The present disclosure relates to machines that convert a web of material, and more specifically to machines that convert a web of material into pouches or bags
The following U.S. Patents and U.S. Patent Application Publications are incorporated herein by reference in entirety.
U.S. Pat. No. 5,362,013 discloses methods and apparatuses for winding bags.
U.S. Pat. No. 5,857,953 discloses draw tape equipment and methods for incorporating draw tapes into plastic and bags.
U.S. Pat. No. 7,191,575 discloses vertical form fill-and-seal continuous pouch machines having a forming tube.
U.S. Pat. No. 7,578,779 discloses methods and apparatuses for making and winding bags.
U.S. Pat. No. 8,029,428 discloses machines and methods for making bags from a web traveling from an input section to a rotary drum to an output section.
U.S. Pat. No. 10,946,591 discloses methods and apparatuses for making bags or pouches with ultrasonic sealers.
U.S. Patent Application Publication No. 2018/0056599 discloses machines and methods for making bags that include a web traveling from an input section to a rotary drum, to an output section.
U.S. Patent Application Publication No. 2022/0347961 discloses machines for forming a web into bags or pouches includes a sealing section through which the web is conveyed in a machine direction.
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter. It will be appreciated that different features of different aspects of the present disclosure may be combined in different ways.
In certain examples, a winder for winding bags into rolls that includes an input station configured to receive the bags is disclosed. A first conveyor is configured to convey the bags along a first winding path to a first spindle such that the bags conveyed along the first winding path are wound around the first spindle into a first roll of bags. A second conveyor is configured to convey the bags along a second winding path to a second spindle such that the bags conveyed along the second winding path are wound around the second spindle into a roll of bags. A diverter is configured to selectively divert the bags along the first winding path or the second winding path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the bags received into the input station are formed from a web of material, and the input station comprises a tension sensor configured to sense tension of the web and a plurality of rollers is configured to adjust tension in the web based on the tension sensed by the tension sensor. Optionally, an overlap station is configured to overlap the bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, the diverter has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to the first winding path or the second winding path. Optionally, an actuator pivots the diverter into and between a first diverter position in which the diverter directs the bags along the first winding path and a second diverter position in which the diverter directs the bags along the second winding path. Optionally, the diverter pivots to a value in a range of 60.0-80.0 degrees between the first diverter position and the second diverter position. Optionally, a first guide assembly is configured to guide the bags along the first winding path and a second guide assembly is configured to guide the bags along the second winding path. Optionally, a first guide assembly is configured to guide the bags along the first winding path, and the first guide assembly has a pair of rollers and a plurality of ropes that encircle the rollers such that the ropes are recessed in the pair of rollers. Optionally, an air system is configured to pull a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls the leading bag onto the first spindle. Optionally, an air system is configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, a flap is configured to bias the bags wound around the first spindle radially toward the first spindle.
In certain examples, a machine for processing a web of material into bags is disclosed. The machine includes an input section configured to receive a roll of the web of material. A sealing section is configured to form seals in the web of material to thereby at least partially form the bags from the web of material. A winder is configured to wind the bags into rolls of bags. The winder comprises an input station configured to receive the bags from the sealing section, a first conveyor configured to convey the bags along a first winding path to a first spindle such that the bags conveyed along the first winding path are wound around the first spindle into a first roll of bags, a second conveyor configured to convey the bags along a second winding path to a second spindle such that the bags conveyed along the second winding path are wound around the second spindle into a roll of bags, and a diverter configured to selectively divert the bags along the first winding path or the second winding path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the bags received into the input section are formed from a web of material, and the input station comprises a load sensor configured to sense tension of the web and a plurality of rollers configured to adjust tension in the web based on the tension sensed by the load sensor. Optionally, the winder further comprises an overlap station configured to overlap the bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, the winder has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to the first winding path or the second winding path. Optionally, the winder further comprises an actuator that pivots the diverter into and between a first diverter position in which the diverter directs the bags along the first winding path and a second diverter position in which the diverter directs the bags along the second winding path. Optionally, the diverter pivots a value in a range of 60.0-80.0 degrees the first diverter position and the second diverter position. Optionally, the winder further comprises a first guide assembly configured to guide the bags along the first winding path and a second guide assembly configured to guide the bags along the second winding path. Optionally, the winder further comprises a first guide assembly configured to guide the bags along the first winding path, the first guide assembly having a pair of rollers and a plurality of ropes that encircle the rollers such that the ropes are recessed in the pair of rollers. Optionally, the winder further comprises an air system configured to pull a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and couples the leading bag onto the first spindle. Optionally, the winder further comprises an air system configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, a flap is configured to bias the bags wound around the first spindle radially toward the first spindle. Optionally, a control system controls the diverter to pivot the diverter from the first diverter position to the second diverter position or from the second diverter position to the first diverter position after a predetermined length of bags passes through the diverter.
In certain examples, a winder for winding bags into rolls is disclosed that includes an input station configured to receive the bags and a conveyor configured to convey the bags along one or more winding paths such that the bags conveyed along each winding path are wound around a spindle into a roll of bags. A diverter is configured to selectively divert the bags along one of the winding paths. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the diverter has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to one or more of the winding paths. Optionally, an actuator pivots the diverter into and between a diverter position in which the diverter directs the bags along a first winding path and a second diverter position in which the diverter directs the bags along a second winding path. Optionally, the diverter pivots to a value in a range of 60.0-80.0 degrees between the first diverter position and the second diverter position. Optionally, an air system is configured to pull a leading end of a leading bag in the bags conveyed along a winding path onto the spindle associated with the winding path. Optionally, the spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the spindle. Optionally, an air system is configured to push the roll of bags radially away from the spindle. Optionally, the spindle has a plurality of holes through which the air exhausts. Optionally, a flap is configured to bias the bags wound around the spindle radially toward the spindle.
In certain examples, a method for processing bags created from a web of material into rolls of bags is disclosed. The method includes the steps of receiving the bags into a winder, diverting, with a diverter, the bags along a first winding path, winding the bags diverted along the first winding path around a first spindle to thereby form a first roll of bags, pivoting the diverter to thereby divert the bags along a second winding path, and winding the bags diverted along the second winding path around a second spindle to thereby form a second roll of bags. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the method may further include the step of separating the bags and overlapping the separated bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, the method may further include the step of pulling, with an air system, a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls the leading bag onto the first spindle. Optionally, an air system is configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, the method may further comprise the step of biasing, with a flap, the bags wound around the first spindle radially inwardly toward the first spindle. Optionally, the method further comprises the step of sensing, with a home sensor, position of the diverter, moving an air horn away from the first spindle after a predetermined length of bags is wound into a first roll of bags onto the first spindle, pivoting the diverter from a first diverter position in which the diverter diverts the bags along the first winding path to a second diverter position in which the diverter diverts the bags along the second winding path, pushing the first roll of bags off the first spindle, pivoting the diverter from the second diverter position to the first diverter position, and pushing the second roll of bags off the second spindle.
In certain examples a machine for processing a web of material into bags is disclosed. The machine includes a winder with an input station configured to receive the bags and wind the bags about a spindle to form a roll of bags. The winder conveys the bags in a machine direction to the spindle. A bander is configured to band each roll of bags, and the bander is offset from the winder along a cross-machine direction extending transverse to the machine direction. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the spindle extends in the cross-machine direction, and the winder is configured to move the roll of bags in the cross-machine direction along the spindle from a first spindle position in which the winder winds the bags into a roll of bags to a second spindle position in which the bander bands the roll of bags. Optionally, the spindle is rotatable at a first spindle speed while the bags are in the first spindle position and the second spindle position. Optionally, the spindle is a first spindle and the winder has a second spindle about which bags are wound into a roll of bags and the bander has a first banding device for applying banding material to the roll of bags wound around the first spindle and a second banding device for applying banding material to the roll of bags wound around the second spindle, the second banding device is positioned vertically below the first banding device. Optionally, the spindle is a first spindle about which a first roll of bags is wound and the winder comprises a second spindle about which a second roll of bags is wound and the bander has a first banding device for applying banding material to the first roll of bags and a second banding device for applying banding material to the second roll of bags. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a machine for processing a web of material into bags is disclosed that comprises an input section configured to receive a roll of the web of material, a sealing section configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and a winder is configured to wind the bags into rolls of bags. The winder comprises at least one spindle, and the winder conveys the bags in a machine direction to the spindle. A bander is configured to band each roll of bags, and the bander is offset from the winder in a cross-machine direction that extends transverse to the machine direction. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the spindle extends in the cross-machine direction, and the winder is configured to move the roll of bags in the cross-machine direction along the spindle from a first spindle position in which the winder winds the bags into the roll of bags to a second spindle position in which the bander bands the roll of bags. Optionally, the spindle is rotatable at a first spindle speed while the bags are in the first spindle position and the second spindle position. Optionally, the winder comprises a first spindle about which the bags are wound into a roll of bags and a second spindle about which the bags are wound into a roll of bags, and the bander has a first banding device for applying banding material to the roll of bags wound around the first spindle and a second banding device for applying banding material to the roll of bags wound around the second spindle, the second banding device is positioned vertically below the first banding device. Optionally, the winder has a first spindle about which a first roll of bags in wound and a second spindle about which a second roll of bags and the bander has a first banding device for applying banding material to the first roll of bags and a second banding device for applying banding material to the second roll of bags. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a method for processing bags formed from a web of material is disclosed. The method comprises receiving the bags into a winder, conveying the bags in a machine direction to a spindle, winding the bags about the spindle to form a roll of bags, moving the roll of bags in a cross-machine direction along the spindle, the cross-machine direction being transverse to the machine direction, and banding the roll of bags with banding material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the spindle is a first spindle and the conveying the bags comprises conveying the bags to a first spindle or a second spindle. The step of winding the bags comprises winding the bags about the first spindle to form a first roll of bags and winding the bags about a second spindle to form a second roll of bags. The step of moving the roll of bags comprises moving the first roll of bags in the cross-machine direction and moving the second roll of bags in the cross-machine direction. The step of banding the roll of bags comprises a banding the first roll of bags with banding material and banding the second roll of bags with banding material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the method may include the step of receiving, into an input section, a roll of the web of material, and forming seals, with a sealing section, in the web of material to thereby at least partially form the bags in the web of material, with the input section and the sealing section are aligned in the machine direction. Optionally, the method may include the step of diverting, with a diverter, the bags along a first winding path, winding the bags diverted along the first winding path around a first spindle to thereby form a first roll of bags, pivoting the diverter to thereby divert the bags along a second winding path, and winding the bags diverted along the second winding path around a second spindle to thereby form a second roll of bags. Optionally, the winder may include a spindle about which the roll of bags is wound, and the winder is configured to move the roll of bags in a cross-machine direction along the spindle such that the bander bands the roll of bags. Optionally, the spindle extends in the cross-machine direction and the winding the bags includes winding the bags in a first spindle position, and moving the roll of bags in the cross-machine direction from the first spindle position to a second spindle position and wherein the banding the roll of bags comprising banding the roll of bags in the second spindle position. Optionally, the step of banding the roll of bags comprises banding the roll of bags with a first banding device that applies banding material and banding another roll of bags with a second banding device that applies banding material, the second banding device is positioned vertically below the first banding device. Optionally, the spindle is a first spindle, and the step of winding the bags comprises winding the bags about the first spindle to form a first roll of bags and winding the bags about a second spindle to form a second roll of bags, and the banding the roll of bags comprises banding, with a first banding device, the first roll of bags in banding material and banding, with a second banding device, the second roll of bags in banding material. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a machine for processing a web of material into bags is disclosed that comprises an input section configured to receive a roll of the web of material, the input section comprising a pair of arms that are configured to engage the roll of the web of material and define an unwind axis and an unwind device configured to engage an outer perimetral surface of the roll of the web of material and rotate the roll of the web of material about the unwind axis such that the web of material is unwound. The pair of arms permits the roll of the web of material to axially shift as the unwind device rotates the roll of the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material and a winder is configured to wind the bags into rolls of bags. Optionally, the arms are configured to vertically lift the roll of the web of material. Optionally, the arms are axially movable away from each other such that the roll of the web of material is positioned between the arms and further axially movable toward each other to thereby engage with the roll of the web of material. Optionally, each arm has an axially extending projection that is inserted into the roll of the web of material. Optionally, the unwind device has a drive roller that engages the outer perimetral surface of the roll of the web of material to thereby rotate the roll of the web of material and a leg that secures the drive roller to a frame, the leg is pivotally coupled to the frame such that the leg and the drive roller pivot relative to the frame as diameter of the roll of the web of material decreases such that the drive roller maintains engagement with the roll of the web of material.
In certain examples, a method of processing a web of material to form bags is disclosed that includes the steps of engaging a roll of the web of material with a pair arms that define an unwind axis, unwinding the web of material from the roll of the web of material with an unwind device that engages an outer perimetral surface of the roll of the web of material and rotates the roll of the web of material about the unwind axis, and permitting axially shifting of the roll of the web of material being engaged by the pair of arms so as to permit position adjustment of the web of material to thereby reduce undesirable weave or tension inconsistencies in the web. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the method may further include the step of conveying the web of material downstream from an input section in which the web is unwound from the roll of the web, forming one or more seals in the web of material as the web of material is conveyed through a sealing section such that the bags are at least partially formed from the web of material, and/or winding the bags into a roll of bags with a winder. Optionally, the method may further include the step of lifting, with the arms, the roll of the web of material. Optionally, the method may include axially moving the arms away from each other such that the roll of the web of material is positioned between the arms and further axially moving the arms toward each other to thereby engage with the roll of the web of material. Optionally, the method may further include the step of inserting an axially extending projection of each arm into the roll of the web of material. Optionally, the method may further comprise the step of rotating, with a drive roller, the roll of the web of material to thereby unwind the web, wherein the drive roller engages the outer perimetral surface of the roll of the web of material to thereby rotate the roll of web of material, and pivoting, an arm coupled to the drive roller, such that the drive roller pivots and thereby follows the outer perimetral surface of the roll of material as diameter of the roll of the web of material decreases such that the drive roller maintains engagement with the roll of the web.
In certain examples, a machine for processing a web of material into bags is disclosed that comprises a hem forming section configured to form a hem in the web of material. The hem forming section comprises a plurality of rollers configured to convey the web of material between a first hem forming end and second hem forming end and a deflection device positioned between the first hem forming end and the second hem forming end and being configured to deflect the web of material away from a first web plane along which the web of material conveys between the first hem forming end and the deflection device to thereby increase speed of the web of material and tension in the web of material conveying such that the web of material folds and thereby forms the hem in the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, after the web of material conveys past the deflection device at least at portion of the web of material folds onto another portion of the web of material to thereby form the hem. Optionally, the deflection device has a deflection surface that engages the web of material. Optionally, the deflection surface extends transverse to the first web plane. Optionally, the deflection surface and the first web plane defines a deflection angle therebetween in a range of 20.0-70.0 degrees. Optionally, the deflection device is configured to separate the web of material into a first web side and a second web side, and the deflection device deflects the first web side and the second web side away from the first web plane such that hems are formed in both the first web side and the second web side. Optionally, the web of material has an edge that extends along a web edge axis, and wherein the deflection device is radially offset from the web edge axis. Optionally, the hem forming section includes a guide member configured to guide an edge of the web of material as the web of material folds and forms the hem. Optionally, the guide member is positioned downstream of the deflection device. Optionally, an input section is configured to receive a roll of the web of material, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and/or a winder is configured to wind the bags into rolls of bags.
In certain examples, a machine for processing a web of material into bags is disclosed and the machine includes a hem forming section configured to form a hem in the web of material. The hem forming section comprising a plurality of rollers configured to convey the web of material along a first web plane and a deflection device configured to deflect the web of material away from the first web plane to thereby increase speed of the web of material and tension in the web of material such that the web of material folds and thereby forms the hem in the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the web of material moves back into the first web plane after the deflection device deflects the web of material. Optionally, the deflection device has a deflection surface that engages the web of material. Optionally, the deflection surface extends transverse to the first web plane. Optionally, the deflection device is configured to separate the web of material into a first web side and a second web side, and the deflection device deflects the first web side and the second web side away from the first web plane such that hems are formed in both the first web side and the second web side. Optionally, the web of material has an edge that extends along a web edge axis, and the deflection device is radially offset from the web edge axis. Optionally, the hem forming section includes a guide member configured to guide an edge of the web of material as the web of material folds and forms the hem. Optionally, an input section is configured to receive a roll of the web of material, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and a winder is configured to wind the bags into rolls of bags.
In certain examples, a method of processing a web of material from which bags are formed is disclosed that includes the steps of conveying the web of material along a first web plane and deflecting the web of material, with a deflection device, away from the first web plane to thereby increase speed of the web of material and tension in the web of material such that the web of material folds and thereby forms a hem. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the steps of conveying the web downstream from an input section in which the web is unwound from a roll of the web of material, forming one or more seals in the web as the web is conveyed through a sealing section such that the bags are at least partially formed in the web of material, and/or winding the bags into a roll of bags with a winder may be included in the method. Optionally, the method may include the step of conveying the web of material into the first web plane after the deflection device deflects the web of material. Optionally, the method may include the step of separating, with the deflection device, a first web side and a second web side and deflecting the first web side and the second web side away from the first web plane to thereby increase speed of the first web side and the second web side and tension in the first web side and the second web side such that the first web side and the second web side each automatically fold to thereby form hems. Optionally, the web of material has an edge that extends along a web edge axis and the deflection device is radially offset from the web edge axis. Optionally, the method may include the step of guiding, with a guide member, an edge of the web of material as the web of material folds and forms a hem.
In certain examples, a draw tape unwind station for unwinding draw tape for bags formed from a web of material is disclosed. The draw tape unwind station includes a dancer system configured to receive the draw tape and further dispense the draw tape. The dancer system includes a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other, a first set of outer rollers coupled to the first frame end, a second set of outer rollers coupled to the second frame end, a first set of inner rollers coupled to the first frame end, and a second set of inner rollers coupled to the second frame end. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the first set of inner rollers and the second set of outer rollers are configured to guide the draw tape through the dancer system before the first set of outer rollers and the second set of inner rollers to guide the draw tape. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, one or more drive rollers are configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis, and the first roller axes are parallel and offset from the second roller axes. Optionally, the dancer system comprises a first dancer side and a second dancer side such that the first dancer side is configured to receive the draw trap and dispense the draw tape. Optionally, the dancer system is configured to route the draw tape in a first dancer direction and subsequently in a second dancer direction opposite the first dancer direction.
In certain examples, a draw tape unwind station for unwinding draw tape for bags formed from a web of material is disclosed. The draw tape unwind station includes a dancer system having a first dancer side configured to receive and dispense the draw tape and an opposite second dancer side. The dancer system is configured to route the draw tape in a first dancer direction from the first dancer side to the second dancer side along a first serpentine path and subsequently in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the second serpentine path follows the first serpentine path. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the dancer system further comprises a first set of outer rollers, a second set of outer rollers spaced apart from the first set of outer rollers, a first set of inner rollers, and/or a second set of inner rollers spaced apart from the first set of inner rollers. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the dancer system is configured to route the draw tape in the first dancer direction alternately along rollers of the first set of inner rollers and rollers of the second set of outer rollers and subsequently route the draw tape in the second dancer direction alternately along rollers of the first set of outer rollers and rollers of the second set of inner rollers. Optionally, the dancer system comprises a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other. The first set of outer rollers and the first set of inner rollers are coupled to first frame end and move therewith, and the second set of outer rollers and the second set of inner rollers are coupled to second frame end and move therewith. Optionally, one or more drive rollers are configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis, and the first roller axes are parallel and offset from the second roller axes.
In certain examples, a machine for processing a web of material into bags is disclosed. The machine includes a draw tape unwind station configured to unwind draw tape for insertion in the bags, the draw tape unwind station comprising a dancer system having a first dancer side configured to receive and dispense the draw tape and an opposite second dancer side and the dancer system being configured to route the draw tape in a first dancer direction from the first dancer side to the second dancer side along a first serpentine path and subsequently in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, a hem forming station is configured to form a hem of the bags in which the draw tape is inserted, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags from the web of material, and/or a winder is configured to wind the bags into rolls of bags. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the dancer system further comprises a first set of outer rollers, a second set of outer rollers spaced apart from the first set of outer rollers, a first set of inner rollers, and/or a second set of inner rollers spaced apart from the first set of inner rollers. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the dancer system is configured to route the draw tape in the first dancer direction alternately along rollers of the first set of inner rollers and rollers of the second set of outer rollers and subsequently route the draw tape in the second dancer direction alternately along rollers of the first set of outer rollers and rollers of the second set of inner rollers. Optionally, the dancer system further comprises a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other, and the first set of outer rollers and the first set of inner rollers are coupled to first frame end and move therewith and the second set of outer rollers and the second set of inner rollers are coupled to second frame end and move therewith. Optionally, one or more drive rollers is configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis and the first roller axes are parallel and offset from the second roller axes.
In certain examples, a method of unwinding draw tape for bags formed from a web of material is disclosed. The method includes the steps of receiving the draw tape into a first dancer side of a dancer system, routing the draw tape in a first dancer direction from the first dancer side to an opposite second dancer side and along a first serpentine path, and further routing the draw tape in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the method may further comprise the step of routing the draw tape in the first dancer direction alternately along rollers of a first set of inner rollers and rollers of a second set of outer rollers and/or routing the draw tape in the second dancer direction alternately along rollers of a first set of outer rollers and rollers of a second set of inner rollers. Optionally, the first set of outer rollers and the first set of inner rollers are coupled to a first frame end and move therewith and wherein the second set of outer rollers and the second set of inner rollers are coupled to a second frame end and move therewith, and further comprising translating the first frame end and the second frame end away from each other to thereby permits accumulation of draw tape in the dancer system. Optionally, the method may further comprise the step of translating the first frame end and the second frame toward each other to thereby account for decreases in the amount of draw tape in the dancer system. Optionally, the method may further comprise the step of controlling with a control system, one or more actuators to move the first frame end and the second frame end relative to each other.
In certain examples, a method of forming seals in a web of material to thereby at least partially form bags from the web of material is disclosed. This method includes the steps of conveying the web of material to a first pair of seal bars, forming a seal in the web of material by moving the first pair of seal bars into cooperation with each other and the web, conveying the web of material vertically to a second pair of seal bars, and forming another seal in the web of material by moving the second pair of seal bars into cooperation with each other and the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional steps or features. Optionally, the first pair of seal bars is vertically spaced apart from the second pair of seal bars. Optionally, the step of moving the first pair of seal bars comprises moving the first pair of seal bars with the web of material. Optionally, the step of moving the second pair of seal bars comprises moving the second pair of seal bars with the web of material. Optionally, the first pair of seal bars linearly and/or the second pair of seal bars translate with the web of material. Optionally, the first pair of seal bars and the second pair of seal bars form alternating spaced apart seals in the web of material. Optionally, the method further comprises the step of dispensing the web of material with a plurality of seals formed therein such that each seal in the plurality of seals spaced apart from each other, and the first pair of seal bars forms every other seal in the plurality of seals. Optionally, the seals formed in the web of material extending a cross-machine direction.
In certain examples, a machine for processing a web of material into bags is disclosed that includes a sealing section configured to form seals in the web of material to thereby at least partially form the bags from the web of material. The sealing station comprises a first pair of seal bars that are movable into cooperation with each other and the web of material to thereby form a seal in the web of material and a second pair of seal bars that are movable into cooperation with each other and the web of material to thereby form another seal in the web of material. The first pair of seal bars is vertically spaced apart from the second pair of seal bars and the web of material is vertically conveyed between the first pair of seal bars and the second pair of seal bar. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the sealing station further includes a plurality of rollers configured to convey the web of material vertically between the first pair of seal bars and the second pair of seal bars. Optionally, a hem forming station is configured to form a hem of the bags in which draw tape is inserted and/or a winder is configured to wind the bags into rolls of bags. Optionally, the first pair of seal bars is vertically spaced apart from the second pair of seal bars. Optionally, the first pair of seal bars and the second pair of seal bars is directly vertically spaced apart from each other. Optionally, the first pair of seal bars are configured to move with the web of material as the seal is formed in the web of material. Optionally, the second pair of seal bars are configured to move with the web of material as the seal is formed in the web of material. Optionally, the first pair of seal bars linearly translates with the web of material. Optionally, the second pair of seal bars linearly translates with the web of material. Optionally, the first pair of seal bars and the second pair of seal bars form alternating spaced apart seals in the web of material. Optionally, the sealing section is configured to dispense the web of material with a plurality of seals formed therein such that each seal in the plurality of seals spaced apart from each other, and the first pair of seal bars forms every other seal in the plurality of seals. Optionally, the seal formed in the web of material by the first pair of seal bars and the second pair of seal bars extend a cross-machine direction.
Various other features, objects, and advantages will be made apparent from the following description taken together with the drawings.
The present disclosure is described with reference to the following Figures. The same numbers are used throughout the Figures to reference like features and like components.
Plastic bags of the type described herein are formed from a web that is folded and sealed such that the bag has a closed bottom, an open top end, and sealed side edges. In certain examples, hems are formed at the open top end to define a channel in which draw tapes are held. The draw tapes may be pulled by the user to close the open top end of the bag. The web and the draw tapes are each unwound from one or more rolls of supply material and fed into the machine 10. Alternatively, the web and/or the draw tape may be received in-line from an ongoing film extrusion process.
The web 4 is received from the roll 2 into an input section 20. The input section 20 includes a series of rollers 21, and the web 4 is routed around the rollers 21 along a web path. The size and type of rollers 21 may vary, and in certain examples, the rollers 21 may be drive rollers, driven rollers, and/or idle rollers. Note that in certain examples drive rollers are positioned throughout the machine 10 to thereby convey the web therethrough. The rollers 21 may define one or more nips 22 through which the web 4 passes. Note that in certain examples, the input section can include an input dancer assembly (not depicted) for stabilizing and optimizing tension in the web 4. Reference is made to the above-incorporated U.S. Patent Application Publication No. 2018/0056599 for example features and components of a known input section and dancer assembly that can be incorporated into the machine 10 of the present disclosure in certain examples.
In other examples, it can be advantageous for the machine 10 of the present disclosure to include an input section 20 that has a minimal number of rollers 21 and/or to exclude an input dancer assembly to reduce or minimize the length of the web path. Minimizing the length of the web path advantageously reduces the size of the input section 20 (e.g., the footprint of the input section 20 can be reduced) and prevents jamming or misalignment of the web 4 while traveling along the web path within the input section 20. The input section 20 can also include one or more load cells that are configured to sense and/or determine tension on the web 4. The load cells are preferably coupled to one or more rollers along which the web 4 is conveyed. If the tension on the web 4 is less than or greater than a predetermined tension value based on signals from the load cells, the machine 10 can increase or decrease rotational speed of one or more rollers to thereby increase the tension on the web 4 to the predetermined tension value.
In certain examples the web 4, when received into the input section 20, may be in a flat and unfolded configuration (see
Referring now to
The input section 20 includes a first arm 411 and a second arm 412 configured to engage a roll 2 of the web of material. The arms 411, 412 collectively define an unwind axis 413 about which the roll 2 of the web of material rotates. The arms 411, 412 are configured to move in the cross-machine direction (arrow B) or opposite cross-machine direction (arrow C) such that the distance between the arms 411, 412 increases or decreases. The arms 411, 412 are also pivotable about an arm axis 414. In operation, the input section 20 receives the roll 2 of the web of material. The arms 411, 412 are in lowered first arm positions (
The input section 20 also includes an unwind device 416 that is configured to engage an outer perimetral surface 417 of the roll 2 to thereby rotate the roll 2 about the unwind axis 413. The unwind device 416 can be any suitable device for unwinding the web of material from the roll 2, and in one example, the unwind device 416 includes a drive roller 418 that engages and rotates the outer perimetral surface 417 of the roll 2 of the web of material. The drive roller 418 is coupled to the frame 419 of the machine 10 such that the leg 420 and the drive roller 418 can pivot relative to the frame 419 about an axis as the diameter of the roll 2 of the web of material decreases (see arrow A2). Accordingly, the drive roller 418 maintains engagement with the roll 2 as material is removed from the roll 2. The drive roller 418 and the leg 420 are also pivotable away from the roll 2 in the event a new roll 2 is inserted into the input section 20. The drive roller 418 engages the roll 2 to thereby unwind the web 4 and convey the web to the rollers 21 (
The present inventors recognized that the example input sections 20 of the present disclosure advantageously permit the operator of the machine 10 to utilize large rolls of web (e.g., rolls of web having outer diameters greater than 40.0″), maximize speeds at which the web 4 is conveyed through the machine 10 (e.g., speeds of conveying 700.0 feet per minute or more), minimizing machine downtime, reduce or eliminate roll misalignment which may lead to undesirable tension and/or weaving of the web as it is unwound from the roll, reduce or eliminate web path length relative to convention input sections, reduce or eliminate web weaving of the web, and/or facility low tension in the web of material with large diameter rolls of web.
Referring back to
The present inventors have recognized that using the rotary hole cutting device 31 provides unique advantages over conventional machines that use conventional cutter claws and/or hole punches or thumb hole punches to form the holes 34 in the web 4. For instance, the inventors have determined that when utilizing the rotary hole cutting device 31 the web path along which the web 4 is conveyed can be reduced/shortened relative to the web path in conventional machines. The reduced web path is possible due to the rotary hole cutting device 31 rotating with the web 4 such that the cutter roller 32 radially crushes and cuts the web 4. The rotary hole cutting device 31 does not increase or decrease the tension in the web 4 as the hole 34 is formed. That is, the rollers 32, 33 do not stretch or pull on the web 4 as the holes 34 are cut. Thus, additional rollers or other devices are not necessary to maintain an appropriate tension in the web 4 or counteract the tension forces that would otherwise be applied by conventional hole cutting devices. Note that there is minimal or no variation in the tension of the web 4 as the rotary hole cutting device 31 forms the holes 34 in the web 4. As such, consistent tension in the web 4 decreases or eliminates shifting of the web 4 and wrinkles in the web 4 that may otherwise create frayed edges of the holes 34 and/or misaligned holes 34. Furthermore, the rotary hole cutting device 31 of the present disclosure advantageously permits a greater speed of the conveyance of the web 4 through the machine 10 such that the machine 10 is capable of processing web at higher speeds than conventional machines. In certain examples, the utilization of the rotary hole cutting device 31 of the present disclosure can include several additional advantages over conventional machines such as better tension control in the web 4, reduced maintenance to achieve optimal tension in the web 4, and/or elimination of tension shock in the web 4 that may result when conventional cutter claws are used to from holes in the web. In addition, the rotary hole cutting device 31 cuts the full shape of the holes in both sides of the unfolded web 4. As such folding boards are not included before the rotary hole cutting device 31 and the machine direction length of the hole forming section 30 can be minimized. Furthermore, the accuracy, consistency, and alignment of the holes formed in both sides of the web 4 is improved (relative to conventional machines) because folding or unfolding the sides of the web 4 is not required to form the holes in both sides of the web 4. Also, the sides of the web 4 are not separately unfolded in preparation for receiving the draw tape (as in some conventional machines). As such, rotary hole cutting device 31 of the present disclosure consistently and accurately form the full shape of the holes in both sides of the web 4.
In addition, the present inventors have recognized that using the rotary hole cutting device 31 of the present disclosure advantageously provides greater customization options because the cutter roller 32 can be easily removed and replaced with a different cutter roller 32 having a different die cut projection 36. As such, the holes 34 formed in the web 4 can be customized to match desired customer parameters. For example, the cutter roller 32 could include a square-shaped projection and an oblong-shaped projection. Typically, it is not possible to quickly and easily adjust the shape of the holes formed in the web when using conventional machines because the conventional cutter claws are specifically designed to cut the holes in the web based on a certain tension in the web. As such, an operator cannot substitute a conventional cutter claw without also attending to other modifications of the conventional machine such as modifying tension in the web and/or adjusting one or more rollers.
In certain examples, the rotation of the cutter roller 32 is registered to and corresponds to the conveyance speed of the web 4 along the web path. In these examples, the speed of the web 4 can be increased or decreased (e.g., for maintenance, for inspection purposes) and the cutter roller 32 will maintain accurate forming of the holes 34 in the web 4 and the spacing between adjacent holes 34 in the machine direction regardless of the speed of the web 4.
Referring now to
The present inventors have recognized that separating the sides 24, 25 into positions on either side of the horizontal plane 44 has many advantages over conventional machines. For example, some conventional machines, such as above-incorporated U.S. Pat. No. 5,857,953, disclose separating the sides of the web such that one side of the web remains parallel to the horizontal plane while the other side hangs vertically downwardly from the horizontal plane. In these examples, the weight of the side of the web hanging vertically downwardly causes additional tensile stress in this side of the web and thus the stresses acting on this side of the web are different than the stresses acting on the side of the web that is in the horizontal plane. In these examples, the conventional machine must account for the different stresses in the opposing sides of the web to properly form the hem seals. In addition, the strengths of the hems and/or hem seals formed in the opposing sides of the web may not be uniform resulting in bag/pouch imperfections and/or detrimental variations. Accordingly, the present inventors determined that separating both sides in opposite directions relative to the horizontal plane reduces the maximum tensile stresses in the sides 24, 25 and/or minimizes the differences in the stresses acting on the opposing sides 24, 25 of the web 4. As such the seals 28 can be formed in the web 4 formed without decreasing the strength of the seal 28 and thereby the overall construction of the pouches or bag (and the seals thereof) is improved. Note that in some examples, the two opposing angles 46 are advantageously equal to each other (e.g., forty-five degrees). In addition, by separating the sides of the web in opposite directions and having generally equal angles relative to a horizontal plane, the opposing sides of the web 4 are easily moved back toward each other after the seals 28 are formed in the sides 24, of the web 4.
In certain examples, the hem forming section 40 includes a plurality of rollers (not depicted) that cause the sides of the web 4 to be folded around the draw tape 41 before forming the seals 28 (see
In other examples as depicted in
Concurrent with the forming of the hems 51, 52, the hem forming section 30 is configured to continuously insert draw tapes 41 from one or more tape unwind stations 48 into each hem 51, 52. Further downstream in the machine direction (arrow A), hem sealing stations 43 are configured to form seals 28 in the web 4 to thereby prevent the hems 51, 52 from inadvertently unfolding and further preventing the draw tape 41 from inadvertently moving out of the hem 51, 52. In certain examples, two hem sealing stations 43 are positioned downstream of the deflection device 42 and are positioned next to one of the free ends 26, 27, respectively (see
After the hems 51, 52 are formed and sealed (as described above), the web 4 is conveyed further downstream where the separated sides 24, 25 are moved toward each other (as shown in
Referring specifically to
Referring now to
Referring
Still referring to
In certain examples, each roller 490 in the first set of outer rollers 491 and the corresponding roller 490 in the first set of inner rollers 493 is aligned along a first roller axis 498 that extends in the direction between the ends 486, 487 (e.g., a rightmost roller 490 in the first set of outer rollers 491 is aligned along a first roller axis 498 with a rightmost roller 490 in the first set of inner rollers 493). In the example depicted in
In certain examples, the dancer system 482 has a first dancer side 501 configured to receive the draw tape 41 and an opposite second dancer side 502. The draw tape 41 is routed in generally a first dancer direction F1 from the first dancer side 501 to the second dancer side 502 and alternately along rollers 490 of the first set of inner rollers 493 and the second set of outer rollers 492. As such, the draw tape 41 is conveyed along a first serpentine path 503 in generally the first dancer direction F1. The draw tape 41 is then routed in generally a second dancer direction F2 opposite the first dancer direction F1 from the second dancer side 502 to the second dancer side 502 and alternately along rollers 490 in the first set of outer rollers 491 and the second set of inner rollers 494. The draw tape 41 is dispensed from the first dancer side 501. As such, the draw tape 41 is conveyed along a second serpentine path 504 in generally the second dancer direction F2. Note that the second serpentine path 504 is offset from and follows the first serpentine path 504. In certain examples, the second serpentine path 504 is adjacent to and follows the first serpentine path 503. In certain examples, the second serpentine path 504 is parallel and/or equidistant from the first serpentine path 503. Accordingly, the total length of draw tape within the dancer system 482 is advantageously greater than the total length of draw tap within conventional draw tape dancers that occupy the same footprint thereby permitting the machine to convey the web at higher speeds and storing more draw tape in the dancer system 482 that can be utilized by the machine when the draw tape roll 481 needs to be replaced and/or spliced with a new roll of draw tape thereby minimizing or preventing machine downtime. The dancer system 482 of the present disclosure also advantageously occupies less space than the space needed for conventional dancers to accumulate the same length of draw tape 41. After the draw tape 41 is routed through the draw tape unwind station 48, the draw tape 41 is conveyed along rollers to be inserted into the web as described above. The present inventors recognized that the example draw tape unwind stations 48 of the present disclosure can advantageously increase the amount of accumulation of the draw tape in the dancer system thereby enabling increased speed of conveyance of the web through the machine 10.
Referring
Referring to
Referring to
In the example depicted in
The sealing section 60 includes two or more pairs of moving seal bars 64, and in this example, the sealing section 60 includes two pair of sealing bars 64 (first pair G1 and second pair G2). Each seal bar 64 moves in a continuous path (e.g., circular path) as the seal bar 64 rotates about its respective axis A1 (see arrows U depicting motion of the seal bars 64 about the axes A1), and the seal bars 64 in each pair cooperate to thereby form the side seal in the web 4 as the web 4 is conveyed through the sealing section 60. In this example, the web 4 is conveyed along a web path (e.g., serpentine path) defined by rollers 78 (see schematically depicted in dashed lines) in a vertical direction (see example vertical axis V) through two pairs of seal bars 64 (first pair G1 and second pair G2). The seal bars 64 are mounted on arms 69 that each rotate about a respective axis A1. In certain examples, the seal bars 64 are pivotally coupled to the arms 69 such that the seal bars 64 pivot and/or linearly translate with the web 4. The first pair of seal bars (G1) is vertically spaced apart from the second pair of seal bars 64. The first pair of seal bars 64 (G1) form one of the side seals 61 (see
Referring back to
The web 4 can also be optionally conveyed through a folding section 75 that is configured to fold the web 4 and the bags 62 formed therein. In one example, the bags are folded lengthwise such that the overall width of the bags is less than the width of the web 4. As such, the folded bags in web 4 are wound downstream in the winder 100 (described in greater detail herein below). In certain examples, the perforation is added with a blade such that the perforation is between two adjacent portions of the side seal. As such, the width of the unsealed “skirts” between the bags or pouches is reduced.
Referring to
Referring to
The input station 110 also includes one or more perforation detectors 113 that are configured to sense the perforations in the web 4. As noted above, the perforations between bags 62 are added to the web 4 by the perforator 71 (see
Referring back to
Referring now to
Referring now to
In certain examples, the diverter 141 pivots a degree value in the range of 100.00-30.0 degrees between the first diverter position (
A conveyor 146 (e.g., belt conveyor with servo driver rollers) extends along the first winding path 144, and the conveyor 146 is configured to convey the bags to a spindle 149. A guide assembly 157 having elastic ropes 147 encircling two rollers 148 is adjacent to the conveyor 146 and is configured to guide the bags long and/or hold the bags on the conveyor 146. The guide assembly 157 is also configured to guide the bags along the first winding path 144. The elastic ropes 147 extend along between the two rollers 148 and along the conveyor 146. A first roller 148 and the first end of the conveyor 146 define a nip through which the bags are received. As the bags approach the spindle 149, an air horn 150 causes the bags to wind around the spindle 149. In operation, the air horn 150 causes the leading end of the overlapped bags to form a nip between itself and spindle 149. After the leading end of the bags is secured to spindle 149, a predetermined length of the bag is wound about the spindle 149 before the air horn 150 is moved away from the spindle 149. Note that in certain examples, the air horn 150 is pivoted by an actuator (not depicted) about a horn axis 152. Reference is made to the above-incorporated U.S. Pat. Nos. 5,362,013 and 7,578,779 for example features and components of conventional air horns that can be included with the machine 10 of the present disclosure.
Referring to
Note that the rollers 148 about which the ropes 147 encircle and the rollers 148 that drive the conveyor 146, as depicted on
In certain examples, the air horn 150 is near the spindle 149, and the spindle 149 is rotating at web speed. The spindle 149 continues to rotate after the air horn 150 is moved away from the spindle 149, however, the rotational speed of the spindle 149 decreases as the diameter of the roll of bags wound about the spindle 149 increases. The rate at which the rotational speed of the spindle 149 (e.g., metered winding profile speed) changes as speed decreases can be preprogrammed into the memory of the control system 300 (
The winding of the bags about the spindle 149 continues until the control system 300 (
Referring back to
The winding station 140 includes diverter sensors 151 for detecting if the bags are properly diverted between the first winding path 144 and the second winding path 145. That is, the sensors 151 determined if there is a “missed transfer” of the bags between the two winding paths 144, 145. The sensors 151 sense if the bags are improperly diverted outside one of the two winding paths 144, 145 and accordingly, send corresponding signals to the control system 300 such that the operator is alerted and/or the machine 10 is shut down. Note that in certain examples, the machine 10 will continue to operate even after the sensor 151 senses a missed transfer. In these examples, each time the missed transfer is sensed, the control system 300 would pivot the diverter 141 to the opposite path 144, 145 so that the machine 10 can continue to produce rolls of bags. In certain instances, the control system 300 may reduce the speed of the web and components of the machine 10 to account for the determined winding errors.
The present inventors recognized that the example winders 100 of the present disclosure can advantageously reduce or minimize the length of the web path and/or required tension in the web in the winder 100 and/or support winding of different types of bag and/or rolls of bags including embossed bags, bags overlapped on one another, and bags connected to each other via perforations.
Referring to
Note that it is advantageous to move the roll of bags 471 out of the first spindle position 473 for banding by the bander 280 such that the winder 100 can begin winding another roll of bags 471 in the first spindle position 473 while the wound roll of bags 471 in the second spindle position 474 is banded. As such, the efficiency and/or speed of the machine 10 increases as the multiple rolls of bags 471 can be wound and then banded on the same spindle 149 and at the same time. Note that in certain examples, the rotational speed of the spindle 149 remains consistent as a first roll of bags 471 is being wound about the spindle 149 in the first spindle position 473 and a second roll of bags 471 is being banded in the second spindle position 474. Maintaining a consistent rotational speed of the spindle 149 advantageously reduces the likelihood of improperly winding the bags on the spindle 149. In certain examples, after the bander 280 bands the roll of bags 471 in the second spindle position 474 a wound roll of bags 471 in the first spindle position 473 is axially pushed by the pusher 475 toward the second spindle position 474 such that the wound roll of bags 471 pushes the banded roll of bags 471 axially out of the second spindle position 474. The banded roll of bags may then fall onto another conveyor a bin for further processing and/or packaging. In certain examples, the bander 280 includes a push off member that pushes the banded roll of bag down on chute or onto a conveyor. Reference is made to PCT Application Publication No. WO2017/161380 and U.S. Patent Application Publication No. 2009/0019817, which is incorporated by reference in its entirety, for example features and components of conventional banders that can be included with the machine 10 of the present disclosure. The present inventors recognized that the example banders 280 of the present disclosure can advantageously increase the ability of the machine 10 to control the roll of bags through banding and/or permit the banding material to be applied to the roll of the bags at the same speed as the winding the bags into the a roll of bags about the spindle.
In certain examples, the control system 300 communicates with each of the one or more components of the machine 10 via a communication link 303, which can be any wired or wireless link. The control system 300 is capable of receiving information and/or controlling one or more operational characteristics of the machine 10 and its various sub-systems by sending and receiving control signals via the communication links 303. In one example, the communication link 303 is a controller area network (CAN) bus; however, other types of links could be used. It will be recognized that the extent of connections and the communication links 303 may in fact be one or more shared connections, or links, among some or all of the components in the machine 10. Moreover, the communication link 303 lines are meant only to demonstrate that the various control elements are capable of communicating with one another, and do not represent actual wiring connections between the various elements, nor do they represent the only paths of communication between the elements. Additionally, the machine 10 may incorporate various types of communication devices and systems, and thus the illustrated communication links 303 may in fact represent various different types of wireless and/or wired data communication systems.
The control system 300 may be a computing system that includes a processing system 301, memory system 302, and input/output (I/O) system 304 for communicating with other devices, such as input devices 305 and output devices 306, either of which may also or alternatively be stored in a cloud 309. The output device 306 can include audio or visual alarms and/or a user input/output device such as a touchscreen. The processing system 301 loads and executes an executable program 307 from the memory system 302, accesses data 308 stored within the memory system 302, and directs the machine 10 to operate as described above and in further detail below.
The processing system 301 may be implemented as a single microprocessor or other circuitry, or be distributed across multiple processing devices or sub-systems that cooperate to execute the executable program 307 from the memory system 302. Non-limiting examples of the processing system include general purpose central processing units, application specific processors, and logic devices
The memory system 302 may comprise any storage media readable by the processing system 301 and capable of storing the executable program 307 and/or data 308. The memory system 302 may be implemented as a single storage device, or be distributed across multiple storage devices or sub-systems that cooperate to store computer readable instructions, data structures, program modules, or other data. The memory system 302 may include volatile and/or non-volatile systems, and may include removable and/or non-removable media implemented in any method or technology for storage of information. The storage media may include non-transitory and/or transitory storage media, including random access memory, read only memory, magnetic discs, optical discs, flash memory, virtual memory, and non-virtual memory, magnetic storage devices, or any other medium which can be used to store information and be accessed by an instruction execution system, for example.
Note that the example process flow methods described below can combined with other methods and certain methods steps for each method described below can be inserted into any other method. For instance, methods steps described in one process flow method may be freely added to other process flow methods.
The example process flow method 400 depicted in
In certain examples, a winder for winding bags into rolls includes an input station configured to receive the bags. A first conveyor is configured to convey the bags along a first winding path to a first spindle such that the bags conveyed along the first winding path are wound around the first spindle into a first roll of bags. A second conveyor is configured to convey the bags along a second winding path to a second spindle such that the bags conveyed along the second winding path are wound around the second spindle into a roll of bags. A diverter is configured to selectively divert the bags along the first winding path or the second winding path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the bags received into the input station are formed from a web of material, and the input station comprises a tension sensor configured to sense tension of the web and a plurality of rollers is configured to adjust tension in the web based on the tension sensed by the tension sensor. Optionally, an overlap station is configured to overlap the bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, the diverter has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to the first winding path or the second winding path. Optionally, an actuator pivots the diverter into and between a first diverter position in which the diverter directs the bags along the first winding path and a second diverter position in which the diverter directs the bags along the second winding path. Optionally, the diverter pivots to a value in a range of 60.0-80.0 degrees between the first diverter position and the second diverter position. Optionally, a first guide assembly is configured to guide the bags along the first winding path and a second guide assembly is configured to guide the bags along the second winding path. Optionally, a first guide assembly is configured to guide the bags along the first winding path, and the first guide assembly has a pair of rollers and a plurality of ropes that encircle the rollers such that the ropes are recessed in the pair of rollers. Optionally, an air system is configured to pull a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls the leading bag onto the first spindle. Optionally, an air system is configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, a flap is configured to bias the bags wound around the first spindle radially toward the first spindle.
In certain examples, a machine for processing a web of material into bags includes an input section configured to receive a roll of the web of material. A sealing section is configured to form seals in the web of material to thereby at least partially form the bags from the web of material. A winder is configured to wind the bags into rolls of bags. The winder comprises an input station configured to receive the bags from the sealing section, a first conveyor configured to convey the bags along a first winding path to a first spindle such that the bags conveyed along the first winding path are wound around the first spindle into a first roll of bags, a second conveyor configured to convey the bags along a second winding path to a second spindle such that the bags conveyed along the second winding path are wound around the second spindle into a roll of bags, and a diverter configured to selectively divert the bags along the first winding path or the second winding path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the bags received into the input section are formed from a web of material, and the input station comprises a load sensor configured to sense tension of the web and a plurality of rollers configured to adjust tension in the web based on the tension sensed by the load sensor. Optionally, the winder further comprises an overlap station configured to overlap the bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, the winder has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to the first winding path or the second winding path. Optionally, the winder further comprises an actuator that pivots the diverter into and between a first diverter position in which the diverter directs the bags along the first winding path and a second diverter position in which the diverter directs the bags along the second winding path. Optionally, the diverter pivots a value in a range of 60.0-80.0 degrees the first diverter position and the second diverter position. Optionally, the winder further comprises a first guide assembly configured to guide the bags along the first winding path and a second guide assembly configured to guide the bags along the second winding path. Optionally, the winder further comprises a first guide assembly configured to guide the bags along the first winding path, the first guide assembly having a pair of rollers and a plurality of ropes that encircle the rollers such that the ropes are recessed in the pair of rollers. Optionally, the winder further comprises an air system configured to pull a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and couples the leading bag onto the first spindle. Optionally, the winder further comprises an air system configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, a flap is configured to bias the bags wound around the first spindle radially toward the first spindle. Optionally, a control system controls the diverter to pivot the diverter from the first diverter position to the second diverter position or from the second diverter position to the first diverter position after a predetermined length of bags passes through the diverter.
In certain examples, a winder for winding bags into rolls includes an input station configured to receive the bags and a conveyor configured to convey the bags along one or more winding paths such that the bags conveyed along each winding path are wound around a spindle into a roll of bags. A diverter is configured to selectively divert the bags along one of the winding paths. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the diverter has a pair of diverter rollers that define a diverter nip through which the bags are conveyed to one or more of the winding paths. Optionally, an actuator pivots the diverter into and between a diverter position in which the diverter directs the bags along a first winding path and a second diverter position in which the diverter directs the bags along a second winding path. Optionally, the diverter pivots to a value in a range of 60.0-80.0 degrees between the first diverter position and the second diverter position. Optionally, an air system is configured to pull a leading end of a leading bag in the bags conveyed along a winding path onto the spindle associated with the winding path. Optionally, the spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the spindle. Optionally, an air system is configured to push the roll of bags radially away from the spindle. Optionally, the spindle has a plurality of holes through which the air exhausts. Optionally, a flap is configured to bias the bags wound around the spindle radially toward the spindle.
In certain examples, a method for processing bags created from a web of material into rolls of bags includes receiving the bags into a winder, diverting, with a diverter, the bags along a first winding path, winding the bags diverted along the first winding path around a first spindle to thereby form a first roll of bags, pivoting the diverter to thereby divert the bags along a second winding path, and winding the bags diverted along the second winding path around a second spindle to thereby form a second roll of bags. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, separating the bags and overlapping the separated bags such that a plurality of overlapped bags are conveyed along the first winding path and the second winding path. Optionally, pulling, with an air system, a leading end of a leading bag in the bags conveyed along the first winding path onto the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls the leading bag onto the first spindle. Optionally, an air system is configured to push the roll of bags radially away from the first spindle. Optionally, the first spindle has a plurality of holes such that the air system creates a vacuum that pulls air through the plurality of holes and pulls a leading bag onto the first spindle. Optionally, biasing, with a flap, the bags wound around the first spindle radially inwardly toward the first spindle. Optionally, sensing, with a home sensor, position of the diverter, moving an air horn away from the first spindle after a predetermined length of bags is wound into a first roll of bags onto the first spindle, pivoting the diverter from a first diverter position in which the diverter diverts the bags along the first winding path to a second diverter position in which the diverter diverts the bags along the second winding path, pushing the first roll of bags off the first spindle, pivoting the diverter from the second diverter position to the first diverter position, and pushing the second roll of bags off the second spindle.
In certain examples a machine for processing a web of material into bags comprises a winder with an input station configured to receive the bags and wind the bags about a spindle to form a roll of bags. The winder conveys the bags in a machine direction to the spindle. A bander is configured to band each roll of bags, and the bander is offset from the winder along a cross-machine direction extending transverse to the machine direction. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the spindle extends in the cross-machine direction, and the winder is configured to move the roll of bags in the cross-machine direction along the spindle from a first spindle position in which the winder winds the bags into a roll of bags to a second spindle position in which the bander bands the roll of bags. Optionally, the spindle is rotatable at a first spindle speed while the bags are in the first spindle position and the second spindle position. Optionally, the spindle is a first spindle and the winder has a second spindle about which bags are wound into a roll of bags and the bander has a first banding device for applying banding material to the roll of bags wound around the first spindle and a second banding device for applying banding material to the roll of bags wound around the second spindle, the second banding device is positioned vertically below the first banding device. Optionally, the spindle is a first spindle about which a first roll of bags is wound and the winder comprises a second spindle about which a second roll of bags is wound and the bander has a first banding device for applying banding material to the first roll of bags and a second banding device for applying banding material to the second roll of bags. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a machine for processing a web of material into bags comprises an input section configured to receive a roll of the web of material, a sealing section configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and a winder is configured to wind the bags into rolls of bags. The winder comprises at least one spindle, and the winder conveys the bags in a machine direction to the spindle. A bander is configured to band each roll of bags, and the bander is offset from the winder in a cross-machine direction that extends transverse to the machine direction. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the spindle extends in the cross-machine direction, and the winder is configured to move the roll of bags in the cross-machine direction along the spindle from a first spindle position in which the winder winds the bags into the roll of bags to a second spindle position in which the bander bands the roll of bags. Optionally, the spindle is rotatable at a first spindle speed while the bags are in the first spindle position and the second spindle position. Optionally, the winder comprises a first spindle about which the bags are wound into a roll of bags and a second spindle about which the bags are wound into a roll of bags, and the bander has a first banding device for applying banding material to the roll of bags wound around the first spindle and a second banding device for applying banding material to the roll of bags wound around the second spindle, the second banding device is positioned vertically below the first banding device. Optionally, the winder has a first spindle about which a first roll of bags in wound and a second spindle about which a second roll of bags and the bander has a first banding device for applying banding material to the first roll of bags and a second banding device for applying banding material to the second roll of bags. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a method for processing bags formed from a web of material comprises receiving the bags into a winder, conveying the bags in a machine direction to a spindle, winding the bags about the spindle to form a roll of bags, moving the roll of bags in a cross-machine direction along the spindle, the cross-machine direction is transverse to the machine direction, and banding the roll of bags with banding material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the spindle is a first spindle and the conveying the bags comprises conveying the bags to a first spindle or a second spindle, the winding the bags comprises winding the bags about the first spindle to form a first roll of bags and winding the bags about a second spindle to form a second roll of bags, the moving the roll of bags comprises moving the first roll of bags in the cross-machine direction and moving the second roll of bags in the cross-machine direction, and the banding the roll of bags comprises a banding the first roll of bags with banding material and banding the second roll of bags with banding material. Optionally, receiving, into an input section, a roll of the web of material, and forming seals, with a sealing section, in the web of material to thereby at least partially form the bags in the web of material, the input section and the sealing section are aligned in the machine direction. Optionally, diverting, with a diverter, the bags along a first winding path, winding the bags diverted along the first winding path around a first spindle to thereby form a first roll of bags, pivoting the diverter to thereby divert the bags along a second winding path, and winding the bags diverted along the second winding path around a second spindle to thereby form a second roll of bags. Optionally, the winder includes a spindle about which the roll of bags is wound, and the winder is configured to move the roll of bags in a cross-machine direction along the spindle such that the bander bands the roll of bags. Optionally, the spindle extends in the cross-machine direction and the winding the bags includes winding the bags in a first spindle position, and moving the roll of bags in the cross-machine direction from the first spindle position to a second spindle position and wherein the banding the roll of bags comprising banding the roll of bags in the second spindle position. Optionally, the banding the roll of bags comprises banding the roll of bags with a first banding device that applies banding material and banding another roll of bags with a second banding device that applies banding material, the second banding device is positioned vertically below the first banding device. Optionally, the spindle is a first spindle, and the winding the bags comprises winding the bags about the first spindle to form a first roll of bags and winding the bags about a second spindle to form a second roll of bags, and the banding the roll of bags comprises banding, with a first banding device, the first roll of bags in banding material and banding, with a second banding device, the second roll of bags in banding material. Optionally, the second banding device is positioned vertically below the first banding device.
In certain examples, a machine for processing a web of material into bags comprises an input section configured to receive a roll of the web of material, the input section comprising a pair of arms that are configured to engage the roll of the web of material and define an unwind axis and an unwind device configured to engage an outer perimetral surface of the roll of the web of material and rotate the roll of the web of material about the unwind axis such that the web of material is unwound. The pair of arms permits the roll of the web of material to axially shift as the unwind device rotates the roll of the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material and a winder is configured to wind the bags into rolls of bags. Optionally, the arms are configured to vertically lift the roll of the web of material. Optionally, the arms are axially movable away from each other such that the roll of the web of material is positioned between the arms and further axially movable toward each other to thereby engage with the roll of the web of material. Optionally, each arm has an axially extending projection that is inserted into the roll of the web of material. Optionally, the unwind device has a drive roller that engages the outer perimetral surface of the roll of the web of material to thereby rotate the roll of the web of material and a leg that secures the drive roller to a frame, the leg is pivotally coupled to the frame such that the leg and the drive roller pivot relative to the frame as diameter of the roll of the web of material decreases such that the drive roller maintains engagement with the roll of the web of material.
In certain examples, a method of processing a web of material to form bags comprises engaging a roll of the web of material with a pair arms that define an unwind axis, unwinding the web of material from the roll of the web of material with an unwind device that engages an outer perimetral surface of the roll of the web of material and rotates the roll of the web of material about the unwind axis, and permitting axially shifting of the roll of the web of material being engaged by the pair of arms so as to permit position adjustment of the web of material to thereby reduce undesirable weave or tension inconsistencies in the web. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, conveying the web of material downstream from an input section in which the web is unwound from the roll of the web, forming one or more seals in the web of material as the web of material is conveyed through a sealing section such that the bags are at least partially formed from the web of material, and/or winding the bags into a roll of bags with a winder. Optionally, lifting, with the arms, the roll of the web of material. Optionally, axially moving the arms away from each other such that the roll of the web of material is positioned between the arms and further axially moving the arms toward each other to thereby engage with the roll of the web of material. Optionally, inserting an axially extending projection of each arm into the roll of the web of material. Optionally, rotating, with a drive roller, the roll of the web of material to thereby unwind the web, wherein the drive roller engages the outer perimetral surface of the roll of the web of material to thereby rotate the roll of web of material, and pivoting, an arm coupled to the drive roller, such that the drive roller pivots and thereby follows the outer perimetral surface of the roll of material as diameter of the roll of the web of material decreases such that the drive roller maintains engagement with the roll of the web.
In certain examples, a machine for processing a web of material into bags comprises a hem forming section configured to form a hem in the web of material. The hem forming section comprises a plurality of rollers configured to convey the web of material between a first hem forming end and second hem forming end and a deflection device positioned between the first hem forming end and the second hem forming end and being configured to deflect the web of material away from a first web plane along which the web of material conveys between the first hem forming end and the deflection device to thereby increase speed of the web of material and tension in the web of material conveying such that the web of material folds and thereby forms the hem in the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, after the web of material conveys past the deflection device at least at portion of the web of material folds onto another portion of the web of material to thereby form the hem. Optionally, the deflection device has a deflection surface that engages the web of material. Optionally, the deflection surface extends transverse to the first web plane. Optionally, the deflection surface and the first web plane defines a deflection angle therebetween in a range of 20.0-70.0 degrees. Optionally, the deflection device is configured to separate the web of material into a first web side and a second web side, and the deflection device deflects the first web side and the second web side away from the first web plane such that hems are formed in both the first web side and the second web side. Optionally, the web of material has an edge that extends along a web edge axis, and wherein the deflection device is radially offset from the web edge axis. Optionally, the hem forming section includes a guide member configured to guide an edge of the web of material as the web of material folds and forms the hem. Optionally, the guide member is positioned downstream of the deflection device. Optionally, an input section is configured to receive a roll of the web of material, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and/or a winder is configured to wind the bags into rolls of bags.
In certain examples, a machine for processing a web of material into bags includes a hem forming section configured to form a hem in the web of material. The hem forming section comprising a plurality of rollers configured to convey the web of material along a first web plane and a deflection device configured to deflect the web of material away from the first web plane to thereby increase speed of the web of material and tension in the web of material such that the web of material folds and thereby forms the hem in the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the web of material moves back into the first web plane after the deflection device deflects the web of material. Optionally, the deflection device has a deflection surface that engages the web of material. Optionally, the deflection surface extends transverse to the first web plane. Optionally, the deflection device is configured to separate the web of material into a first web side and a second web side, and the deflection device deflects the first web side and the second web side away from the first web plane such that hems are formed in both the first web side and the second web side. Optionally, the web of material has an edge that extends along a web edge axis, and the deflection device is radially offset from the web edge axis. Optionally, the hem forming section includes a guide member configured to guide an edge of the web of material as the web of material folds and forms the hem. Optionally, an input section is configured to receive a roll of the web of material, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags in the web of material, and a winder is configured to wind the bags into rolls of bags.
In certain examples, a method of processing a web of material from which bags are formed comprises, conveying the web of material along a first web plane and deflecting the web of material, with a deflection device, away from the first web plane to thereby increase speed of the web of material and tension in the web of material such that the web of material folds and thereby forms a hem. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, conveying the web downstream from an input section in which the web is unwound from a roll of the web of material, forming one or more seals in the web as the web is conveyed through a sealing section such that the bags are at least partially formed in the web of material; and/or winding the bags into a roll of bags with a winder. Optionally, conveying the web of material into the first web plane after the deflection device deflects the web of material. Optionally, separating, with the deflection device, a first web side and a second web side and deflecting the first web side and the second web side away from the first web plane to thereby increase speed of the first web side and the second web side and tension in the first web side and the second web side such that the first web side and the second web side each automatically fold to thereby form hems. Optionally, the web of material has an edge that extends along a web edge axis and the deflection device is radially offset from the web edge axis. Optionally, guiding, with a guide member, an edge of the web of material as the web of material folds and forms a hem.
In certain examples, a draw tape unwind station for unwinding draw tape for bags formed from a web of material comprises a dancer system configured to receive the draw tape and further dispense the draw tape, the dancer system comprises: a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other, a first set of outer rollers coupled to the first frame end, a second set of outer rollers coupled to the second frame end, a first set of inner rollers coupled to the first frame end, and a second set of inner rollers coupled to the second frame end. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the first set of inner rollers and the second set of outer rollers are configured to guide the draw tape through the dancer system before the first set of outer rollers and the second set of inner rollers to guide the draw tape. Optionally, one or more drive rollers are configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis, and the first roller axes are parallel and offset from the second roller axes. Optionally, the dancer system comprises a first dancer side and a second dancer side such that the first dancer side is configured to receive the draw trap and dispense the draw tape. Optionally, the dancer system is configured to route the draw tape in a first dancer direction and subsequently in a second dancer direction opposite the first dancer direction.
In certain examples, a draw tape unwind station for unwinding draw tape for bags formed from a web of material comprising a dancer system having a first dancer side configured to receive and dispense the draw tape and an opposite second dancer side. The dancer system is configured to route the draw tape in a first dancer direction from the first dancer side to the second dancer side along a first serpentine path and subsequently in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the second serpentine path follows the first serpentine path. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the dancer system further comprises a first set of outer rollers, a second set of outer rollers spaced apart from the first set of outer rollers, a first set of inner rollers, and/or a second set of inner rollers spaced apart from the first set of inner rollers. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the dancer system is configured to route the draw tape in the first dancer direction alternately along rollers of the first set of inner rollers and rollers of the second set of outer rollers and subsequently route the draw tape in the second dancer direction alternately along rollers of the first set of outer rollers and rollers of the second set of inner rollers. Optionally, the dancer system comprises a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other. The first set of outer rollers and the first set of inner rollers are coupled to first frame end and move therewith, and the second set of outer rollers and the second set of inner rollers are coupled to second frame end and move therewith. Optionally, one or more drive rollers are configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis, and the first roller axes are parallel and offset from the second roller axes.
In certain examples, a machine for processing a web of material into bags comprises a draw tape unwind station configured to unwind draw tape for insertion in the bags, the draw tape unwind station comprising a dancer system having a first dancer side configured to receive and dispense the draw tape and an opposite second dancer side and the dancer system being configured to route the draw tape in a first dancer direction from the first dancer side to the second dancer side along a first serpentine path and subsequently in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, a hem forming station is configured to form a hem of the bags in which the draw tape is inserted, a sealing section is configured to form seals in the web of material to thereby at least partially form the bags from the web of material, and/or a winder is configured to wind the bags into rolls of bags. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the dancer system further comprises a first set of outer rollers, a second set of outer rollers spaced apart from the first set of outer rollers, a first set of inner rollers, and/or a second set of inner rollers spaced apart from the first set of inner rollers. The first set of inner rollers and the second set of inner rollers are positioned between the first set of outer rollers and the second set of outer rollers, and the dancer system is configured to route the draw tape in the first dancer direction alternately along rollers of the first set of inner rollers and rollers of the second set of outer rollers and subsequently route the draw tape in the second dancer direction alternately along rollers of the first set of outer rollers and rollers of the second set of inner rollers. Optionally, the dancer system further comprises a frame having a first frame end and an opposite second frame end, the first frame end and the second frame end being movable relative to each other, and the first set of outer rollers and the first set of inner rollers are coupled to first frame end and move therewith and the second set of outer rollers and the second set of inner rollers are coupled to second frame end and move therewith. Optionally, one or more drive rollers is configured to convey the draw tape through the dancer system. Optionally, the first frame end and the opposite second frame end selectively translate toward each other. Optionally, each roller in the first set of outer rollers is aligned with a corresponding roller in the first set of inner rollers along a first roller axis, each roller in the second set of outer rollers is aligned with a corresponding roller in the second set of inner rollers along a second roller axis and the first roller axes are parallel and offset from the second roller axes.
In certain examples, a method of unwinding draw tape for bags formed from a web of material comprises receiving the draw tape into a first dancer side of a dancer system, routing the draw tape in a first dancer direction from the first dancer side to an opposite second dancer side and along a first serpentine path, and further routing the draw tape in an opposite second dancer direction from the second dancer side to the first dancer side along a second serpentine path. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the second serpentine path is parallel with the first serpentine path. Optionally, the second serpentine path is offset and equidistant from the first serpentine path. Optionally, the dancer system further comprises routing the draw tape in the first dancer direction alternately along rollers of a first set of inner rollers and rollers of a second set of outer rollers and/or routing the draw tape in the second dancer direction alternately along rollers of a first set of outer rollers and rollers of a second set of inner rollers. Optionally, the first set of outer rollers and the first set of inner rollers are coupled to a first frame end and move therewith and wherein the second set of outer rollers and the second set of inner rollers are coupled to a second frame end and move therewith, and further comprising translating the first frame end and the second frame end away from each other to thereby permits accumulation of draw tape in the dancer system. Optionally, translating the first frame end and the second frame toward each other to thereby account for decreases in the amount of draw tape in the dancer system. Optionally, controlling with a control system, one or more actuators to move the first frame end and the second frame end relative to each other.
In certain examples, a method of forming seals in a web of material to thereby at least partially form bags from the web of material includes conveying the web of material to a first pair of seal bars, forming a seal in the web of material by moving the first pair of seal bars into cooperation with each other and the web, conveying the web of material vertically to a second pair of seal bars, and forming another seal in the web of material by moving the second pair of seal bars into cooperation with each other and the web of material. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the first pair of seal bars is vertically spaced apart from the second pair of seal bars. Optionally, moving the first pair of seal bars comprises moving the first pair of seal bars with the web of material. Optionally, moving the second pair of seal bars comprises moving the second pair of seal bars with the web of material. Optionally, the first pair of seal bars linearly and/or the second pair of seal bars translate with the web of material. Optionally, the first pair of seal bars and the second pair of seal bars form alternating spaced apart seals in the web of material. Optionally, dispensing the web of material with a plurality of seals formed therein such that each seal in the plurality of seals spaced apart from each other, and the first pair of seal bars forms every other seal in the plurality of seals. Optionally, the seals formed in the web of material extending a cross-machine direction.
In certain examples, a machine for processing a web of material into bags includes a sealing section configured to form seals in the web of material to thereby at least partially form the bags from the web of material, the sealing station comprises a first pair of seal bars that are movable into cooperation with each other and the web of material to thereby form a seal in the web of material and a second pair of seal bars that are movable into cooperation with each other and the web of material to thereby form another seal in the web of material. The first pair of seal bars is vertically spaced apart from the second pair of seal bars and the web of material is vertically conveyed between the first pair of seal bars and the second pair of seal bar. Any aspects, and any combination thereof, of these examples may further include one or more of the following optional features. Optionally, the sealing station further comprising a plurality of rollers configured to convey the web of material vertically between the first pair of seal bars and the second pair of seal bars. Optionally, a hem forming station is configured to form a hem of the bags in which draw tape is inserted and/or a winder is configured to wind the bags into rolls of bags. Optionally, the first pair of seal bars is vertically spaced apart from the second pair of seal bars. Optionally, the first pair of seal bars and the second pair of seal bars is directly vertically spaced apart from each other. Optionally, the first pair of seal bars are configured to move with the web of material as the seal is formed in the web of material. Optionally, the second pair of seal bars are configured to move with the web of material as the seal is formed in the web of material. Optionally, the first pair of seal bars linearly translates with the web of material. Optionally, the second pair of seal bars linearly translates with the web of material. Optionally, the first pair of seal bars and the second pair of seal bars form alternating spaced apart seals in the web of material. Optionally, the sealing section is configured to dispense the web of material with a plurality of seals formed therein such that each seal in the plurality of seals spaced apart from each other, and the first pair of seal bars forms every other seal in the plurality of seals. Optionally, the seal formed in the web of material by the first pair of seal bars and the second pair of seal bars extend a cross-machine direction.
Citations to a number of references are made herein. The cited references are incorporated by reference herein in their entireties. In the event that there is an inconsistency between a definition of a term in the specification as compared to a definition of the term in a cited reference, the term should be interpreted based on the definition in the specification.
In the present description, certain terms have been used for brevity, clarity, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different apparatuses, systems, and method steps described herein may be used alone or in combination with other apparatuses, systems, and methods. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
The functional block diagrams, operational sequences, and flow diagrams provided in the Figures are representative of exemplary architectures, environments, and methodologies for performing novel aspects of the disclosure. While, for purposes of simplicity of explanation, the methodologies included herein may be in the form of a functional diagram, operational sequence, or flow diagram, and may be described as a series of acts, it is to be understood and appreciated that the methodologies are not limited by the order of acts, as some acts may, in accordance therewith, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology can alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all acts illustrated in a methodology may be required for a novel implementation.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a continuation of U.S. application Ser. No. 18/199,482, filed May 19, 2023, which claims priority to U.S. Provisional Patent Application No. 63/344,135 filed May 20, 2022, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63344135 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18199482 | May 2023 | US |
Child | 18463520 | US |