Bag machine and winder

Abstract
A method and apparatus for making and winding bags is disclosed. The bag machine includes an unwind section, a forming section, and a winder. The winder has an infeed nip and two spindles. Each spindle is located along a respective one of two alternative film paths. The spindles can be fixed position spindles and the alternative film paths can be predominantly downward. An over speed nip may be provided between the infeed nip and the alternative film paths to separate rolls or to separate all bags. An overlapper can be included. Rods that travel in an elliptical orbit, and/or air nozzles can be part of the overlapper. Air nozzles can also be used to direct the film to the appropriate alternative path. Conveyor belts along the alternative film paths can be used to guide the film. Static pinners can be used to help bold the bags to the conveyor, or the last bag to the roll. Pop-up fingers and air horns can help start the roll on a spindle. Paper banders can be use, as can pneumatic devices. A push off device that scrape the spindles over substantially 360 degrees can be used.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is diagram of a prior art bag machine; and



FIG. 2 is diagram of a winder in accordance with the present invention.





Before explaining at least one embodiment of the invention in detail it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting. Like reference numerals are used to indicate like components.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

While the present invention will be illustrated with reference to a particular bag machine, method and winder, it should be understood at the outset that the invention can also be implemented with other machines, methods, and winders, including draw tape machines, rotary overlap machines, intermittent machines, and other known machines.


Generally, the present invention is described with respect to a winder that can be used with, or is part of, a prior art bag machine to make a roll of bags for easy packaging, transporting, dispensing, and use. The preferred embodiment is described with respect to a bag machine such as that shown in U.S. Pat. No. 6,117,058, or available commercially as the CMD® 1270 bag machine, or a modular bag machine. The invention is contemplated as a winder, a winder and separator, a winder, separator and overlapper, or an entire bag machine. Overlapper, as used herein, includes a device or section that overlaps succeeding bags. The bag machine prior to the winder is described below, since it can be the prior art machine described above. Other bag machines may be used as well.


The winder receives the formed bags as a film, and can separate them using an over speed nip. Over speed nip, as used herein, includes a nip wherein at least one driven roller has a circumferential speed greater than the speed of the film prior to the nip. The nip can operate in an every bag mode, or in an intermittent mode to separate bags only at the start/end of rolls. Every bag mode, as used herein, includes operating for every bag within a roll. Intermittent mode, as used herein, includes not operating for every bag within a roll, such as operating only at the beginning or end of a roll, or for a few bags within a roll. The bags can be overlapped in the every bag mode.


After separating, a film divertor directs the film to one of two spindles. Each winding spindle takes turns winding film, which eliminates bottlenecks and allows for higher speeds, higher cycle speeds, and lower count rolls. The film is directed by the divertor along one of two alternative film paths to one of the two spindles or winding stations. Alternative film path, as used herein, includes a path followed by the film or bags a portion of the time the winder is in use. The alternative paths are preferably predominantly downward, allowing rejected film or missed transfer film to be rejected to the floor in a convenient location. Predominantly downward, as used herein, includes more vertical (with gravity) than horizontal. The spindles are fixed position spindles. Fixed position spindles, as used herein, includes spindles that do not move from a location, such as in an orbit, but can rotate.


When the spindle in use is wound with a complete roll, the leading edge of the first bag of the next roll is directed along the other alternative path to the other spindle. Thus, the winder can wind immediately on the other spindle without moving the spindles, and without having to remove a roll before winding the next roll.


Various embodiments use one or more of the following features, which can be used alone, or in many combinations. Air can be used to direct the film as desired, and pop-up fingers and/or an air horn can be used to start the roll. Static pinning can be used to hold the bags to the spindle, and bipolar static pinning can be used to hold the tail of the last bag of a roll to the roll. Conveyors can be used to guide the film along the alternative paths, and the conveyor can pivot as the roll gets larger, to accommodate its growing diameter. A paper bander can be used and the drying time for the glue can be accommodated since the glue can dry while the other spindle is being used. A push off device can be used to remove rolls, and can scrape substantially 360 degrees around the circumference of the spindle since the spindles are fixed position spindles. Substantially 360 degrees, as used herein, includes over the entire circumference except for occasional small interruptions.


Turning now to FIG. 2, a diagram of a winder 200 in accordance with the preferred embodiment is shown. Winder 200 may be downstream along the film path of bag machine 100 of FIG. 1. Many of the alternatives mentioned above are shown, although as stated above, all need not be included.


Film 201 travels from perforator or knife 218 (FIG. 1) to an infeed nip defined between rolls 203 and 205 (FIG. 2), at least one of which is driven. The infeed nip draws or feeds the film into winder 200. (Infeed nip can refer to the infeed for a machine or a section. Here it is used to refer too the infeed of the winder section.) The preferred embodiment provides for a vertical feed of the web through the infeed nip. This allows the machine to be uni-handed with respect to an operator side, and can accommodate both left and right hand floor plans.


Film 201, after leaving the infeed nip, is provided to an over speed nip defined between rolls 307 and 309, at least one of which is driven. (Film 201 is provided to other stations directly, or indirectly after leaving the infeed nip in various embodiments). Preferably the over speed is servo driven and the over speed percent can be changed easily by the user for a wide perforation repeat distance, such as from 10″ to 250″ without changing parts.


In an intermittent mode it can run perforation-connected film and separate one of plurality of bags from its succeeding bag by running over speed only after a certain count is complete. In an every bag mode it can be an overlapper and separate and overlap each bag by running over speed all the time. (Every bag made includes not separating a few bags in each roll) The over speed nip can aid in diverting the web to the appropriate alternative path by not running over speed during the last bag of the overlapped roll. Perforation detection is not required (but can be provided) when separating bags.


An overlapper includes rods 311-315 mounted to move in a generally elliptical orbit that intersect the path of film 201 in two places (above and below the nip, preferably). Generally elliptical, as used herein, includes a non circular, non angular path. The orbit is shown clockwise in FIG. 2, where the roll is being wound on a spindle 337, located along one of the alternative film paths. The rotor reverses direction and moves the rods in a counter-clockwise direction when a spindle 338 (located along the other alternative film path) is being used. The rods pull the film laterally, and can aid in separating, although the over speed nip alone can be used to separate if the overlapper is not installed. The rods temporarily accumulate the film to allow for overlapping succeeding bags. Overlapped regions are shown as 317 and 318, and 319 and 320.


The rods are preferably 0.5″ diameter steel rods supported on each end with a chain or timing belt, including a driven sprocket and a tensioner sprocket, preferably servo driven. This reduces the distance the web must jump where it is not supported. An air curtain or series of air nozzles may be used to help the film jump the gap created by the mechanical overlap rods. Alternatives includes using air for overlapping, using fewer or more rods, using a different orbit, or other known overlappers.


Over speed rollers 307 and 309 preferably include 0.25″ wide grooves on a 1″ repeat across the face of both roller faces, to provide clearance for a plurality of air nozzles 322-325 in each groove. Air nozzles 222-225 are used to direct the film to the desired spindle. The upper air nozzles 322 and 323 are used to divert the web to the opposite roller and the lower air nozzles 324 and 325 are used to divert the web down to a nearby conveyor belt 327 or 328, disposed along the film path. As shown in FIG. 3, air nozzles 322 and 325 are off, and air nozzles 323 and 324 are on, directing film 201 toward spindle 317. Nozzles 322 and 325 are on, and nozzles 323 and 324 off, when the film is being directed toward spindle 318.


When a roll is completed, and the nozzles had been directing the trailing edge of the roll to one spindle, the nozzles are then controlled to direct the leading edge of the next roll of bags to the other spindle. Thus, the nozzles alternately direct the film to one of two paths. The change in paths, or alternations, occur after a plurality of bags—a roll—are wound. If the separator is in an intermittent mode, then nozzles perform an alternation after separating. In the every bag (overlap) mode they perform an alternation after a given count.


The preferred embodiment provides that the right and left spindles and associated components are mirror images of one another, although this is not required. Thus, spindle 338 winds counter-clockwise and spindle 337 winds clockwise.


The web, as it travels to spindles 337 and 338, is preferably held against conveyor belts 327 and 328 with a series of round elastic ropes. Also, one embodiment provides for static pinners 330 and 331 to hold the film against conveyor belts 227 and 228. Static pinners 330 and 331 can be bi-polar static pinners to not only hold the film against the conveyor, but to also cause the tail of the last bag of a roll to cling to the roll, by turning off the static neutralizer for the last few bags. Thus, the invention provides for statically pinning a tail of a last bag in a roll to the roll, to aid in manual handling of rolls, in automation handling of roll, and reduce the need to glue the tail of the last bag.


Conveyor belts 227 and 228 are preferably one wide belt or a series of narrower belts with a 1″ gap there between. The gap allows for pop-up finger 340, 341 (one or more in various alternatives) to help direct the leading edge of the first bag into an air horn 342, 343, and around the winding spindle. Pop up fingers 340 and 341 intennittently direct the film near the spindle and retract after the first bag is transferred. The gap between belts also allows hot melt tail gluing to be used with less chance of glue getting on a conveyor belt.


Conveyor belt 328 is preferably mounted such that it pivots at an end closest the infeed nip, and away from fixed position spindle 338, as shown by the dashed lines and arrow 345, as the film roll grows in diameter. A like pivot is used for conveyor 327.


Each winding station may have a paper bander 346, 347. Because one bander can be used while the opposite spindle is winding, two banders which each run 20 cpm allow the overall winder to cycle at 40 cpm. Also, because there are two winding stations, each cycling at 20 cpm, pneumatic devices may be used with an overall speed of 40 cpm.


The spindles preferably use a prior art CMD®-designed Teflon® sleeve or bead blasted/chromed design. Also, because the spindles are fixed position spindles, they can use a simple push-off device that does not need to pivot, and can scrape at substantially 360 degrees around the spindle circumference to remove film easier with less chance of binding. The fixed position also allows for simple air connections to the spindles.


Because there are two stations cycling at 20 cpm (counts per minute), the machine runs at 40 cpm, and more time is allowed for roll inspection, culling, and rejecting than for a single station 40 cpm machine.


Numerous modifications may be made to the present invention which still fall within the intended scope hereof. Thus, it should be apparent that there has been provided in accordance with the present invention a method and apparatus for making and winding bags that fully satisfies the objectives and advantages set forth above. Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.

Claims
  • 1. A winder for a bag machine comprising; an infeed nip defined between two infeed rollers;a first spindle, located along a first alternative film path, wherein after leaving the infeed nip the film can follow the first alternative film path nip to the first spindle to be wound about the first spindle; anda second spindle, located along a second alternative film path, wherein after leaving the infeed nip the film can follow the second alternative film path nip to the second spindle to be wound about the second spindle.
  • 2. The winder of claim 1, wherein the first and second spindles are fixed position spindles.
  • 3. The winder of claim 1, wherein the path, the first alternative and the second alternative film path are predominantly downward.
  • 4. The winder of claim 1, further comprising an over speed nip defined between two over speed rollers, located along a film path, wherein the film moves from the infeed nip to the over speed nip, and then to one of the first and second alternative film paths.
  • 5. The winder of claim 4, wherein the over speed nip is operable in an intermittent mode and in an every bag mode.
  • 6. The winder of claim 5, wherein the over speed nip has a user adjustable over speed.
  • 7. The winder of claim 5 including an overlapper disposed to provide the film to the first and second alternative film paths.
  • 8. The winder of claim 7, wherein the overlapper includes a plurality of rods mounted to follow an orbit that intersects the film path in at least two locations.
  • 9. The winder of claim 8, wherein the plurality is at least 5, and the orbit is generally elliptical.
  • 10. The winder of claim 8, wherein the overlapper includes a plurality of air nozzles.
  • 11. The winder of claim 1, further comprising a first plurality of air nozzles disposed to direct the film to the first alternative film path, and a second plurality of air nozzles disposed to direct the film to the second alternative film path.
  • 12. The winder of claim 1, further comprising a first conveyor belt disposed along the first alternative film path and a second conveyor belt disposed along the second alternative film path.
  • 13. The winder of claim 12, wherein the first and second conveyor belts are each mounted to pivot at an end closest the infeed nip.
  • 14. The winder of claim 12, further comprising a first static pinner disposed along the first alternative film path and a second static pinner disposed along the second alternative film path
  • 15. The winder of claim 14, wherein the first and second static pinners are bipolar static pinners.
  • 16. The winder of claim 1, further comprising a first pop-up finger disposed along the first alternative film path near the first spindle, and a second pop-up finger disposed along the second alternative film path near the second spindle.
  • 17. The winder of claim 1, further comprising a first paper bander disposed near the first spindle, and a second paper bander disposed near the second spindle.
  • 18. The winder of claim 1, further comprising a source of pneumatic air disposed to provide air to at least the first and second spindles.
  • 19. The winder of claim 1, further comprising a first push off device disposed to scrape the first spindle over substantially 360 degrees, and a second push off device disposed to scrape the second spindle over substantially 360 degrees.
  • 20. A method of winding bags from a continuous film, comprising; feeding the film into a winder; andalternately directing the film along a first alternative path to a first spindle and along a second alternative path to a second spindle, wherein the alternations occur after a plurality of bags are wound.
  • 21. The method of claim 20, further comprising not moving the first and second spindles from a fixed position.
  • 22. The method of claim 20, wherein the first alternative path and the second alternative path are predominantly downward.
  • 23. The method of claim 20, further comprising, prior to alternately directing, separating one of plurality of bags from its succeeding bag, thereby creating a roll of bags, and performing an alternation after separating, thereby directing a leading edge of a roll of bags to a different of the first spindle and the second spindle from the trailing edge of the prior roll of bags.
  • 24. The method of claim 20, further comprising, prior to alternately directing, separating each bag from its succeeding bag.
  • 25. The method of claim 24 including overlapping succeeding bags.
  • 26. The method of claim 25, wherein overlapping includes moving a plurality of rods in an orbit that intersects the film path in at least two locations.
  • 27. The method of claim 26, wherein moving includes moving in a generally elliptical orbit.
  • 28. The method of claim 25, further comprising directing the film with air.
  • 29. The method of claim 20, further comprising conveying the film with a first conveyor belt along the first alternative film path and conveying the film along a second conveyor belt disposed along the second alternative film path.
  • 30. The method of claim 29, further comprising pivoting the first and second conveyor belts, each at an end closest the infeed nip.
  • 31. The method of claim 25, further comprising statically pinning a tail of a last bag in a roll to the roll.
  • 32. The method of claim 1, further comprising intermittently directing the film near the first spindle with a first pop-up finger and intennittently directing the film near the second spindle with a second pop-up finger.
  • 33. A apparatus for winding bags from a continuous film, comprising; means for feeding the film into a winder; andmeans for alternately directing the film along a first alternative path to a first spindle and along a second alternative path to a second spindle, wherein the alternations occur after a plurality of bags are wound, wherein the means for alternately are disposed to receive the film from the means for feeding.
  • 34. The apparatus of claim 20, further comprising, means for separating at least one of plurality of bags from its succeeding bag, thereby creating a roll of bags, wherein the means for alternately receives the film from the means for separating.
  • 35. The apparatus of claim 34, wherein the at last one of a plurality of bags is each of the plurality of bags.
  • 36. The apparatus of claim 34, wherein the means for separating further comprises means for overlapping succeeding bags.
  • 37. The apparatus of claim 34, wherein the means for alternately directly further comprises means for directing the film with air.
  • 38. The apparatus of claim 33, further comprising means for conveying the film along the first and second alternative film paths.
  • 39. The apparatus of claim 33, wherein the means for overlapping includes means for statically pinning a tail of a last bag in a roll to the roll.
  • 40. The apparatus of claim 33, further comprising means for banding rolls of bags, disposed near the first and second spindles.
  • 41. The apparatus of claim 33, further comprising means for scraping the first spindle over substantially 360 degrees to remove a roll of bags, and means for scraping the second spindle over substantially 360 degrees to remove a second roll of bags.
  • 42. A bag machine comprising; an unwind section disposed to receive a roll of film;a forming section, disposed to receive the film from the unwind sectionan infeed nip defined between two infeed rollers, wherein the film travels from the forming section to the infeed nip;a first spindle, located along a first alternative film path, wherein after leaving the infeed nip the film can follow the first alternative film path nip to the first spindle to be wound about the first spindle; anda second spindle, located along a second alternative film path, wherein after leaving the infeed nip the film can follow the second alternative film path nip to the second spindle to be wound about the second spindle.
  • 43. The winder of claim 42, wherein the first and second spindles are fixed position spindles and the first alternative and the second alternative film paths are predominantly downward.
  • 44. The winder of claim 42, further comprising an over speed nip defined between two over speed rollers, located along a film path, wherein the film moves from the infeed nip to the over speed nip, and then to one of the first and second alternative film paths and the over speed nip is operable in an intermittent mode and an every bag mode.
  • 45. The winder of claim 44 including an overlapper having a plurality of rods mounted to follow a generally elliptical orbit that intersects the film path in at least two locations, and having a plurality of air nozzles, and disposed to provide the film to the first and second alternative paths.