This application is based upon European Patent Application No. 05013246.3, filed on Jun. 20, 2005, the disclosure of which is hereby incorporated by reference thereto in its entirety and the priority of which is hereby claimed under 35 USC §119.
1. Field of the Invention
The invention relates to bags or packs and, more particularly, to backpacks.
2. Description of Background and Relevant Information
Backpacks typically comprise a pack portion, usually made of relatively flexible (i.e., non-rigid) materials such as panels of textile fabrics, which forms a compartment adapted to receive a load to be carried. The pack portion comprises a back side which is positioned opposite the back of the user when it is worn. The backpack also has a carrying system which can comprise a pair of shoulder straps and possibly a hip-belt.
Being made of flexible materials, a loaded backpack tends to deform due to the volume and/or the weight of the load inside the pack. In particular, the back side can deform, which is most uncomfortable to the user.
In order to prevent such unwanted deformation, at least partly, it is known to provide the backpack with a stiffening frame along its back side. Such frames may be of different kinds. Some packs are equipped with one or more rigid rods (or stays) which are inserted in gussets attached to the back side. These rods are usually made of metal, plastic, or composite material, and they run substantially vertically along the back side. Other packs have a frame made of a sheet of semi-rigid or rigid material which is inserted in a gusset pocket of corresponding shape attached to the back side (usually on the inner side of the back side). Such sheet frame can be made of various materials, including plastic, composite materials, or rigid or semi-rigid foams. In the latter case, it can be provided that the sheet frame of semi-rigid foam is made of a folded sheet which is removably inserted in the gusset pocket and which can be removed to be used as a sleeping mattress for outdoor sports enthusiasts.
A sheet frame can also be reinforced by removable or non-removable rigid rods, and it can also be complemented by a layer of soft foam to provide additional carrying comfort for the user.
In most backpacks having a hip-belt, the carrying system is made to shift at least part of the weight of the load off the shoulder straps, down to the hip-belt, in order that at least part of the weight of the load is carried by the hips of the user rather than having his/her shoulders and back carry all the load. The stiffening frame participates in that load transfer by making a link between the shoulder strap attachment portions of the pack portion and its hip-belt attachment portions.
Nevertheless, conventional backpacks having a stiffening frame share in common that the frame is not an integral part of the pack and that this introduces undesirable movements and deformations between the frame and the relatively flexible material of the back side.
U.S. Pat. No. 4,750,654 discloses a backpack in which the flexible pack portion has no back side, the back side being made of layered structure comprising two layers of cellular synthetic resins (i.e., foams) over-molded on a fabric layer. The flexible pack portion is sewn onto the outer periphery of the back side structure.
Another problem with prior art backpacks is that most of them are not waterproof, not even water resistant. Waterproof bags are known in the art, such bags typically made of PVC-coated materials. Such waterproof bags are made by assembling panels by welding.
Welding is here opposed to gluing. Gluing requires the provision of an adhesive material between the two pieces to be assembled, whereas welding means that the surface of at least one of the pieces to be assembled (but preferably both) is melted to adhesively bond the two pieces. Both welding and gluing result in an adhesive bonding of the two pieces.
Welding operations are quite complicated as they require the use of complicated tools to press and heat the panels to be assembled along the necessary junction line. Such tools are even more complicated when it comes to welding along a non-straight line, and even worse when the junction line is three dimensional. On such PVC-coated bags, various handles and straps may be connected to the exterior surface of the bag. The technique used up to now has been to provide anchoring pads of plastic material, on which the handle or the strap is affixed, for example by sewing, and to weld the pads to the outer surface of the material.
Unfortunately, in some cases, the welding operation only permits welding along the periphery of the pad, not along its entire contacting surface. This is due to the presence of the strap or handle which is affixed to the pad, usually in the center of the pads, and which therefore makes it difficult to bring enough heat and pressure to the center of the pad to achieve welding.
Moreover, those bags have the undesirable feature of requiring PVC-coated or urethane-coated materials when it is now known that extensive use of PVC is undesirable in view of environmental issues. At least for this reason, urethane-coated waterproof bags are known in the prior art.
Therefore, it is an object of the invention to provide a pack using improved construction techniques to achieve yet unseen performance.
According to one aspect of the invention, a backpack is provided that includes:
According to another aspect of the invention, a backpack is provided having:
According to another aspect of the invention, a backpack is provided that includes:
According to another aspect of the invention, a backpack is provided having:
According to another aspect of the invention, it is provided that the sheet frame is adhesively bonded to an inner surface of the back side of the pack portion, or to its outer surface. In the latter case, the carrying system can be indirectly connected to pack portion via the sheet frame.
According to other aspects of the invention, a backpack may be provided wherein:
Other aspects of the invention will be set forth in the following detailed specification which refers to the appended drawings in which:
a is a view like that of
This backpack 10 has a pack portion 12 substantially entirely made of a flexible material, such as a woven textile fabric. In a preferred embodiment, this fabric is coated and/or laminated with at least one water-repellent, water-resistant, and/or water-proof material.
The pack portion basically exhibits a front side 14, a bottom side 16, two lateral sides 18 and a back side 20 which, when the backpack 10 is worn by a user, faces the back of the user.
The pack portion demarcates at least one inner compartment 22 of the pack which can accommodate a load to be carried. The inner compartment could have internal subdivisions, and the pack portion could also have outside pockets. The over-all shape of the pack portion 12 is designed both to provide a practical shape of the inner compartment 22, adapted to receive the objects which will constitute the load to be carried, and also to provide a bag which, when loaded, is comfortable for the user to carry. Although such shape will usually be substantially parallelepipedic, the exact shape will be far more complex. Such shape of the pack portion will be achieved through the tailoring of various panels of material having each a specific contour and assembled along well-defined junction lines. Such assembly can be performed by any known technique and especially by sewing. Preferably, in cases in which the pack portion material is water-resistant or waterproof, the assembly technique will be matched, for example by using taped seams which offer very good resistance to ingression of water.
In the embodiment shown in the figures, the pack portion has a top opening, which means that the main access to the internal compartment will be through its top opening. Indeed, as shown in
The backpack shown in the figures has a carrying system on its back side.
In the embodiment shown, the carrying system first comprises a pair of shoulder straps 26 which are both attached to the pack portion at both ends. Each shoulder strap 26 is made of two strap parts: an upper strap part 28 which is attached by its upper end 28a to a corresponding attachment portion on the back side 20 of the pack portion 12, and a lower strap part 30 whose lower end 30a is attached to a corresponding attachment portion of the pack portion. The lower strap part 30 can be attached to the back side 20 of the pack portion (as in the example shown), but it can also be attached to other sides of the pack portion, for example either the lateral sides 18, the bottom side 16, or even the front side 14. The two strap parts 28, 30 are connected one to another through a buckle 32 which permits the effective length of the shoulder strap 26 to be adjusted. In the example shown, each shoulder strap 26 is equipped with an adjustable load stabilizing strap 34 whose lower end is attached on the shoulder strap 26 and whose upper end is attached to the back side 20 of the pack at a location above the upper strap attachment portion. By varying the length of such stabilizing strap 34, the user can move the load closer to or farther from his back.
Especially for bags over 20 or 30 liters in capacity, the carrying system may also comprise a hip-belt 36 located in a lumbar portion 35 of the back side of the pack. As shown in
A carrying system described above is the most efficient and comfortable for carrying large loads. But, for bags intended to carry lighter loads, a backpack made according to the invention can be envisioned having a simplified carrying system. Such system can have only the two shoulder straps, or it can even have one single shoulder strap, ideally then positioned diagonally across the back side of the bag. The invention can also be carried out on a lumbar pack, which is a kind of small backpack having only a hip-strap or hip-belt as a carrying system, and which a user carries on the lumbar part of his back.
As numerous backpacks of the prior art, the backpack according to the invention has a frame 42 which is connected to the pack portion. According to the invention, this frame comprises at least a rigid or semi-rigid sheet which is affixed to the back side of the pack portion by adhesive bonding.
It is a sheet frame in the sense that it has one dimension (its thickness) which is notably inferior to its two other dimensions (height and width), making it possible to define a main general plane of the frame (although the frame will most preferably be not perfectly planar, but slightly curved to follow at least partially the natural shape of the back of the user to enhance its ergonomics).
The frame is also rigid or semi-rigid, at least in comparison with the flexibility of the fabric from which the back side of the pack portion is made. The rigid or semi-rigid characteristic of the frame will also be assessed by the fact that it will be able to withstand substantial compressive forces directed along its main general plane without any important deformation, contrary to a flexible fabric for instance. On the other hand, despite its rigid or semi-rigid characteristic, the frame may be bendable. Such rigidity of the sheet frame can come from the rigidity of one specific component (e.g., a plastic sheet). But it can also come from the stacking of several components which are individually flexible but, when considered after assembly, show the required rigidity.
In the embodiment shown in the drawing, the frame 42 is a substantially rectangular in shape and extends along almost the entire surface of the back side 20 of the pack. In other words, with respect to the exemplary illustrated embodiment, the frame 42 has an outer surface area that is less than an outer surface area of the back side 20 of the pack. Such provision allows for the maximum performance of the frame, but one could also provide for a frame having smaller dimensions and/or different shapes. Indeed, the frame could cover only the upper part of the back side 20, or it could have a top part wider than a bottom part. It could also be substantially V-shaped or Y-shaped. It could also have one or several apertures in regions where no rigidification is needed. It could have the shape of an inverted A.
According to one aspect of the invention, the frame is connected to the back side 20 of the pack. Depending on the nature of the frame and on the nature of the flexible material of the back side, different adhesive bonding techniques can be used. If the materials are compatible, one can envision that the frame is affixed to the back side by welding, for example ultrasonic or radio-frequency welding.
In most cases the adhesive bonding will be achieved through the use of an adhesive material such as glues or glue-containing compounds. Many types of glues can be used, such as, for example, polyurethane based glues. Those glues can be in the form of self-standing films or in liquid form. They can be thermo-activated glues, e.g., hot-melt glues.
An exemplary embodiment of this innovative frame 42 is shown at
The frame 42 has a first main component comprising a structural sheet 46. It can be made of any semi-rigid or rigid material, such as plastics, composite materials, metal, etc. . . . It will preferably have the appropriate thickness to exhibit enough strength without excessive weight. Preferably, this structural sheet will be conformed to the shape on the back of a user, either by thermoforming or by appropriately shaping a reinforcing stay, if used to reinforce the frame 42 (such as stay(s) 52, mentioned below). Its shape may be modified (e.g., by thermoforming or by reshaping the stay(s)) to be better adapted to a specific user.
The frame also has a sheet of foam 48 which is to be sandwiched between the structural sheet 46 and the back side 20. The sheet of foam will advantageously be made of an elastic foam, which will provide extra carrying comfort to the bag and abrasion-resistance around the perimeter of the structural sheet. Nevertheless, rigid or semi-rigid foams may also be used. Preferably, the structural sheet 46 and the foam sheet 48 are joined one to another, along their entire contacting surface or desirably at least along a substantial portion thereof, by adhesive bonding. As shown in
In the example shown, the frame 42 is reinforced by one or several rigid stays 52 (or rods, only one depicted in
According to the invention, the frame 42 (here comprising the structural sheet 46, the foam sheet 48 and one or several stays 52) is attached to inner surface 44 of the back side by adhesive bonding. In the example shown, the adhesion is obtained using a holt-melt film adhesive 58, or using a gluing compound as described above. Of course, other types of adhesives can be used.
The frame 42 could also be constructed as a sandwich structure having a spacing layer (for example made of foam) between two structural sheets (of the same material or of different materials).
Preferably, the frame 42 will be adhered to the back side 20 along an adhesion zone covering their entire contacting surface, or at least a substantial portion of the contacting surface. In the latter case, the adhesion zone will preferably be continuous. It may for example show a regular pattern of patches without any adhesive bonding (for example to save some weight of the gluing compound). Most importantly, the adhesion zone will preferably cover the parts of the back side where elements of the carrying system are anchored. In other words, the adhesion zone will at least correspond to the various attachment portions for the carrying system. Most preferably, at least at its locations corresponding to those attaching portion portions, the frame will be substantially flat so as to achieve a continuous and integral contact leaving no void between the frame and the material of the pack portion along those locations. Indeed, such continuous and integral contact will considerably reinforce the mechanical strength of pack the portion under the attachment portions.
Indeed, as can be seen in
Therefore, from a load stability standpoint, it will be advantageous to have a unitary sheet frame 42 underlying all attachment portions of the carrying system.
But, in some cases, it may be sufficiently satisfactory that the adhesively bonded frame 42 underlie only part of the back side 20, and not all the attachment portions.
One possibility would therefore be to have the adhesively bonded frame underlie and extend between the attachment portions of the upper and lower ends of the shoulder straps, and/or underlie and extend between the attachment portions of the upper ends of the shoulder straps and of a hip-belt arrangement, the adhesion zone of the frame to the pack corresponding at least to the attachment portions.
In other instances, it may be useful to have the sheet frame made of several parts each independently adhesively bonded to the pack portion. For example, it may be useful to have two separate sheet frames of the left part and for the right part of the pack.
In other cases, it may be useful to have the sheet frame divided into two or more separate parts along substantially horizontal partition lines. In such a case, it will be preferable to make sure that the sheet frame parts are located adjacent one to another so that their lateral borders along the partition lines come into abutment one with the other. In such a case, one can provide that such multi-part sheet frame can be united by a rigid structure, such as one or several common stays slidably inserted in corresponding gussets arranged on the frame parts. With such a construction, the sheet frame will be foldable when the stays are removed, and will recover some rigidity altogether when the stays are in place.
Another innovative aspect of the backpack according to the invention is that at least some of the elements of the carrying system are attached to the pack portion 12 by adhesive bonding, and more specifically by gluing, i.e., by the provision of a specific adhesive material or compound.
In
In the embodiment shown, the upper end 28a of the shoulder strap 26 is made of a textile web or strap and it is fixed on an anchoring part. In the illustrated embodiment, the anchoring part takes the form of an anchoring base 60. The anchoring base 60 is made of flexible plastic material (for example polyurethane) having a back surface 62 facing the pack portion 12, and a front surface 64 on which the upper end 28a of the shoulder strap 26 is fixed by stitching. More precisely, one can see that the anchoring base 60 has a housing 66 formed on its front surface 64 and adapted to receive and hide the extremity of the upper end 28a of the shoulder strap. The housing 64 is closed in all but one direction, only open along a direction parallel to the base for introduction of the extremity of the strap 28a in the housing. The stitching line 68 for holding the strap 28a on the base 60 is made just in front of the housing's opening. To increase the strength of the stitching 68 (specifically to avoid any risk of tearing of the base material), the back surface 62 of the base is backed with a piece of woven fabric 70, and the stitching is done through the upper end strap 28a, through the base 60, and through the woven fabric reinforcement 70. Preferably, the fabric reinforcement 70 is located in a recess which is provided in the back surface 62 of the anchoring base 60, so that the fabric reinforcement 70 is flush with the back surface 62.
According to one aspect of the invention, the anchoring base 60 is then affixed to the outer surface of the back side 20 of the pack portion 12 by gluing.
In order to prevent any risk of the shoulder strap 26 peeling off, it is provided that the anchoring base 60 is glued at a location of the back side 20 where the reinforcing frame 42 is also adhered to the back side 20 (on its inner side). Therefore, the frame underlies and is directly bonded to the attachment portion (of the back side 20 of the pack portion 12) for the shoulder strap. This prevents any severe bending of the substrate (i.e., the back side fabric 20) on which the anchoring base 60 is glued, which severe bending would promote peeling off near the edges of the base 60. Another advantageous provision is to make sure the edges of the base 60 are sufficiently thin and flexible to follow easily any residual bending of the substrate without exerting too much peeling off stress on the glue. Yet another advantageous provision is to use an adequate substrate. Indeed, especially when it comes to affixing a shoulder strap by adhesive bonding, it is necessary to use a substrate which is specifically designed therefor. For example, if the substrate is a fabric coated or laminated on its outer side (for example, a woven textile coated with a water-repellent or water resistant polyurethane coating), the coating (or laminate) should have an adhesion resistance to the base fabric, or peeling resistance, of at least 10 pounds per inch (10 lbs/in; approximately 68947 N/m2) according to Federal Test Method Standard 191A/5970 (or according to corresponding ASTM Standard D-751), although preferably about 18-20 lbs/in or greater is contemplated according to the invention. In practice, a peeling resistance of about 30 lbs/in, and slightly higher, has been achieved using a polyurethane coating.
In the embodiment shown, each element of the carrying system is affixed to the pack portion through the gluing of an anchoring base 60 described above: the upper and lower ends 28a, 30a of the shoulder straps 26, as well as the hip-belt straps 38, 40 and the stabilizing straps 34. Some of the elements can share the same anchoring base, as for example the lower end 30a of the shoulder straps and the corresponding hip-belt strap part 38a, 40a. Moreover, the anchoring base of each element is glued at a location of the back side 20 where the reinforcing frame 42 is also adhered to the back side (on the inner side).
One can also see in
In
The pivoting connection mechanism 82 has a socket 84 which is affixed to the back side 20 of the pack portion, in a lumber part thereof. The socket 84, another exemplary embodiment of which is shown on
As shown in
The fitting 90 also has a base 94 by which it can be affixed to the cushioned hip-belt 36, for example by gluing. As shown more specifically in
Many types of known alternative pivoting connections could be used, and one skilled in the art would easily figure out a convenient embodiment. More complex connecting mechanisms could also be used to link the hip belt to the pack, for example mechanisms with dual pivoting rods. In addition, the socket and the fitting could have interchanged positions on the hip-belt and on the pack.
The above cushioned hip-belt 36 and its pivoting connection mechanism 82 is particularly relevant in the context of the invention where the back side 20 of the pack, and particularly its lumbar part, is reinforced by an adhesively bonded frame 42. Indeed, the presence of the frame 42 in the lumbar part of the pack, where the hip-belt 36 is also connected the pack, will permit a very stable and precise fixing of the pivot mechanism 82. If the latter is also adhesively bonded to the pack, there will be no parasitic lateral or vertical movement between the hip-belt, the frame 42, and the shoulder straps 26, achieving superior carrying ability. The hip-belt 36 can also be perfectly positioned and tightened around the hips of the user, while the pivot mechanism 82 will provide the adequate freedom of movement between the shoulder straps 26 and the hip-belt 36 for the pack to follow the movements of the user's back.
In the embodiments described above, the frame is adhesively bonded to the inner surface of the back side of the pack. Nevertheless, it is also within the scope of the invention to provide that the frame be adhesively bonded to the outer surface, as shown in the alternative embodiment of
In the above described embodiments, it has been chosen that the frame, the carrying system, and all other accessories are affixed to the pack portion by adhesive bonding. This is of course very interesting in terms of limiting or inhibiting water ingressions into the pack. Indeed, this allows to drastically diminish the number and the length of assembling stitches, which are always major water ingression points. This is of course desirable when the construction of a waterproof bag is pursued, because it eliminates the need to cover the corresponding stitches with a seam tape, saving both the additional weight of the tape and the extra manufacturing time. But it is also desirable in a conventional non-waterproof bag where non-waterproof fabrics are used. Indeed, by minimizing those major water ingression points, and by simply providing a water-repellent finish to the fabric, one can achieve a bag which is not waterproof, but which will nevertheless prevent major ingressions of water for a certain amount of time, which is often sufficient for ordinary uses.
As mentioned above, different adhesive bonding techniques can be used in the invention, such as the use of glues, glue-containing compounds, and such as the use of ultrasonic, radio-frequency, or other types of welding. Two or more elements adhesively bonded, according to the invention, can be referred to as being “non-removably adhesively” bonded together. In the sense used herein, the term “non-removable” means that separation of such connected elements requires reversing or otherwise undoing an adhesive bond affixing together such connected elements, in contrast to connected elements that are “removably” affixed, which would not require a reversal or an undoing of an adhesive bond.
Number | Date | Country | Kind |
---|---|---|---|
05013246 | Jun 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3347429 | Ruth, Jr | Oct 1967 | A |
3767040 | Tushaus | Oct 1973 | A |
3957184 | Shurman | May 1976 | A |
4074839 | Wood et al. | Feb 1978 | A |
4080677 | Koehler | Mar 1978 | A |
4088252 | Grunberger | May 1978 | A |
4213549 | Hibbard | Jul 1980 | A |
4489770 | Reich, II | Dec 1984 | A |
4653290 | Byrne | Mar 1987 | A |
4750654 | Menetrier | Jun 1988 | A |
4790463 | Hansen | Dec 1988 | A |
4809893 | Parsons | Mar 1989 | A |
4830245 | Arakaki | May 1989 | A |
4920575 | Bartasis et al. | May 1990 | A |
5131576 | Turnipseed | Jul 1992 | A |
5320262 | Lewis | Jun 1994 | A |
5361955 | Gregory | Nov 1994 | A |
5366126 | Dausien | Nov 1994 | A |
5427290 | Thatcher | Jun 1995 | A |
5641325 | Delk et al. | Jun 1997 | A |
5890640 | Thompson | Apr 1999 | A |
5902073 | Eungard et al. | May 1999 | A |
5954253 | Swetish | Sep 1999 | A |
6029875 | Johnston | Feb 2000 | A |
6055975 | Gallagher et al. | May 2000 | A |
6073822 | Swensen de Vidals | Jun 2000 | A |
6279804 | Gregg | Aug 2001 | B1 |
6325262 | Thompson | Dec 2001 | B1 |
6343729 | Platta | Feb 2002 | B1 |
6375053 | Cecchinel | Apr 2002 | B1 |
6460746 | Amram | Oct 2002 | B1 |
6474523 | Morrison et al. | Nov 2002 | B2 |
6478464 | Miller | Nov 2002 | B1 |
6607108 | Mydans | Aug 2003 | B2 |
6626342 | Gleason | Sep 2003 | B1 |
7210605 | Willows et al. | May 2007 | B2 |
7484275 | Carroll et al. | Feb 2009 | B2 |
20030160079 | Nordstrom | Aug 2003 | A1 |
20050035170 | Sears et al. | Feb 2005 | A1 |
20060072857 | Revels | Apr 2006 | A1 |
20060218691 | Miller | Oct 2006 | A1 |
20070181241 | Kramer et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
27 54 061 | Jun 1979 | DE |
0 260 800 | Mar 1988 | EP |
2 778 825 | Nov 1999 | FR |
2 152 575 | Aug 1985 | GB |
WO-9105494 | May 1991 | WO |
Entry |
---|
U.S. Appl. No. 11/779,636 (Gordon Rose et al.), filed Jul. 18, 2007. |
Number | Date | Country | |
---|---|---|---|
20060283907 A1 | Dec 2006 | US |