The invention relates to a bag-in-container. The invention especially relates to a blow moulded bag-in-container.
Bag-in-containers are well known in the art and comprise a flexible inner container or bag, contained in a more rigid outer container. Generally these bag-in-containers comprise at least one provision suitable for introducing a gas under pressure between the adjacent walls of the bag and the container, such that the bag can be compressed inside the container for dispensing the contents of the bag. These bag-in-containers can be assembled from a relatively rigid outer container and a flexible inner container which is inserted into the outer container, or can be made integrally, for example by integral blow moulding from a multi layered preform or preform assembly, which may also be referred to as parison.
An example of an integrally blow moulded bag-in-container is used by Heineken, NL, in their Brewlock® and Blade® systems and e.g. in WO WO2014/017908 and WO WO2018/009065. These BiC’s are integrally blow moulded from a preform assembly, comprising an injection moulded inner preform, inserted into an injection moulded outer preform, which are connected to each other at their neck regions by a closure ring which is spin welded to both preforms. The closure ring closes off a space between the inner and outer preforms. The outer preform is provided, in a peripheral wall of the neck portion, with an inlet opening which connects to said space between the inner and outer preforms, for introducing a pressurized gas, especially air, into said space, after the BiC has been blow moulded. The closure ring further comprises a dispense opening, in which a closure can be provided, which dispense opening provides access into the inner volume of the inner container.
Although these BiC’s are very practical during use, the preform assemblies therefore are relatively complex in construction and manufacturing, due to for example the required precision of the dimensions of the individual preforms and of the closure ring, and the spin welding process for mounting the closure ring to the preforms. This also limits the freedom of choice for colouring the preforms and thus of the BiC’s, as well as the choice of materials.
Another example of an integrally blow moulded Bag-in-container is used by ABInbev, BE, for example in their Nova® system. This BiC is integrally blow moulded from a preform assembly, comprising a transparent inner preform fitted into a coloured outer preform. The preforms are not interconnected. The outer preform has a neck region formed primarily by a closed peripheral wall, which extends around a neck region of the inner preform, again formed primarily by a closed peripheral wall. Between said two peripheral walls a space is provided. After blow moulding the inner bag is locked inside the outer container by shape retention. A lid is mounted to the BiC after filling the bag with the fluid to be dispensed. The lid closes off the space between the containers and comprises a central first channel, opening into the inner volume of the bag, and a second channel, extending parallel to the first channel and opening into said space between the containers. Furthermore a connector is provided, which can be releasably connected to the lid. The connector comprises a first needle for introduction into the first channel, and a second needle for introduction into the second channel. An at least partly flexible dispense line is connected to the connector, in fluid communication with the first needle, for dispensing liquid from the bag. Furthermore a second flexible line is connected to the connector, in fluid communication with the second needle, for introducing pressurized air into the space between the bag and the container.
This container has the disadvantage that the flexible second line has to be connected to the connector each time a BiC is changed, whereas the connection can be lost, for example the second line can be blown off the connector by the pressurized air. Moreover, the flexible second line can become blocked, for example when it is folded or when squeezed, for example when positioning the BiC or by closing a door of the appliance used with the BiC or by an external element.
An aim of the disclosure is to provide an alternative bag-in-container. An aim is to provide a bag-in-container with which at least some of the disadvantages of the prior art BiC’s as discussed are reduced or mitigated.
At least one or more of the aims and goals of the present disclosure can be achieved by a bag-in-container, comprising a bag inside a container, the bag being compressible upon introduction of a gas under pressure into an interface space between the bag and the container. The bag has a first neck and the container has a second neck, the second neck extending around the first neck, wherein at least one passage is provided between the first and the second neck, providing access for said gas under pressure into said interface space. The first and second neck both have a closed peripheral wall, wherein a lid is mounted onto the bag-in-container, said lid comprising a first seal sealing against the bag and a second seal sealing against the container. The lid further comprises a first channel, during use fluidly connecting to an inner space of the bag and a second channel, during use fluidly connecting to said at least one passage. A connector is provided, connected to or connectable to the bag-in-container, wherein the connector has a first connecting element fitting onto and/or into the first channel and an at least partly flexible dispensing line fluidly connected to or connectable to the first connecting element for dispensing beverage from the bag.
With a bag-in-container according to the present disclosure the inner bag and outer container can be made easily by injection moulding the preform or preform assembly and then blow moulding the preform or preform assembly integrally. No complex mechanisms have to be built into the injection mould or moulds for the preform or preform assembly. Furthermore a lid can be used which can be mounted to the bag-in-container for example after filling, providing for a closing of the inner space for the beverage and the interfacial space between the inner bag and the outer container.
According to an aspect of the disclosure the lid comprises a channel part, extending from the second channel to an inlet opening, wherein the inlet opening lies in a plane extending substantially parallel to a longitudinal axis of the container. The said plane is preferably spaced radially outward from the peripheral wall of the second neck.
By providing an inlet opening to the channel part in a side surface of the lid, in a plane extending substantially parallel to the longitudinal axis of the container, gas can be inserted into the container in a substantially axial direction of the lid, but be inserted into the interfacial space in a substantially longitudinal direction. The lid can easily be made, for example by 2K injection moulding, integrating any seals, for example for sealing off against the container. The channel part can be made for example by an insert in the mould.
According to an alternative aspect of the disclosure the connector comprises a channel part, extending from a second connecting element to an inlet opening, wherein the inlet opening lies in a plane extending substantially parallel to the first and second longitudinal axis. The said plane is preferably spaced radially outward from the peripheral wall of the second neck, wherein the second connecting element during use connects to the second channel of the lid.
By providing an inlet opening to the channel part in a side surface of the connector, in a plane extending substantially parallel to the longitudinal axis of the container, gas can be inserted into the container in a substantially axial direction of the connector, but be inserted into the interfacial space in a substantially longitudinal direction. The lid can still easily be made, for example by 2K injection moulding, integrating any seals, for example for sealing off against the container. The first and second channel can in embodiments extend substantially parallel to each other. Similarly the first and second connecting elements can have longitudinal axis extending substantially parallel to each other, such that they can easily be inserted into and/or over and/or against the first and second channel.
Preferably the first channel has a first longitudinal axis and the second channel has a second longitudinal axis, the first and second longitudinal axis extending substantially parallel to each other and/or to the longitudinal axis of the container. Such configuration in the lid makes injection moulding even easier.
In a further aspect a second opening is provided in the lid or connector, diametrically opposite to the inlet opening, positioned in a plane extending substantially parallel to a longitudinal axis of the container, wherein the inlet opening is in fluid communication with the second opening through the lid, through the connector and/or through the container. Preferably the second opening is spaced radially outward from the peripheral wall of the second neck, and even more preferably over the same distance as the inlet opening.
Providing a second opening allows for example for a further source of pressurized gas or a pressure sensor or other sensor to be connected to the container. By providing said second opening directly opposite the first or inlet opening makes it even more practical since this allows for a symmetrical configuration of the lid or connector, such that two positions can be allowed for positioning the container in a pressurizing device or connecting a pressurizing device to the lid or connector.
In a further elaboration between the lid and the connector a gas space is enclosed, during use connecting to the inlet opening and the second channel. The gas space can pass gas between the inlet opening and the second channel. The gas space can moreover fluidly connect the first opening with a second opening, if provided for. Furthermore a gas space can provide for a buffer for gas.
In further elaboration the second connecting element can comprise or is formed by a piercing element for piercing into the second channel, which piercing element at least comprises one groove for allowing gas to pass into and/or out of said second channel from or into said gas space. Moreover such connecting element may be easy to manufacture and can easily be sued for piercing any seal, if provided in or for the second channel.
In an aspect the passage between the first and second neck comprises at least a substantially cylindrical space between the peripheral walls of the first and second neck, extending into the bag-in-container from the level of a free longitudinal edge of the first neck. Preferably when the lid has been mounted onto the container a first seal of the lid seals against the said free edge of the first neck, that is the neck of the bag, whereas a second seal of the lid can seal against the inside of the second neck, of the outer container, above said free longitudinal edge of the first neck.
The disclosure is further directed to a connector for connecting to a lid of a bag in container, especially to a bag in container of this disclosure. Said connector comprises first and second connecting elements having parallel longitudinal axis, extending from a first surface, and two openings diametrically opposite each other in connecting surfaces extending substantially parallel to each other and to the longitudinal axis of the first and second connecting elements.
In order to further elucidate the present invention, embodiments thereof shall be disclosed and discussed hereafter, with reference to the drawings. Therein shows:
In this description embodiments are shown and disclosed of the invention, by way of example only. These should by no means be interpreted or understood as limiting the scope of the present invention in any way. In this description the same or similar elements are indicated by the same or similar reference signs. In this description embodiments of the present invention shall be discussed with reference to carbonated beverages, especially beer. However, other beverages could also be used in the present invention, such as but not limited to coffee, especially cold brew coffee, cider, wine, juice and the like.
In this description references to above and below, top and bottom and the like shall be considered, unless specifically stipulated differently, to a normal orientation of a dispensing unit. The rear of the dispensing unit shall be referred to as the side at which a tap handle or the like is provided for operating the system, especially for operating for dispensing beverage contained in a container provided in and/or on the unit. The container can have a bottom part and a neck region which may, during use within the assembly, be facing substantially downward. This is for example shown in the drawings, especially
In this description a BIC type or bag-in-container type container has to be understood as meaning at least a container comprising an outer container and an inner bag, wherein the inner bag is designed to hold a beverage and is more flexible or compressible than the outer container. The outer container can for example be a bottle shaped container with a neck and a body, whereas the bag also has a neck. The inner bag and/or outer container can be made of mono materials or blends, can be made entirely or partly by injection moulding and/or blow moulding, rotation moulding or the like. Preferably a bag-in-container according to the invention is made by integrally blow moulding. In embodiments the bag-in-container can be made by inserting at least one preform into another preform and then blow moulding them together into a bag-in-container type container. In embodiments the bag-in-container can be made by over-moulding at least one preform forming a multi layered preform and then blow moulding them together into a bag-in-container type container. In embodiments a bag can be suspended inside an outer container, after forming the outer container and the bag separately, at least in part.
In this description a tapping assembly can comprise a housing holding a cooling device and a pressure device for supplying pressurized gas, such as air, to a container. The system can further comprise a lid, preferably an at least partly transparent lid, fitting over the container when properly placed in the housing. The lid can provide visibility of the container within the dispensing device comprising the housing and the lid, such that for example the filling level can be ascertained and branding of the container is visible from the outside. Transparent should be understood in this context as being sufficiently clear to allow viewing and inspection of the container through the lid, preferably undisturbed by for example coloring or hazing of the lid over at least a substantial part of the lid, for example more than 50% of its surface area and/or from at least two opposite sides and/or over at least part of the lids’ height over 360 degrees, i.e. from all sides. Providing visibility of the container and, especially at least branding thereof, can be beneficial for allowing different brands to be used in the same system without having to rebrand the dispensing unit. Providing visibility of the container and, especially at least branding thereof, can be beneficial for outward appearances of the dispensing unit. Providing visibility of the container and, especially at least branding thereof, can be beneficial for inspection of the container and/or it’s contents.
In this description a dispensing assembly, which can also be referred to as tapping assembly can be designed such that a container can be placed in an “upside down” position on and/or into a housing of a dispensing unit, such that at least part of the container, especially at least part of a shoulder part of the container is introduced in a receptacle on the housing, a neck portion comprising an outflow opening facing down. Preferably a part of the container extending into said receptacle, especially part of the shoulder portion, is close to or at least in part in contact with a wall of the receptacle, wherein the wall of the receptacle is cooled, especially actively cooled. In this description relatively close regarding a distance between the wall of the receptacle and the relevant container part should be understood as a distance small enough to allow efficient cooling of the said part of the container and its content. In such embodiment the advantage is obtained that the content of the container will at least be in the area which is cooled by the wall of the receptacle, even if the container is partly empty, which cooled content is close to and especially directly adjacent the outflow opening. Thus control of the temperature of the beverage dispensed is very well possible, even if a part of the container extending outside the receptacle is not or less cooled. Such dispensing device is for example known as Blade®, marketed by Heineken, The Netherlands, and is for example described in WO 2018/009065, WO 2018/212660 and WO 2018/212659.
The connector 30 comprises a first connecting element 34 fitting onto and/or into the first channel 25 of the lid 20 and an at least partly flexible dispensing line 36 fluidly connected to or connectable to the first connecting element 34 for dispensing beverage from the bag 8 through the connector 30 and the dispensing line 36. In the embodiment shown the first connecting element 34 is or comprises a tube, for example a needle, which can be pushed into the first channel 25 opening the closure 29 for allowing liquid to be dispensed from the volume 26 to the dispense tube 36. The closure 29 preferably is made of an elastomeric material which will close and seal against the first connecting element 34 after having been opened, for example pierced.
The connector 30 further comprises a second connecting element 38, which can be pushed into the second channel 28. The second connecting element 38 preferably has at least one groove 39 for allowing gas to pass into and/or out of said second channel 28 from or into a gas space 42. In this embodiment the second connecting element 38 is formed by a pin having a cross section such as shown in enlarged scale in
As can be seen in
As can be seen in
In the embodiment of
In embodiments a connecting surface 44A, 52A can be provided, extending around the first or inlet opening 44 and/or the second opening 52 respectively. These surfaces 44A, 52A preferably lie in the planes P1, P2 respectively, extending substantially parallel to the axis X - X.
The second opening 52 can form an outlet opening and can be in fluid connection with the inlet opening 44 and the second channel 28 or second connecting element 38 through the space 42. Preferably the first connecting surface 44A has a first center C1 and the second connecting surface 52A has a second center C2, wherein the first and second center lie on a straight line C1 - C2 extending perpendicular to the longitudinal axis X - X of the bag-in-container.
The passage 11 in embodiments comprises at least a substantially cylindrical space between the peripheral walls 4A, 5A of the first and second neck 4, 5, extending into the bag-in-container 6 from the level of a free longitudinal edge 4B of the first neck 4. This edge 4B preferably lies below the edge 5B of the outer neck 5, such that the lid 20 extends at least partly into the outer neck 5 in order for the seal 22 to engage the neck 4. Thus the container 6 with the lid 20 can have a relatively small axial length.
A bag in container 6 according to the disclosure can be an integrally blow molded BIC, and can be made of a preform assembly as described, or of a multi layered integral preform, as long as the bag formed from an inner layer of combination of layers will release from the container formed from the outer layer of combination of layers when introducing a gas under pressure into the space 9 between the bag forming the inner layer and the container forming the outer layer.
As can be seen in
The first nose 51 can be supported by a first carrier 70, schematically partly shown in
Diametrically opposite the first nose 51 the second connector 54 is provided, with a second nose 55. The second connector 54 is connected via a gas line 72 with a sensor unit 74, for example comprising a pressure sensor and/or a flow sensor. The second connector 54 in this embodiment comprises a second nose 55, similar to the first nose 51, which can seal against the surface 52A around the second opening 52, for providing a gas tight connection. In the embodiment shown the second nose 55 is biased towards the surface 52A by a spring 55A. Hence gas under pressure can be led to the sensor unit 74.
The second nose 55 can be supported by a second carrier 76, schematically partly shown in
In preferred embodiments the first and second carrier can be moved simultaneously in opposite directions, between the connecting position as shown in
Preferably the sensor unit 74 is connected to a control unit 75 of the dispensing device. The control unit 75 can be set such that for example the sensor unit 74 can sense whether a container 6 is indeed properly introduced into the dispensing device 32. For example if no container 6 is present in the dispensing device gas introduced through the first nose 51 will flow out of the dispensing device 32, which will mean that the sensor unit 74 will sense no to very little change in pressure and/or flow. The control unit can then switch off the pressure source 68, cooling and the like and/or can be used to inform the user of the fact that no container has been placed, or a container has been placed improperly or that other problems may occur. Moreover the control unit can be set such that if the sensor unit 74 detects too high a pressure or flow, it can also switch off or modulate the pressure source 68. The space 42 can function as a pressure buffer, as can the space 9 in the container 6.
Diametrically opposite the first nose 51 the second connector 54 is provided, with a second nose 55. The second connector 54 is connected via a gas line with a sensor unit, for example comprising a pressure sensor and/or a flow sensor, in substantially the same way and for the same purpose as in the embodiments of
The second nose 55 can be supported by a second carrier 76, similar to
In the moved forward position the nose 51 seals against surface 44A and gas under pressure can be entered into the container 6, especially into the space 9 through opening 44 and passage 11, whereas the second nose 54 seals against surface 52A and gas under pressure can be led to the sensor unit.
In preferred embodiments the first and second carrier can be moved simultaneously in opposite directions, between the connecting position as shown in
Preferably the sensor unit 74 is connected to a control unit of the dispensing device. The control unit can be set such that for example the sensor unit 74 can sense whether a container 6 is indeed properly introduced into the dispensing device 32. For example if no container 6 is present in the dispensing device gas introduced through the first nose 51 will flow out of the dispensing device 32, which will mean that the sensor unit 74 will sense no to very little change in pressure and/or flow. The control unit can then switch off the pressure source 68, cooling and the like and/or can be used to inform the user of the fact that no container has been placed, or a container has been placed improperly or that other problems may occur. Moreover the control unit can be set such that if the sensor unit 74 detects too high a pressure or flow, it can also switch of or modulate the pressure source 68. The space 42 can function as a pressure buffer, as can the space 9 in the container 6.
The invention is by no means limited to the embodiments specifically disclosed and discussed herein.
For example the lid 20 can be connected to the container 6 in a different manner, for example by screw threads, a bayonet coupling, adhesive, welding or the like. The connector 30 can be mounted to the lid 20 in a different manner, for example using screw threads, bayonet coupling, form lock, press fit or the like. The first and/or second coupling elements 34, 38 could be made differently. For example the first coupling element could be designed to open a reclosable valve as closure, whereas the second connecting element could for example be designed to connect to the second channel by connecting to an upper edge thereof or the second connecting element can be formed by the space 42 as such, if the second channel is an open channel.
Number | Date | Country | Kind |
---|---|---|---|
2026268 | Aug 2020 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2021/050506 | 8/13/2021 | WO |