The present invention is related to bags, such as luggage and suitcases. More specifically, the present invention is related to bags, such as luggage and suitcases, which have a button assembly connected by a cable to open an auxiliary wheel unit, and a bar which can be depressed to allow the wheel unit to close.
It is the nature of bags, such as luggage or suitcases, that they need to be carried or moved by the user. Many techniques have arisen to facilitate the movement of such bags in a way that makes it as comfortable as possible for the user. One feature that is used with luggage is an auxiliary wheel unit that extends from the luggage and provides a more stable support for the user as the user pulls the luggage along the ground by a handle. The auxiliary wheel unit generally retracts when the user no longer desires to pull the luggage, and needs to be extended when the user does wish to pull the luggage utilizing the auxiliary wheel unit.
A common feature that has been used heretofore in such bags is to somehow link the extension action of the handle that is gripped by the user when the bag is pulled with the extension of the auxiliary wheel unit into its operative position. Similarly, when the handle, that is extended when the bag is pulled by the user, is retracted into the bag for storage, it causes the auxiliary wheel unit to also retract into the bag. Unfortunately, it has been found for a multitude of users that the expansion or retraction of the auxiliary will unit through the extension or retraction of the handle is somewhat difficult, and at times confusing.
The present invention utilizes a remote button in a preferred embodiment, which, when pressed, causes the auxiliary wheel unit to extend for use; and utilizes a bar, which, when pressed when the auxiliary wheel unit is in its extended state, allows the auxiliary will unit to be easily retracted, for instance, essentially in the same motion of the user depressing the bar with his or her foot, and then continuing to push the auxiliary wheel unit until it is retracted.
The present invention pertains to a bag. The bag comprises a housing having a storage area and a surface. The bag comprises an extendable handle connected to the housing. The bag comprises an auxiliary wheel unit having at least one castor connected to the surface which in an extended position extends from the surface at an angle of at least 15 degrees to form an extended support base for the housing, and in a retracted state folds against and is essentially in parallel with the surface. The bag comprises a release mechanism having a cable which extends from the wheel unit for releasing the wheel unit from the surface to extend into the extended position.
The present invention pertains to a method for moving a bag. The method comprises the steps of activating a release mechanism having a cable which extends from an auxiliary wheel unit having at least one castor connected to a surface of a housing having a storage area which in an extended position extends from the surface at an angle of at least 15 degrees to form an extended support base for the housing, and in a retracted state folds against and is essentially in parallel with the surface. There is the step of releasing the wheel unit from the surface to extend into the extended position.
The present invention pertains to a bag. The bag comprises a housing having a storage area and a surface. The bag comprises an extendable handle connected to the housing. The bag comprises an auxiliary wheel unit having a back connected to the surface, a front and at least one castor which in an extended state extends from the surface at an angle of at least 15 degrees to form an extended support base for the housing, and in a retracted state folds against and is essentially in parallel with the surface. The wheel unit having a pressure mechanism extending from the front which, when depressed allows the wheel unit to move from the extended state to the retracted state.
The present invention pertains to a method for moving a bag. The method comprises the steps of placing an auxiliary wheel unit having a back connected to a surface of a housing having a storage area, a front and at least one castor into an extended state where the wheel unit extends from the surface at an angle of at least 15 degrees to form an extended support base for the housing. There is the step of pulling the housing by an extendable handle connected to the housing. There is the step of depressing a pressure mechanism of the wheel unit extending from the front which allows the wheel unit to move from the extended state to a retracted state where the wheel unit folds against and is essentially in parallel with the surface. There is the step of moving the wheel unit into the retracted state.
In the accompanying drawings, the preferred embodiment of the invention and preferred methods of practicing the invention are illustrated in which:
a is an exploded view of the button assembly.
b shows the release mechanism.
Referring now to the drawings wherein like reference numerals refer to similar or identical parts throughout the several views, and more specifically to
Preferably, the release mechanism 23 includes an actuator 24 connected with the cable 31 and remote from the wheel unit 14. The actuator 24 preferably includes a button assembly 67. Preferably, the button assembly includes a button 25 which, when depressed into a depressed state, moves the cable 31 which allows the wheel unit 14 to move to the extendable position. The wheel unit 14 preferably includes a front panel 34, a back panel 35 connected to the surface 15, and a linkage 66 that connects the front panel 34 with the back panel 35.
Preferably, the button assembly 67 includes a lever 27 that engages with the cable 31, and is positioned such that when the button 25 is depressed, the lever 27 is moved by the button 25 and moves the cable 31. The button assembly 67 preferably includes a button spring 26 in operative relationship with the button 25 such that when the button 25 is depressed, the button spring 26 is compressed, and when the button 25 is released, the button spring 26 moves the button 25 from the depressed state back to an undepressed state. Preferably, the release mechanism 23 includes a slider 41 in contact with the wheel unit 14 and the cable 31 so when the button 25 is depressed into the depressed state and the cable 31 is moved, the cable 31 moves the slider 41 and releases the front panel 34 from the back panel 35.
The slider 41 preferably has a latch 43, and the linkage 66 has a front link 36 and a back link 37, and a linkage hinge 48 connected to the front link 36 and the back link 37, the front link 36 having a groove 44 which engages with the latch 43 to hold the front panel 34 with the back panel 35 in the retracted state. Preferably, the wheel unit 14 includes a coil spring 45 which, when the slider 41 is lifted and the latch 43 moves apart from the groove 44, automatically moves the wheel unit 14 into the extended state, where the front link 36 and back link 37 are in linear alignment.
The present invention pertains to a method for moving a bag 10. The method comprises the steps of activating a release mechanism 23 having a cable 31 which extends from an auxiliary wheel unit 14 having at least one castor 46 connected to a surface 15 of a housing 12 having a storage area 13 which in an extended position extends from the surface 15 at an angle of at least 15 degrees to form an extended support base for the housing 12, and in a retracted state folds against and is essentially in parallel with the surface 15. There is the step of releasing the wheel unit 14 from the surface 15 to extend into the extended position.
Preferably, the activating step includes the step of activating an actuator 24 of the release mechanism 23 connected with the cable 31 and remote from the wheel unit 14. The activating step preferably includes the step of depressing a button 25 of a button assembly 67 of the actuator 24 to place the button 25 into a depressed state which moves the cable 31 which allows the wheel unit 14 to move to the extendable position. Preferably, the depressing step includes the step of depressing the button 25 to move a lever 27 which moves the cable 31.
The depressing step preferably includes the step of depressing the button 25 which compresses a button spring 26 in operative relationship with the button 25, and releasing the button 25 so the button spring 26 moves the button 25 from the depressed state back to an undepressed state. Preferably, the depressing step includes the step of moving a slider 41 of the release mechanism 23 in contact with the wheel unit 14 and the cable 31 when the button 25 is depressed into the depressed state and the cable 31 is moved to release the front panel 34 from the back panel 35. The moving step preferably includes the step of lifting a latch 43 of the slider 41 apart from a groove 44 of a front link 36 of a linkage 66 of the wheel unit 14, causing a coil spring 45 attached to the back panel 35 to automatically move the wheel unit 14 into the extended state, where the front link 36 and a back link 37 of the wheel unit 14 are in linear alignment.
The present invention pertains to a bag 10, as shown in
Preferably, the wheel unit 14 includes a front panel 34 having the front 71, a back panel 35 having the back 70, and a linkage 66 connected to the front panel 34 and the back panel 35. The linkage 66 preferably includes a front link 36 connected to the front panel 34, a back link 37 connected to the back panel 35 and a linkage hinge 48 connected to the front link 36 and the back link 37 about which the front link 36 and the back link 37 rotate as they move between the extended state, where the front link 36 and the back link 37 are in linear alignment, and the retracted state, where the front link 36 and the back link 37 are essentially folded together. Preferably, the pressure mechanism 72 includes a bar 47 disposed along the front 71 of the front panel 34 and connects with the front link 36 so when the wheel unit 14 is in the extended state and the bar 47 is depressed, the front link 36 is caused to be moved relative to the linkage hinge 48, breaking the linear alignment with the back link 37 and allowing the front panel 34 and the front link 36 to be folded together with the back link 37 and the back panel 35.
The present invention pertains to a method for moving a bag 10. The method comprises the steps of placing an auxiliary wheel unit 14 having a back 70 connected to a surface 15 of a housing 12 having a storage area 13, a front 71 and at least one castor 46 into an extended state where the wheel unit 14 extends from the surface 15 at an angle of at least 15 degrees to form an extended support base for the housing 12. There is the step of pulling the housing 12 by an extendable handle 16 connected to the housing 12. There is the step of depressing a pressure mechanism 72 of the wheel unit 14 extending from the front 71 which allows the wheel unit 14 to move from the extended state to a retracted state where the wheel unit 14 folds against and is essentially in parallel with the surface 15. There is the step of moving the wheel unit 14 into the retracted state.
Preferably, the moving step includes the step of rotating a front link 36 connected to a front panel 34 having the front 71 of the wheel unit 14 relative to a back link 37 connected to a back panel 35 having the back 70 of the wheel unit 14 about a linkage hinge 48 connected to the front link 36 and the back link 37 as they move between the extended state, where the front link 36 and the back link 37 are in linear alignment, and the retracted state, where the front link 36 and the back link 37 are essentially folded together. The depressing step preferably includes the step of depressing a bar 47 of the pressure mechanism 72 disposed along the front 71 of the front panel 34 and connected with the front link 36 causing the front link 36 to be moved relative to the linkage hinge 48, breaking the linear alignment with the back link 37 and allowing the front panel 34 and the front link 36 to be folded together with the back link 37 and the back panel 35.
In the operation of the release mechanism 23, as shown in a preferred embodiment and
The other end of the cable 31 which is disposed in the wheel unit 14 also has a ball 38 at its end, as shown and
When the latch 43 moves above the catch 44 in the front link 36, releasing the front link 36, a coil spring 45 attached to the back panel 35 and the back link 37 expands, automatically opening the wheel unit 14. See
When it is desired to place the wheel unit 14 back into a retracted state, an individual pushes or steps on a bar 47 extending from the front panel 34 and connected to the front link 36, as shown in
Each caster of the wheel unit 14 is able to move freely in its operative position and when it is weight bearing, and self aligns via means of a shoe 52 to fit into the slot 49 when the wheel unit 14 is in the retracted state. Referring to
In regard to moving the wheel unit 14 into the retracted state,
Although the invention has been described in detail in the foregoing embodiments for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be described by the following claims.