the baffle body taken in a transverse direction with respect to the baffle body axis can be less than or equal to the minimum distance from the baffle body axis to the end of each one the baffle protrusions taken in a transverse direction with respect to the baffle body axis.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a cross-sectional side elevation view of an exemplary embodiment of a gas turbine engine accordance with the disclosure is shown in
With continued reference to
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 58 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 58 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central axis X which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame includes airfoils which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
Now with reference to
As shown in
As shown in
A flow path 124 is defined between inner surface 110 of vane body 102 and outer surface 122 of baffle body 114. Vane body 102 includes a fluid inlet 126 proximate to outer diameter platform 106. The cross-sectional area of flow path 124 converges in a direction away from fluid inlet 126 to control Mach numbers and heat transfer in flow path 124. For example, cross-sectional area of flow path 124 converges in a direction from outer diameter platform 106 toward inner diameter platform 104, providing substantially constant Mach numbers and heat transfer throughout flow path 124 as flow is bled off through cooling holes 140. Whereas, traditionally, the cross-sectional area of flow paths between a baffle body and an inner vane surface have been relatively constant in order to facilitate the insertion of the baffle. Since cooling flow typically enters through a fluid inlet on one side of the vane and is bled out through cooling holes, similar to cooling holes 140, in the vane, Mach numbers and heat transfer, in traditional embodiments, tend to decrease the further the flow is from the inlet, resulting in high metal temperatures at the end of the flow path.
As shown in
With reference now to
With reference now to
With continued reference to
Those skilled in the art will readily appreciate that baffles, e.g. baffles 114 and 214, and their respective protrusions, e.g. baffle protrusions 120 and 220, can be manufactured in a variety of ways. For example, baffles can be made from sheet metal and protrusions can be stamped in before forming the baffle shape, baffles and protrusions can be cast together, and/or baffles and protrusions can be additively manufactured. Additionally, the baffles can be used in conjunction with other baffles that do not include baffle protrusions. It is also contemplated that embodiments described herein can readily be used in airfoils other than turbine vanes. For example, they can be used in turbine blades, compressor blades, compressor vanes, or any other suitable airfoil application.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for airfoils with superior properties including improved heat transfer coefficients and higher Mach numbers, resulting in more efficient cooling. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject disclosure.
This invention was made with government support under contract number FA8650-09-D-2923-0021 awarded by the United States Air Force. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3388888 | Kercher | Jun 1968 | A |
3966357 | Corsmeier | Jun 1976 | A |
5120192 | Ohtomo | Jun 1992 | A |
7497655 | Liang | Mar 2009 | B1 |
8172504 | Flodman | May 2012 | B2 |
8348613 | Gregg | Jan 2013 | B2 |
20040265129 | Pabion | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
0182588 | May 1986 | EP |
2708296 | Mar 2014 | EP |
2017229 | Oct 1979 | GB |
Entry |
---|
U.S. Appl. No. 62/091,293, filed Dec. 12, 2014. |
European Search Report for EP Application No. 15203247; dated Jul. 18, 2016. |
Number | Date | Country | |
---|---|---|---|
20160258306 A1 | Sep 2016 | US |