Often, at restaurants or other locations such as a consumer's residence, a beverage may be created on-demand from a mixture of ingredients. An advantage of dispensing beverage in this form is that the concentrate containers and water supply typically occupy significant less space than is otherwise required to store the same volume of beverage in individual containers. Moreover, this dispensing equipment likewise eliminates increased waste formed by the empty individual containers.
A typical beverage dispenser may include a pump to force an ingredient, such as a concentrate, to the head. The dispenser may include valves that may attempt to volumetrically measure then dispense certain ingredients. For example, a valve may be selectively opened in response to a consumer requesting a beverage to allow the simultaneous discharge of concentrate and water. The two liquids mix upon discharge and in the container to form the desired beverage. Moreover, some beverages are formed from base components that may be vastly different from the components forming other beverages. Often, these beverages cannot be accurately and efficiently dispensed from a dispenser given the problems with measuring and dispensing ingredients with different properties.
Similarly, in certain implementations, different beverages are formed from concentrates that are only slightly different from each other. For example, customers are often interested in enjoying beverages that, in addition to a base flavor, include a supplemental flavor, such as cherry or lemon-lime. Yet consumers are increasingly interested in adjusting one or more ingredients in their beverages, such as the amount of sugars, often in the form of high fructose corn syrup. Improved systems and methods relating to the dispensing of beverages would be desirable.
Aspects of this disclosure relate to novel methods for dispensing a composition, such as a beverage. In certain embodiments, a bag-in-box package is utilized. The bag-in-box package includes a rigid box and a flexible bag disposed within the box. The flexible bag includes a connector projecting outwardly of the box. A rotary pump is located within the connector. The rotary pump includes a resiliently deformable housing and a rotor that form a plurality of chambers. The bag-in-box package may be incorporated into a dispenser system that includes a touch screen that allows users to input beverage selections. One or more memory devices store audio and video files related to different beverage selections. While a beverage is dispensed, a sound file may be played. For example, a bubbling sound may be played while a carbonated beverage is dispensed. At the same time or alternatively, a video may be played on the touch screen display that shows the fill state of a beverage container.
Of course, the methods and systems of various embodiments may include other additional elements, steps, computer-executable instructions, computer-readable data structures or computer system components. In this regard, other embodiments are disclosed and claimed herein as well.
The tubing 108 through which the four illustrated fluid streams flow into the base 106 may terminate at mounting block 116. As seen in
The illustrated dispensing head 104 includes a vertical back plate 118 from which a base plate 120 extends horizontally. Back plate 118 may be removably coupled to dispensing unit mounting block 116 and a valve body 132 may be seated on the base plate 120. A nozzle assembly 122 is shown to extend below the base plate 120. Valve body 132 may comprise a plurality of conduits 130 through which the ingredients flow into nozzle assembly 122. One or more valve units may be mounted to the valve body 132. For example, valve units 134 and/or 136 may regulate the flow of a separate one of the fluid streams through the dispensing head 104 and out of the nozzle assembly 122.
The dispensing system 102 may comprise one or more computer-readable mediums, such as circuit board 129. Circuit board 129 is shown mounted to the base plate 120 and may comprise the electrical components (not illustrated) that are used to regulate the actuation of pumps 114a and 114b and/or valve units 134, 136. Circuit board may also comprise computer-readable instructions that when executed by a processor, such as processor (such as processor 206, described in more detail below in relation to
Historically, electronic circuitry 129 (or another component comprising a computer-readable medium, comprised a “flavor chips.” The flavor chip comprised computer-executable instructions, that when executed by a processor, would execute a method for mixing a predefined beverage. Unfortunately, past flavor chip technology had to be adapted to the mechanical properties of each dispenser and each flavored beverage required a separate flavor chip. Thus, in certain prior art systems, changing beverages to be dispensed from a dispenser would require the new flavors to be “mapped” onto the chip. For example, each parameter had to be adjusted to ensure the dispensed beverage received the intended proportions of ingredients. Aspects of the invention relate to systems and methods for dispensing custom beverages that do not require the inconvenience of mapping of different flavor chips for each possible combination of the various ingredients.
While
Processor 206 may be configured to execute instructions on the computer-readable medium, such as computer-readable medium 204, received from a user input device 208, lever switch 210 and/or a network connection 212. The user input device 208 may include any components or group of components (including a switch similar or identical to lever switch 210) that allows a user to provide an input to dispensing system 202, which may be mechanical, electrical, or electromechanical. Novel uses of user input device 208 may be implemented in accordance with one or more novel methods described herein. As one example, user input device 208 may be used in conjunction with step 302 shown in
The touch screen may be configured to allow a user to first select a specific brand of beverage, such as a particular energy drink from a plurality of energy drinks. Still yet, the touch screen may allow a user to pick a specific commercially available beverage and further refine the ingredients to be dispensed to form a similar beverage. In one embodiment, the refined beverage has the same ingredients, however, comprises different proportions or amounts of the ingredients. For example, a user may first select the cola beverage “Pepsi,” and then wish to adjust one or more parameters of the Pepsi to be dispensed. For example, the user may wish to adjust the sugar content and/or carbonation of the beverage to be dispensed. In another embodiment, the refined beverage has at least one different ingredient, for example; at least a portion of the high fructose corn syrup may be replaced with various levels of one or more ingredients.
While the exemplary embodiment was described in relation to a touch screen, other input devices may be used in combination with or in lieu of a touch screen. For example, a user may swipe a card having electronic information a sensor, such as for example, an optical, magnetic, or RFID sensor to provide a user input. In another embodiment, the user may utilize a biometric input to provide an input. Yet in other embodiments, the user may enter alphanumeric inputs using a keyboard. The lever switch 210 may also be operatively connected to electronic circuitry 129 to provide an input indicative that a receptacle is placed under the nozzle 122.
Network connection 212 may also provide one or more user inputs (as well as transmit outgoing signals) coupling dispensing system 202 to a communication network, such as a LAN or the Internet. The dispensing system 202 (and other devices) may be connected to a communication network via twisted pair wires, coaxial cable, fiber optics or other media. Alternatively, radio waves may be used to connect one or more beverage dispenser systems to the communication network. In one such embodiment, one or more dispensing systems may be in communication with each other and readily transmit and receive information regarding other dispenser systems, including a unique formula dispensed to a particular user. In one embodiment, a plurality of dispensing systems may each be coupled to each other through a central server. Yet in another embodiment, the dispensing systems may communication directly with each other. Thus, in one or more embodiments, electronic circuitry 129 may include computer-executable instructions for transmitting information to other dispensers and/or a server.
Step 304 of
Regarding the nozzle 122, the illustrated dispensing system 202 of this invention may includes the single dispensing head 104 (shown in
Dispensing head 104 may be further designed so that the passage of one or more ingredients comprising carbonated water is discharged has a tapered increase in cross-sectional area along its length as measured starting from the top to the bottom. That is, a conduit or passage within dispensing system may be narrow at the high pressure end and widens considerably, to as much as ten times its width at the low pressure end. Consequently, as the water and gas fluid stream flows through a tapered passage, the pressure of the gas bubbles in the stream may decrease continually but gradually. This gradual decrease in pressure reduces the extent the carbon dioxide, upon the discharge an outlet breaks out of the fluid stream. The reduction of carbonation breakout serves to ensure that the blended beverage has sufficient gaseous-state carbon dioxide to impart a desirable taste.
Conduits 214, 216 may comprise a plurality of sensors to measure one or more parameters of one or more ingredients that travel through the respective conduit 214, 216 to the nozzle 122. The measured parameters of a first ingredient may be used to adjust the amount or parameter of a second ingredient to be dispensed. Yet in other embodiments, the measured parameters of the first ingredient may be used to dispense the amount of that ingredient being dispensed. In certain embodiments, several parameters may be measured within conduit 214 and/or conduit 216. In one embodiment, steps 306, 308, and/or 310 may be implemented to measure the temperature, viscosity, pH, flow rate, and/or pressure of a first ingredient in the first conduit. In one embodiment, step 306 may comprise the implementation of temperature sensor 218 (shown in conduit 214), step 308 may include measurements with flow rate sensor 220 (shown in conduit 216) and step 310 may comprise measurements from PSI meter 222 (shown in conduit 214). While, the sensors are shown in two different conduits (214, 216), those skilled in the art will appreciate that both (and additional) conduits may have each of the above-described sensors as well as additional sensors.
Step 312 may also be implemented to determine if the ingredient (or one of the ingredients) is a non-Newtonian fluid. This determination may be based one or more measurements of steps 308-310 and/or based upon known information regarding the ingredient. For example, an electronic signal may be transmitted from the electronic circuitry 129 that is indicative that the ingredient(s) in at least one conduit 214, 216 is/are non-Newtonian. If at step 312, it is determined that the ingredient is non-Newtonian, step 314 may be implemented. At step 314, one or more sensors may detect or otherwise measure the shear stress and/or strain rate of the ingredient(s). In one embodiment, a first sensor in a first conduit 214 may be used to detect the flow rate of a first fluid; however, a second sensor in the same first conduct 214 may be used to detect the flow rate of a second fluid.
In those embodiments, where the ingredient is non-Newtonian, the shear stress could utilize sensors to first measure the gradient of for example, by using a first sensor to measure the gradient of the velocity profile at the walls of the conduit 214, 216. Computer-executable instructions on computer-readable medium 204 may use processor 206 to multiply the signal from the first sensor by the dynamic viscosity to provide the shear stress of that particular ingredient or combination of ingredients. In one embodiment, one or more micro-pillar shear-stress sensors may be used in conduit(s) 214, 216. The micro-pillar structures may be configured to flex in response to the drag forces in close proximity to the outer perimeter of the conduit(s) 214, 216 (i.e., the walls). The flexing may be detected electronically, mechanically, or optically. The result of the flexing may be received as an electronic signal by computer-executable instructions on computer-readable medium 204. Processor 206 may utilize the received electronic signal to determine wall-shear stress. As discussed above, one or more of the conduits 214, 216 may comprise a temperature sensor 218, which may transmit electronic signals as an input to electronic circuitry 129. The input from temperature sensor 218 may also be used in conjunction with one or more other sensors to determine the viscosity of an ingredient of composition comprising a plurality of ingredients.
Further aspects of the invention relate to novel uses of adjustable orifices. For example, in certain embodiments, rather than implement the volumetric measurement then dispensing of ingredients, adjustable orifices may be used to simultaneously measure and dispense ingredients. For example, as an ingredient (or compositions having a plurality of ingredients) flows through a conduit, flow meter 220 and temperature meter 218 may determine the viscosity of the ingredient. Based upon the parameters detected by meters 218 and 220, information may be received from the electronic circuitry 129 that adjusts, rather than merely opening or closing, an orifice (see, e.g., elements 126 and 224 within conduit 214 within the conduit 214, 216). In certain embodiments, this may result in a more homogeneous combination of the ingredients. In other embodiments, it may result in less wear and tear on the dispensing device 202. In yet further embodiments, it may result in more efficient measurements of ingredients. Obtaining accurate measurements of ingredients may be of special importance, for example, when dealing with micro-nutrients, such as nutrients that comprise less than about 5% of the entire beverage or composition. In certain embodiments, a first ingredient may be dispensed from dispensing system 202 or at about 6% of the final beverage.
In one embodiment, the flow rate of at least one ingredient may be adjusted by the same mechanism that measures the flow rate. For example, exemplary flow rate sensor 220 (shown in conduit 216 of
Further, in the preparation of certain compositions to be dispensed, it may not be desirable to dispense a first ingredient under the same pressure as a second ingredient (for example, when dispensing a second ingredient at step 318). In some instances, it may be desirable to reduce the pressure under which a first ingredient is dispensed, in yet other embodiments; it may desirable to increase the pressure that an ingredient is dispensed, for example, to ensure proper mixing or the intended profile of the beverage. In certain embodiments, adjustable orifices may be implemented to ensure the optimal flow rate is implemented for certain ingredients. For example, computer-readable instructions may be used to achieve the optimal combination of pressure and flow rate of an ingredient passing through a conduit 214, 216, such as by use of an adjustable orifice. A simplified graphical illustration is shown by way of element 226. As seen by element 226, adjusting an input, such as through a step motor (for example “35°”, “55°”, or “75°”) may be used to obtain a preferred combination of flow rate and pressure. Those skilled in the art will readily appreciate that element 26 is merely illustrative and that other implementations, including the use of more than three adjustable settings, are within the scope of this disclosure.
At step 320, information regarding the dispensed beverage or composition may be stored on a computer-readable medium, such as computer-readable medium 204. The computer-readable medium of step 320 is not, however, required to be within or local to the dispensing system 202. Instead, the information regarding the dispensed beverage may be transmitted through network connection 212 to a remote computer-readable medium. In one embodiment, the unique composition dispensed through the implementation of one or more methods shown in
In certain embodiments, the carbonation source selected in 404 may be one of a plurality of sources. For example, different sources may comprise various levels of carbonation; therefore, one source comprising the closest amount of carbonation needed may be selected before adjustment. In certain embodiments, dispensing system 102, 202 may selectively discharge streams of carbonized and non-carbonized water from separate containers, for example, reservoirs 112a-112b. Therefore, in certain implementations, the dispensing head 104 can be employed to dispense beverages selectively made from either carbonized or non-carbonized water. Alternatively, the dispensing head 104 may be used to dispense a beverage comprising carbonated water and non-carbonated water. In one embodiment, adjustable orifices are opened simultaneously to cause the simultaneous dispensing of both carbonated and non-carbonated water. This is useful when it is desired to blend these two liquids with a concentrate to produce a lightly carbonated beverage. In one embodiment, by varying the amount of time each orifice is open at one or more predetermined diameters, the extent to which the water supplied for the beverage may be set anywhere between fully carbonated (100% carbonated water supply) to no carbonation (100% non-carbonated water supply).
In yet other embodiments, step 410 may be used to create a carbonation source. In one embodiment, a first conduit such as conduit 214 may comprise water and conduit 216 may comprise carbon dioxide gas. Thus, based upon the sensors 218, 220, 222, and/or other sensors within conduits 214, 216 or elsewhere within dispensing system 202, the amount of water that is combined with the carbon dioxide gas is determined and dispensed, such as through an adjustable orifice. Regardless of whether steps 404 and 406 or step 410 is implemented, step 408 may be initiated. In one embodiment, the resultant carbonated ingredient may be dispensed into a conduit, such as conduits 214 and/or 216. (see, e.g., step 304 of
It should further be appreciated that not embodiments have all of the above-described features and/or include each step and/or process of the disclosed methods. For example, certain embodiments may be provided with different quantities of fluid passageways and valve units than have been described above with respect to the illustrated embodiments. It is anticipated that these alternative embodiments of the invention may be used to provide a means for forming a beverage from a combination of a plurality of ingredients, which may be discharged from a either a plurality of nozzles or, alternatively, a single nozzle. Moreover, one or more nozzles may be configured to provide a discharge passage that extends vertically downward. Yet in other embodiments, one or more discharge passages for ingredients may have a spiral or helical configuration. While the exemplary dispensing system 102 shown in
Device 500 may also include a card reader 508, such as a radio frequency identification (RFID) card reader for reading information stored in an RFOD tag 510 attached to a card 512. A recipe database 514 may be used to store a variety of beverage recipes. Some of the recipes may be custom recipes created by users. A preferences database 516 may store preferences selected by users.
Device 500 may be configured to provide audio and/or video information while drinks are dispensed. An audio card 518 may be included to drive a sound device, such as a speaker 520. A video card 522 may be included drive a video display 524. Audio and video cards are conventional components and are widely available. Video display 524 may be implemented with a liquid crystal display (LCD), light emitting diode (LED) display or any other type of display. In one embodiment, display 524 is a touch screen and is attached to the front of the dispenser. The touch screen may be configured to receive beverage selections from users.
The various components within device 500 may be connected with a system bus 526. System bus 526 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures
In operation device 500 may receive beverage selections at a touch screen and provide audio and/or video information to the user. For example, speaker 520 may generate a sound that changes as a container is filled with a beverage. The sound may correspond to the fill state of the beverage and/or the type of beverage. The volume and tempo of the sound may increase as the container is filled. In one embodiment a bubbling sound is played when carbonated beverages, such as colas, are selected. A non-bubbling sound may be played when noncarbonated beverages, such as fruit juices, are selected.
Display 524 may display an image 532 that is updated to reflect the fill state of a cup or other container. Image 532 may also show beverage ingredients flowing into the container. Ingredients may have different colors or other appearances.
The bag-in-box dispensing system shown in
Rotor 704 may be driven by an external motor. In one embodiment, the motor may be part of a tube that connects to the connector that contains the rotary pump. The motor may include a shaft that is physically formed to engage with specific rotors. This embodiment may prevent improper installation and the use of counterfeit products. In embodiments that utilize a metal or magnetic rotor, the motor may be magnetically coupled to the rotor. In one embodiment of the invention, the bag-in-box container may include an RFID tag that includes information necessary to drive a pump, such as a rate of revolution to obtain a desired metering of concentrate.
Placing a relatively low cost rotary pump within a bag-in-box container can result in a low cost disposable fluid storage system. Moreover, since the pumps will only be used when emptying and/or filling the bag-in-box containers, use and failure rates will be relatively low.
One or more fluid driven motors may be used to drive multiple rotary pumps.
Those skilled in the art will appreciate that embodiments of the invention may use a variety of mechanical configurations to harness energy from a diluent stream to power a rotary pump.
While the invention has been described with respect to specific examples and to presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations of the above described systems and methods that may fall within the spirit and scope of the invention. It should be further noted that certain aspects of the present invention have been described herein, but the invention is not limited to the embodiments described. The following claims demonstrate the breadth of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3642390 | Ostberg | Feb 1972 | A |
3771901 | Svensson | Nov 1973 | A |
3832105 | Takahashi | Aug 1974 | A |
4096971 | Kuckens | Jun 1978 | A |
4717047 | van Overbruggen | Jan 1988 | A |
4921150 | Lagergren et al. | May 1990 | A |
4974505 | Torrisi | Dec 1990 | A |
5000351 | Rudick | Mar 1991 | A |
5121857 | Hutchinson | Jun 1992 | A |
5353963 | Gorski et al. | Oct 1994 | A |
5875930 | Nakajima et al. | Mar 1999 | A |
5988998 | Glover | Nov 1999 | A |
6003733 | Wheeler | Dec 1999 | A |
6142340 | Watanabe | Nov 2000 | A |
6286725 | Gerber | Sep 2001 | B1 |
6536224 | Frank et al. | Mar 2003 | B2 |
6758593 | Terentiev | Jul 2004 | B1 |
6868987 | Hedington et al. | Mar 2005 | B2 |
6974052 | d'Hond | Dec 2005 | B1 |
7014071 | d'Hond | Mar 2006 | B1 |
7674100 | Hayes-Pankhurst | Mar 2010 | B2 |
7861896 | Biesheuvel | Jan 2011 | B2 |
8092074 | Hahn | Jan 2012 | B2 |
8157546 | Miyazaki | Apr 2012 | B2 |
RE44841 | Hayes-Pankhurst | Apr 2014 | E |
8870025 | Reddy | Oct 2014 | B2 |
9175681 | Hayes-Pankhurst | Nov 2015 | B2 |
20020114646 | Sudo | Aug 2002 | A1 |
20030000964 | Schroeder | Jan 2003 | A1 |
20040047232 | Terentiev | Mar 2004 | A1 |
20040245124 | Hurst | Dec 2004 | A1 |
20040245144 | Hurst | Dec 2004 | A1 |
20050163637 | Chang | Jul 2005 | A1 |
20060076251 | Hurst | Apr 2006 | A1 |
20070170212 | Biesheuvel | Jul 2007 | A1 |
20110303693 | Culley | Dec 2011 | A1 |
20120046785 | Deo et al. | Feb 2012 | A1 |
Entry |
---|
http://www.quantexpumps.com Quantex Pumps, London England—Printed Feb. 18, 2010, Entirety of site—42 pages. |
Number | Date | Country | |
---|---|---|---|
20120046785 A1 | Feb 2012 | US |