This disclosure relates generally to steel materials and methods of making steel materials. More specifically, disclosed embodiments relate to compositions of bainitic steel materials and methods of making bainitic steel materials that may increase the reliability with which, and reduce the cost at which, bainitic steel materials may be obtained.
Bainite has been a known phase of steel since at least 1930. However, the formation of bainite frequently involved the undesirable precipitation of carbides and the formation of brittle cementite. Recently, however, some techniques for suppressing the formation of such undesirable carbides have been developed. For example, Behzad Avishan et al., Retained Austenite Thermal Stability in a Nanostructured Bainitic Steel, 81 Materials Characterization 105 (2013) describes a bainitic steel composition including 0.91% by weight carbon, 1.58% by weight silicon, 1.98% by weight manganese, 0.06% by weight nickel, 0.25% by weight molybdenum, 1.12% by weight chromium, 1.37% by weight cobalt, and 0.53% by weight aluminum, with the balance being iron. After austenitizing, the samples are transferred to a salt bath for heat treatment. The samples are then quenched in water, resulting in the described bainitic steel.
In some embodiments, bainitic steel materials may include between 0.62% and 0.78% by weight carbon, between 1.5% and 2.5% by weight silicon, between 1.75% and 2.5% by weight manganese, between 0.22%and 0.5% by weight molybdenum, between 1.0% and 1.8% by weight chromium, between 0.0% and 0.3% by weight cobalt, between 0.25% and 1.0% by weight aluminum, and the balance consisting essentially of iron.
In other embodiments, methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstätten ferrite during cooling. The quantity of steel may be heat-treated to form bainite by cooling the quantity of steel from the first temperature and exposing the quantity of steel to a second, lower temperature, to which the quantity of steel may remain exposed for a prolonged period. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast. The quantity of steel may be permitted to cool.
While this disclosure concludes with claims particularly pointing out and distinctly claiming specific embodiments, various features and advantages of embodiments within the scope of this disclosure may be more readily ascertained from the following description when read in conjunction with the accompanying drawings, in which:
The illustrations presented in this disclosure are not meant to limit the scope of the disclosure to any particular embodiment, but are merely employed to describe illustrative embodiments. Thus, at least some of the drawings are not necessarily to scale and may be idealized representations, rather than actual views of a particular embodiment.
Disclosed embodiments relate generally to compositions of bainitic steel materials and methods of making bainitic steel materials that may increase the reliability with which, and reduce the cost at which, bainitic steel materials may be obtained.
Referring to
The composition of the bainitic steel 100 may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstätten ferrite phases while reducing the inclusion of expensive elements. For example, the bainitic steel material 100 may include between 0.62% and 0.78% (e.g., 0.7%) by weight carbon. The bainitic steel material 100 may include, for example, between 1.5% and 2.5% (e.g., 1.9%) by weight silicon, which may impede the growth of non-bainite phases. The bainitic steel material 100 may include, for example, between 1.75% and 2.5% (e.g., 2%) by weight manganese. The bainitic steel material 100 may include, for example, between 0.22% and 0.5% (e.g., 0.25%) by weight molybdenum. The bainitic steel material 100 may include, for example, between 1.0% and 1.8% (e.g., 1.4%) by weight chromium. The bainitic steel material 100 may include, for example, between 0.0% and 0.3% (e.g., 0.15%) by weight cobalt. The bainitic steel material 100 may include, for example, between 0.25% and 1.0% (e.g., 0.75%) by weight aluminum. The balance of the bainitic steel material 100 may consist essentially of, for example, iron. When it is said that the balance of the bainitic steel material 100 “consists essentially of” iron, what is meant is that iron may be the only other element deliberately included in the bainitic steel material 100, though contaminants may be inevitably present in the bainitic steel material 100. In some embodiments, the bainitic steel material 100 may consist entirely of the foregoing elements in their described quantities, plus any contaminants unavoidably introduced into the bainitic steel material 100 during formation. The bainitic steel material 100 may lack some relatively expensive elements conventionally included in steel materials. For example, the bainitic steel material 100 may be free of nickel, vanadium, or both.
The bainitic steel material 100 may exhibit high hardness throughout the bainitic steel material 100. For example, the bainitic steel material 100 may exhibit an at least substantially uniform high hardness throughout the bainitic steel material 100. More specifically, the bainitic steel material 100 may exhibit a hardness of at least about 50 HRC. As a specific, nonlimiting example, the bainitic steel material 100 may exhibit a hardness of at least about 53 HRC (e.g., between about 56 HRC and about 60 HRC or greater) on the Rockwell C hardness scale. The bainitic steel material 100 may exhibit at least substantially uniform hardness even throughout a massive quantity of the bainitic steel material. For example, the bainitic steel material 100 may exhibit at least substantially uniform hardness throughout at least a 4-inch by 4-inch by 0.75-inch plate. More specifically, the bainitic steel material may exhibit at least substantially uniform hardness throughout at least an 8-inch by 10-inch by 1-inch plate (e.g., throughout a 10-inch by 12-inch by 1.5-inch plate or larger). The bainitic steel material 100 may be strong, exhibiting a high yield strength. For example, the yield strength exhibited by the bainitic steel material 100 may be greater than about 1.0 GPa. More specifically, the yield strength exhibited by the bainitic steel material 100 may be greater than about 1.25 GPa (e.g., greater than about 1.5 GPa). In addition, the bainitic steel material 100 may exhibit a high ultimate tensile strength. For example, the ultimate tensile strength exhibited by the bainitic steel material 100 may be greater than about 1.5 GPa. More specifically, the ultimate tensile strength exhibited by the bainitic steel material 100 may be greater than about 1.75 GPa (e.g., greater than about 2 GPa). The bainitic steel material 100 may exhibit some ductility. For example, a maximum strain at failure exhibited by the bainitic steel material may be about 2.5% or greater. More specifically, the maximum strain at failure exhibited by the bainitic steel material may be, for example, about 3% or greater. As a specific, nonlimiting example, the maximum strain at failure exhibited by the bainitic steel material 100 may be about 4% or greater (e.g., about 4.7% or greater). An elastic modulus of the bainitic steel material 100 may be, for example, between about 175 GPa and about 225 GPa. More specifically the elastic modulus exhibited by the bainitic steel material 100 may be between about 190 GPa and about 210 GPa (e.g., about 200 GPa).
Referring to
In some embodiments, the quantity of steel may be cast from its constituent elements before austenitizing the quantity of steel. For example, the constituent elements, or alloys containing the constituent elements, in amounts selected to achieve the desired volume percentage of respective elements in the resulting bainitic steel material 100 (see
After austenitizing the quantity of steel, the quantity of steel may be permitted to cool. For example, the quantity of steel may be permitted to cool to a temperature of between about 300° C. and about 500° C. (e.g., about 400° C.). The cooling may not be assisted or hastened by liquid quenching techniques (e.g., salt baths and water quenching). For example, the quantity of steel may be subjected to a controlled cooling process by gradually lowering the temperature of a furnace, may be air-cooled by turning of the furnace, or may be air-cooled by removing the quantity of steel from the furnace and leaving it to cool while exposed to room temperature. As a specific, nonlimiting example, the quantity of steel may be permitted to cool in the furnace to about 800° C. (e.g., by gradually reducing temperature under control of a process or by turning of the furnace), and may be air-cooled from about 800° C. to about 400° C. by removing the quantity of steel from the furnace and exposing it to room temperature. A thermocouple and a processor (e.g., a dedicated tracker for the quantity of steel) may be used to monitor and control the temperature to which the quantity of steel is cooled.
The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature, as shown at 106. For example, the quantity of steel may be exposed to a temperature of between about 175° C. and about 300° C. to induce the formation of a bainite microstructure within the quantity of steel. More specifically, the quantity of steel may be exposed to a temperature of between about 200° C. and about 250° C. (e.g., about 225° C.) to induce a formation of a principal phase of bainite with austenite and some other residual phases of steel in solid suspension interspersed throughout the principal phase of bainite. The quantity of steel may remain exposed to the second, lower temperature for a time sufficient to transform a majority of the microstructure of the quantity of steel to bainite. For example, the quantity of steel may remain exposed to the second, lower temperature for about 2 days or more. More specifically, the quantity of steel may remain exposed to the second, lower temperature for about 3 days or more (e.g., at least about 4 days). As another example, the quantity of steel may remain exposed to the second, lower temperature until the austenite phase occupies between about 10% and about 20% by volume of the quantity of steel and a remainder of the quantity of steel consists essentially of bainite. In some embodiments, the austenite and bainite content of the quantity of steel may be measured after heat-treating the quantity of steel, such as, for example, using x-ray diffraction.
The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast, as shown at 108. For example, the thermal ballast may reduce the extent to which the second, lower temperature is raised as a result of introducing the hot quantity of steel into the environment in which the second, lower temperature is maintained (e.g., a furnace) when compared to the extent to which the second, lower temperature would be raised absent the thermal ballast (e.g., in the presence of air or another gaseous environment). More specifically, the thermal ballast may maintain the actual temperature of the environment in which the second, lower temperature is maintained within about 60% of the desired, second, lower temperature (e.g., within about 50% of the desired, second lower temperature). As a specific, nonlimiting example, the thermal ballast may maintain the actual temperature of the environment in which the second, lower temperature is maintained within about 150° C. of the desired, second, lower temperature (e.g., within about 100° C. of the desired, second lower temperature).
The thermal ballast may be a solid material such that the method 102 is performed without contacting the quantity of steel with any liquids (e.g., without submerging the quantity of steel in any liquids). For example, the thermal ballast may be alumina sand (e.g., 90 grit alumina sand) positioned within a furnace or within a heat-treatment apparatus comprising an insulated container lined internally with electrically-heated blankets (see
After the heat treatment is complete, the quantity of steel may be permitted to cool, as shown at 110. For example, the quantity of steel may be removed from the environment in which the second, lower temperature was maintained (e.g., a furnace) and permitted to air-cool (e.g., without active airflow cooling other than normal ventilation) until the quantity of steel reaches room temperature. After the quantity of steel cools to room temperature, a martensite phase may form within the bainitic steel material 100 (see
In some embodiments, at least the exterior surfaces of the container 114 may be covered with a liner 122, which may be, for example, stainless steel, to protect the materials of the container 114 from the environment or from impacts with handling equipment. For example, each surface of the container, including the exterior and interior surfaces of the lid 116 and the receptacle 118 may be covered with the liner 122. In some embodiments, the container 114 may include handling structures 124, which may be positioned and shaped to enable handling equipment to interact with (e.g., to pick up and move) the container 114. For example, the handling structures 124 may be forklift prong receivers located on an underside of the container 114 opposing the lid 116.
The heat-treatment apparatus 112 may include at least one heating blanket 126 located within the cavity 120 of the container 114. For example, multiple heating blankets 126 may be positioned on interior walls of the lid 116 and the receptacle 118 defining the cavity 120. More specifically, the heating blankets 126 may line each interior wall of the lid 116 and the receptacle 118 defining the cavity 120, such that the heating blankets 126 surround the remaining portion of the cavity 120 located within the heating blankets 126. The heating blankets 126 may be electrically powered, may be configured to heat the contents of the container 114 to the temperatures described previously in connection with act 106 of
A thermal ballast 132 may be located within the cavity 120 of the container 114 on a side of the heating blankets 126 opposing the container 114, and a workpiece 134 of austenitized steel may be buried within the thermal ballast 132. The cavity 120 may be sized and shaped, and the quantity of thermal ballast 132 within the cavity 120 may be may be sufficient, such that at least some thermal ballast 132 may be located between the workpiece 134 and the heating blankets 126 on each side of the workpiece 134. For example, a minimum distance D between the workpiece 134 and the heating blankets 126 may be 1 inch or greater. More specifically, the minimum distance D between the workpiece 134 and the heating blankets 126 may be, for example, 3 inches or greater. In some embodiments, the thermal ballast 132 and the workpiece 134 may be located within a shell 136, which may be located between the thermal ballast 132 and the heating blankets 126. The shell 136 may be of, for example, an aluminum material.
As a result of the proximity of the heating blankets 126 to the thermal ballast 132 and the workpiece 134 primary heating mechanism of the heat-treatment apparatus 112 may be conduction, rather than convection or radiation. For example, the workpiece 134 may primarily be exposed to the second, lower temperature described previously in connection with act 106 of
Referring to
The resulting bainite steel material was tested for its material properties, which were as described previously in connection with
While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that the scope of this disclosure is not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made to produce embodiments within the scope of this disclosure, such as those hereinafter claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being within the scope of this disclosure, as contemplated by the inventors.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/914,189, filed Dec. 10, 2013, and titled, “BAINITIC STEEL MATERIALS AND METHODS OF MAKING SUCH MATERIALS,” the disclosure of which is incorporated herein in its entirety by this reference.
This invention was made with government support under Contract Number DE-AC07-05ID14517 awarded by the United States Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61914189 | Dec 2013 | US |