Balance training device

Information

  • Patent Grant
  • 12194345
  • Patent Number
    12,194,345
  • Date Filed
    Friday, September 16, 2022
    2 years ago
  • Date Issued
    Tuesday, January 14, 2025
    3 months ago
  • Inventors
    • Klopman; James E. (Park City, UT, US)
  • Examiners
    • Lee; Joshua
    • Letterman; Catrina A
    Agents
    • Perilla Knox & Hildebrandt LLP
    • Davy-Jow; Stephanie L.
  • CPC
  • Field of Search
    • CPC
    • A63B26/003
    • A63B21/00047
    • A63B4/00
    • A63B23/126
    • A63B23/1236
    • A63B23/16
    • A63B21/028
  • International Classifications
    • A63B26/00
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      0
Abstract
Balance training aids are disclosed. A user places all or part of their body weight on a top surface of a platform that is sitting atop an unstable base member and attempts to balance or complete a balance challenge. The user places at least a portion of one foot atop the platform during the balance challenge. Adjustability features can be provided so as to provide a varying degree of adjustability to the unstable base member, and thus, provide a varying degree of balance challenges or levels of difficulty.
Description
TECHNICAL FIELD

The present invention relates generally to the field of athletic equipment and training, and more particularly to balance training aids and devices.


SUMMARY OF INVENTION

Example embodiments of the present invention relate to a balance training aid including a base member and a standing platform. According to one aspect, the invention relates to a balance device including a lower base component and an upper standing platform configured for placement atop the lower base component. In example embodiments, the lower base component is an unstable or deformable material, and the platform is a generally rigid material. According to some example embodiments, the lower base component includes one or more adjustability features including reinsertable plugs that are initially integrally formed with the lower base component, disengagable therefrom by user operation or manipulation thereof, and reinsertable within the openings defined by the removal of the plugs so as to provide adjustment to the unstableness (instability) of the lower base component when a user is applying their weight thereon, for example by applying at least a portion of their foot atop the standing platform.


In one aspect, the present invention relates to a balance training aid including an upper standing platform and a lower base component, the upper standing platform configured for placement atop the lower base component and configured to receive at least a portion of a user's foot thereon, the lower base component being generally elongate and extending between first and second ends and including a top portion defining an upper surface and a bottom portion defining a lower surface, wherein the first and second ends of the lower base component includes a polygonal cross-sectional shape defining the upper and lower surfaces, and a pair of stability surfaces defined between the upper and lower surfaces thereof.


In example embodiments, the stability surfaces define an angle of between about 12-35 degrees relative to a vertical axis. In example embodiments, the polygonal cross-sectional shape is trapezoidal. In example embodiments, the lower base component includes at least one adjustability feature for providing variability to the unstableness of the balance training aid. In example embodiments, the at least one adjustability feature comprises a removable and reinsertable plug member. In example embodiments, the lower base includes two or more removable and reinsertable plug members.


In example embodiments, the plug member is generally elongate defining a length and being generally cylindrical in cross section, and wherein one or more outwardly extending protrusions extend from an outer periphery of the plug member along at least a portion of its length. In example embodiments, the platform comprises a length of between about 8-20 inches, a width of between about 3-6 inches, and a thickness of between about 0.25-0.75. In example embodiments, the lower base component defines a length of between about 8-20 inches between the first and second ends thereof, a height of between about 1.5-5 inches defined between the upper and lower surfaces, a first width of between about 3.5-7 inches defined at the lower surface and a second width of between about 2-5 inches defined at the upper surface. In example embodiments, the length is between about 12.50-14.88 inches, the height is between about 2.5-3.5 inches, the first width is between about 4.69-5.50 inches, and the second width is between about 3-3.5 inches.


In example embodiments, the lower surface defines an I-shaped footprint, the I-shaped footprint defining an outer profile including a centrally located narrowed portion and outwardly located widened portions, the centrally located narrowed portion comprising a central side-to-side dimension substantially similar to the second width, and wherein the outwardly located widened portions define an outer side-to-side dimension that is substantially similar to the first width. In example embodiments, the lower base component comprises a foam material comprising cross-linked polyethylene, ethylene-vinyl acetate, or a combination thereof.


In another aspect, the present invention relates to a balance training device including an upper standing platform and a base member, the base member comprising a unitary, one-piece component having adjustability features to provide variability to the allowable deformation thereof between a most stable configuration with the least amount of allowable deformation and a most unstable configuration with the most amount of allowable deformation.


In example embodiments, each adjustability feature includes a generally elongate plug member fitted within a channel that is defined in the base member, the plug member being initially integral with the base member, the plug member being removable from the channel of the base member, and the plug member being reinsertable within the channel of the base member. In example embodiments, the base member defines a length, a height, an upper surface and opposite lower surface.


In example embodiments, the lower surface defines a footprint and is configured for resting atop a surface, the footprint defining a polygonal shape. In example embodiments, the lower surface defines a footprint and is configured for resting atop a surface, the footprint being generally I-shaped defining an outer profile having a centrally located narrowed portion and outwardly located widened portions. In example embodiments, wherein the base member includes a polygonal cross-sectional shape when taken along its length.


In yet another aspect, the present invention relates to a balance device including a lower base component and an upper standing platform, the upper standing platform being configured for placement atop the lower base component, the lower base being an unstable or deformable material and the platform being a generally rigid material, the lower base component defining a length, a height, an upper surface and a lower surface, the lower surface defining a footprint having a centrally-located narrowed portion and outwardly-located widened portions.


In yet another aspect, the present invention relates to a balance device including a lower base component and an upper standing platform configured for placement atop the lower base component, the lower base component extending a length between first and second ends and including a height defined between an upper surface and a lower surface, the lower base component further including side surfaces extending between the upper and lower surfaces along the length thereof, wherein the lower base component includes a first width defined between at least a portion of the side surfaces at about a midpoint of the length, and wherein the lower base component includes a second width defined between at least a portion of the side surfaces near the first and second ends thereof.


In example embodiments, the second width generally transitions to the first width in a non-linear fashion. In example embodiments, the lower surface's outer profile of the lower base component is generally I-shaped. In example embodiments, the lower surface of the lower base component defines a footprint and is configured for resting atop a surface, the footprint defining a polygonal shape. In example embodiments, the lower base component includes a polygonal cross-sectional shape when taken along its length.


In yet another aspect, the present invention relates to a balance device including a lower base component and an upper standing platform configured for placement atop the lower base component, the lower base including an unstable or deformable material and the platform including a generally rigid material, the lower base component including a length, a height, an upper surface and a lower surface, the lower surface defining a footprint including a centrally-located narrowed portion and outwardly-located widened portions. In example embodiments, the upper standing platform is removably attachable to the upper surface of the lower base component.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of a balance training device according to an example embodiment of the present invention.



FIG. 2 is a front perspective view of a base member or component of the balance training device of FIG. 1.



FIG. 3 is an end view of the balance training device of FIG. 1.



FIG. 4 is a side view of the balance training device of FIG. 1.



FIG. 5 is a bottom view of the balance training device of FIG. 1.



FIG. 5A is a detailed view of a portion of the balance training device of FIG. 5.



FIG. 6 is a top view of the balance training device of FIG. 1.



FIG. 7 is a front perspective view of a balance training device according to another example embodiment of the present invention.



FIG. 8 is a front perspective view of a portion of the balance training device of FIG. 7.



FIG. 9 is a side view of the balance training device of FIG. 7.



FIG. 10 is a bottom view of the balance training device of FIG. 7.



FIG. 11 is a top view of the balance training device of FIG. 7.



FIG. 12 shows a front perspective view of an athlete balancing on a balance training device according to an example embodiment of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.


Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.


Example embodiments of the present invention relate to balance training devices that are generally configured for the placement of at least a portion of one foot of a user, athlete and/or other human or animal subject on a portion thereof, for example, such that the subject places all or part of their body weight on a top surface of a platform that is sitting atop a base member and attempts to balance. As will be described in greater detail below, the balance training devices as described herein generally comprise a base member and a standing platform. In example embodiments, the balance training devices are unstable and preferably the degree of stability thereof is adjustable between a most stable configuration and a most unstable configuration, or for example, a least unstable configuration and a least stable configuration.


With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views, FIGS. 1-12 show balance training devices according to an example embodiments of the present invention. As depicted in FIGS. 1-5, the balance training device 10 generally comprises a base member 20 and an upper plate or platform 60. In example embodiments, the balance training device 10 is configured such that a user places one foot atop the platform 60 and attempts to balance thereon while their other foot remains free from engagement with the platform 60 or a ground surface that is supporting the base member 20 (see FIG. 12). In example embodiments, the balance training device 10 is unstable in a variety of directions, for example an axial direction, a transverse direction, and a vertical direction. Preferably, as will be described below, the degree of stability of the balance training device 10 is adjustable so as to affect the level of difficulty of the balance challenge such that a user is subjected to as they attempt to balance thereon.


Referring to FIG. 2, the base member 20 is generally elongate and extends from a first end 22 to a second end 24 and comprises a top portion 26 comprising an upper surface 30 and a bottom portion 28 comprising a lower surface 32. According to example embodiments, one or more adjustability features 40 can be provided/formed with the base member 20, for example, so as to provide adjustability to the base member 20 (as will be described in greater detail below).


As depicted in FIGS. 3-4, the base member 20 comprises a length L, a width W1 defined at the bottom portion 28, a width W2 defined at the top portion 26, and a height H. According to example embodiments, the length L is generally between about 8-20 inches, for example, between about 11-18 inches according to some example embodiments. The width W1 is generally between about 3.5-7 inches, for example, between about 4.5-6 inches according to some example embodiments. The width W2 is generally between about 2-5 inches, for example, between about 3-4 inches according to example embodiments of the present invention. According to one preferred embodiment, the length L is between about 12.88-14.88 inches, the width W1 is between about 4.69-5.50 inches, the width W2 is between about 3-3.5 inches. Optionally, the base member 20 can be sized as desired.


According to example embodiments, the base member 20 comprises side surfaces defined along the length L thereof, for example, outer stability surfaces 34, central surfaces 36, and transitional surfaces 37 extending between the outer stability surfaces 34 and the central surfaces 36. According to example embodiments, the surfaces 34, 36, 37 are provided on both sides of the base member 20, for example, wherein the surfaces 34, 36, 37 are generally symmetrical and mirrored about an elongate axis extending along the length L of the base member 20 at its midpoint (see FIG. 5). Thus, according to example embodiments, the outer profile of the bottom portion 28 of the base member 20 defines a centrally located narrowed portion and outwardly-located widened portions, for example, wherein transitions are defined between the narrowed portion and the widened portions. Preferably, the combination of the narrowed portion and the widened portions provides sufficient stability to the base member 20 (e.g., preventing the same from unintentionally rolling over, especially when a user is attempting to balance thereon) while also lessening stability at its center so as to provide enough instability to provide a sufficient balance challenge. According to one example embodiment, the lower surface of the bottom portion of the base member 20 comprises an I-shaped footprint, the I-shaped footprint defining an outer profile comprising a centrally-located narrowed portion and outwardly-located widened portions, the centrally-located narrowed portion comprising a central side-to-side dimension substantially similar to the second width W2, and wherein the outwardly-located widened portions define an outer side-to-side dimension that is substantially similar to the first width W1.


In example embodiments, the outer stability surfaces 34 are generally angled to define an angle α relative to a vertical axis, for example, wherein the angle α is generally between about 10-45 degrees, for example between about 12-35 degrees according to some example embodiments. The central surfaces 36 are generally substantially vertical, for example, such that the width of the bottom portion 28 at the base member's 20 center or midpoint is generally equivalent to the width W2 of the top portion 26. Thus, in example embodiments, the width defined along the entirety of the central portion of the base member 20 (e.g., proximal the central surfaces 36) is substantially uniform. As shown in FIG. 5, the transitional surfaces 37 provide a generally continuous transition from the central surfaces to the outer stability surfaces 34. According to example embodiments, the transitional surfaces 37 are generally curved or radiused so as to provide a smooth and gradual transition from the central surfaces 36 to the outer stability surfaces 34.


Referring to FIG. 4, the length or extension Lc of the central surfaces 36 is generally between about 4-7 inches, for example between about 4.5-6 inches according to some example embodiments. And the length or extension Le of the outer stability surfaces 34 is between about 1.5-3.5 inches, for example, between about 2-3 inches according to some example embodiments. Thus, according to example embodiments, the length of the transitional surfaces 37 is between about 1.25-2.25 inches, for example, between about 1.5-2 inches according to some example embodiments. Optionally, according to other example embodiments, the lengths Lc, Le and/or the length of the transitional surfaces can be chosen as desired.


According to some example embodiments of the present invention, the cross-sectional shape of the base member 20 preferably varies along its length. For example, with reference to FIGS. 3-5, a cross-section taken generally near the ends 22, 24 of the base member 20 and proximal the outer stability surfaces 37 defines a trapezoidal-like shape, and a cross-section taken at a central portion or midpoint of the base member 20 and proximal the central surfaces 36 defines a square or rectangular-like shape. In other example embodiments, the cross-section of the base member 20 along the length thereof can preferably be chosen as desired.


Referring to FIGS. 2 and 5 and as briefly described above, the base member 20 comprises one or more adjustability features 40. In example embodiments, the adjustability features 40 allow for adjustment to the stability of the base member 20, for example, so as to allow for the stability of the base member to be varied based on the configuration of the adjustability features 40. For example, the base member 20 becomes more unstable with the removal of one or more portions thereof, for example, such that the level of difficulty increases as portions of the one or more adjustability features 40 are removed from the base member 20. As depicted in FIG. 5A, the adjustability feature 40 comprises a pair of opposing channels 42 that are separated by at least one tab or support portion 44, for example, so as to define a plug member 46 between the opposing channels 42 and which is interconnected with the at least one support portion 44. In example embodiments, the opposing channels 42 extend along a generally C-shaped path, for example, so as to define a cylindrical-like plug that extends from the top surface 30 to the bottom surface 32. Thus, in example embodiments, the opposing channels 42 similarly extend through the entirety of the base member 20, for example, from the upper surface 30 to the lower surface 32. Optionally, only one channel (or multiple channels) extending along a desired path can be provided as desired. According to example embodiments, the channels are formed in the base member 20 by water jet cutting, for example, which generally define a width of about 0.05-0.15 inches in width.


In example embodiments, to remove the plug member 46 from the base member 20, a user's finger or other tool or other component is placed atop the plug member 46 (on either the upper or lower surface 30, 32) and at least some amount of force and/or pressure is applied thereto, for example, so as to cause the at least one support portion 42 to be severed or torn, thereby releasing or disconnecting the plug member 46 from the base member 20. Thereafter, the plug member 46 can be removed therefrom such that a generally cylindrical opening is formed in the base member 20. In example embodiments, the opening extends entirely through the base member 20 between the upper and lower surfaces 30, 32.


Still referring to FIG. 5A, the plug member 46 comprises a pair of opposing outwardly-extending nubs or protrusions 48, for example, which are generally positioned about portions of the plug member 46 as desired. For example, according to example embodiments of the invention, after the plug member 46 has been disconnected and removed from the base member 20, and for example, wherein the plug member 46 is desired to be reinserted in the opening of the adjustability feature 40 (e.g., to lessen the instability thereof), the plug member 46 is reinserted within the opening such that the protrusions are generally oriented about 90 degrees relative to their initial orientation prior to being initially removed therefrom. For example, according to example embodiments, the protrusions of the plug member 46 are configured to frictionally engage portions of a surface defined by the opening, and thus, remain engaged therein while providing support and stability to the base member 20.


According to example embodiments, the plug member defines a diameter D4 of between about 0.5-2 inches, for example between about 0.75-1.25 inches according to some example embodiments. In example embodiments, a diameter D5 is defined between the outermost portions of the protrusions 48, for example, which is between about 0.65-2.15 inches, for example between about 0.90-1.40 inches according to example embodiments. Thus, according to example embodiments, the protrusions 48 generally provide at least about 0.8 inches of interference with the inner surface of the opening of the adjustability feature 40. According to example embodiments, the protrusions 48 preferably provide sufficient interference when reinserted in the opening such that the stability of the base member 20 is substantially similar to the stability of the base member 20 prior to being initially removed therefrom. In other example embodiments, the adjustability features 40 can be configured such that the stability of the base member can be adjustable based upon how the plug member 46 is inserted/positioned within the opening of the adjustability feature 40, and for example, variable interference fit protrusions (at least two protrusions of differing extensions) may be provided for example, so as to provide at least two possible interference fits, and thus, at least two possible variances of the plug member 46 being engaged with the opening of the adjustability feature 40.


As depicted in FIG. 5, the base member 20 comprises about five adjustability features 40. In example embodiments, the adjustability features 40 are generally spaced-apart along an elongate axis that is generally centrally-positioned and extending along the length of the base member 20. According to example embodiments, an adjustability feature 40 is provided at a midpoint of the base member 20, for example, positioned at about ½ the length L of the base member 20, for example to define a distance D1. Outermost adjustability features 40 are positioned at a distance D2 from the ends 22, 24 of the base member, and intermediate adjustability features 40 are positioned at a distance D3 from the outermost adjustability features. According to example embodiments, the distance D2 is generally between about 1-3 inches, for example between about 1.5-2 inches according to example embodiments. And the distance D3 is generally between about 1.5-4 inches, for example, between about 2.5-3 inches according to example embodiments. Preferably, the base member 20 can comprise more or less than five adjustability features 40, and preferably the adjustability features 40 can be positioned and spaced apart as desired.


Thus, according to example embodiments, the base member 20 comprises a unitary, one-piece base member or component comprising initially integral, yet removable and reinsertable adjustability features such that the degree of stability of the base member can be adjusted and varied between a most stable configuration (e.g., all plug members 46 inserted) and a most unstable configuration (e.g., all plug members 46 removed). For example, with each plug member 46 that is removed from its respective adjustability feature 40, the more unstable the base member 20 will be with the application of the same weight (compared to the weight being applied with the plug member(s) reinserted).


According to example embodiments, the adjustability features provide variability to the allowable deformation of the base member 20 between a most stable configuration with the least amount of allowable deformation and a most unstable configuration with the most amount of allowable deformation. Preferably, according to some example embodiments, an intermediate amount of instability may be desired, for example, wherein only a select few plugs are removed.


Optionally, according to other example embodiments, the plug members 46 can be separate components that can be inserted in the openings of the adjustability features 40 as desired.


Referring back to FIG. 3, the platform 60 is configured to be positioned atop the upper surface 30 of the base member so as to provide a substantially rigid surface for placing a foot thereon to attempt one or more balance challenges. For example, as depicted in FIG. 12, a user, with one foot placed on an upper surface 70 of the platform 60 and the other foot remaining free from engagement therewith or the ground or support surface, attempts to balance thereon. Preferably, as described above, the user can remove one or more of the plug members 46 of the adjustability features 40 so as to increase the instability of the base member 20, and thus, increase the balance challenge.


Referring back to FIGS. 3-4, the platform 60 is generally elongate and extends from a first end 62 to a second end 64, and comprises a lower surface 66 and an upper surface 68. In example embodiments, the plate member comprises a length that is substantially similar to the length L of the base member 20, however, the length of the platform 60 can be sized to be less than or greater than the length L of the base member 20. Further, the platform 60 comprises a width W3 and a thickness T. The width W3 is generally between about 3-6 inches, for example, between about 3.25-4.5 inches according to some example embodiments of the present invention. And the thickness T is generally between about 0.25-0.75 inches, for example between about 0.40-0.60 inches according to some example embodiments of the present invention. Optionally, according to other example embodiments, the width W3 and the thickness T can be sized as desired. According to example embodiments, the platform 60 is sized such that at least the upper surface 68 thereof comprises an area (length×W3) for accommodating at least one foot of a user or athlete. According to some example embodiments, the user may wear a shoe, sock or other component on their foot, for example, which may or may not at least partially extend beyond the bounds of the platform 60. In other example embodiments, the user need not wear any article on their feet such that the foot itself is placed on the upper surface 68 of the platform and the user attempts to balance thereon. According to example embodiments, the platform 60 can be configured to be mounted, coupled or otherwise secured to the base member, for example with hook and loop material or other coupling elements or fasteners.


According to some example embodiments, the platform 60 comprises a 12 mm thick Baltic birch wooden component that is generally rectangular in shape. According to example embodiments, the dimensions of the standing platform can preferably be sized as desired. According to one example embodiment, the plate comprises a width of 3.5 inches, a length of 13 inches and a thickness of 12 millimeters. In another example embodiment, the width is 3.5 inches, the length is 14 inches and the thickness is 12 millimeters. According to another example embodiment, the width is 4 inches, the length is 15 inches and the thickness is 12 millimeters. Optionally, platforms of any desired dimensions, thickness and/or material can be provided as desired. In some example embodiments, an outer periphery edge comprises a 0.25 inch round formed thereon. According to another example embodiment, the upper standing platform can be formed by plastic injection molding, or for example, other forms of molding. According to some example embodiments, the upper surface 68 of the platform 60 can comprise a texturized or rough surface. According to one example embodiment, a layer of grip tape or rubber-like frictional enhancing material 70 can be provided so as to improve the frictional engagement when a foot of a user is applied thereon.


In example embodiments, the base member 20 comprises foam, for example, XLPE (cross-linked polyethylene) or EVA (ethylene-vinyl acetate) foam. According to one example embodiment, the foam comprises a blend, mixture or combination of XLPE and EVA foam. In other example embodiments, the foam can comprise other desired materials or foam compositions, or for example, the foam can comprise a desired amount of deformation per a particular load being applied thereto. According to example embodiments, the foam is closed-cell foam. According to another example embodiment, the foam is open-cell foam. For example, according to some example embodiments, the lower base component can be an inflatable member or a fillable bladder, or for example, can be the type comprising a double-needle construction wherein two or more layers of material are generally connected together by one or more threads, for example, which may be filled with a desired material and/or inflatable or fillable with water, air or another desired material. According to some example embodiments, a fluid-fillable bladder can be incorporated with the base member so as to provide varying levels of instability and adjustability.


According to example embodiments of the present invention, methods of training on a balance device as described in U.S. Pat. No. 9,764,175, for example, comprising multiple balance training protocols comprising orienting the user's foot in various positions relative to an elongate or lengthwise axis of the platform (parallel, perpendicular, 45 degrees) and attempting to balance thereon for a given duration, for example, can similarly be applied to the balance training devices 10, 100 of the present invention. Accordingly and as expressly stated herein, U.S. Pat. No. 9,764,175 is incorporated by reference herein in its entirety for all purposes.



FIGS. 7-11 show a balance training device 100 according to another example embodiment of the present invention. For example, according to example embodiments of the present invention, the balance training device 100 comprises a base member 120 and a platform 160. In example embodiments, the platform 160 can be removably mounted to a top portion of the base member 120, for example, so as to provide an area permitting only a front inside quadrant portion of a user's foot to be placed on the platform 160, for example, such that while all of the user's weight is applied to the platform 160 and through to the base member 120, the user's engagement of the front inside quadrant of their foot (or medial portion, forefoot) with the platform 160 provides key feedback such that the balance of the user's body can correct itself to stay balanced.


Indeed, rather than a user balancing atop a forgiving or flexible/deformable surface, material or other medium/construction, for example, in either case where all or a portion of the user's foot is directly engaged with an air-filled bladder, foam-only devices, or other deformable “when the user's weight is applied” devices or components, etc., for example, such that the deformable material provides minimal to no feedback to the front inside quadrant portion (or at least the big toe portion thereof); the platforms 60, 160 as described herein preferably provide a surface that can permit engagement of the front inside quadrant of the user's foot including the foot's big toe, and/or one or more toes adjacent the big toe (for example, a front forefoot portion of the foot according to one example embodiment), for example, so as to provide direct and accurate feedback regarding the configuration or particular position and orientation of the platform relative to the unstable base member 20, 120, thereby allowing a user's body to correct itself and maintain balance atop the balance training devices 10, 100 as described herein.


According to example embodiments, the balance training device 100 is generally similar to the balance training device 10 as described above. According to example embodiments of the present invention, the balance training device 100 comprises the base member 120 and a standing platform 160 that is generally centered atop and removably engaged with an upper surface 130 of the base member 120. Similarly, one or more adjustability features 140 can be provided as desired. The base member 120 comprises a generally uniform trapezoidal shape defining a bottom end 128 comprising a lower surface 132 comprising a greater surface area than the surface area defined at a top end 126 comprising an upper surface 130. According to example embodiments, the cross-sectional shape of the base member in either of the axial or lateral directions would result in a trapezoidal shape, or for example, various other polygonal shapes, curves, undulations, etc. as desired. According to example embodiments, the trapezoidal cross section of the base member preferably provides sufficient stabilization to the base member as the user applies the entirety of their weight on the upper surface of the platform and attempts to balance, for example, and prevents “rolling” of the base member even when the platform's orientation and position are rather extreme relative to its natural orientation and position.


According to example embodiments, the bottom width of the base member W1 is between about 3.5-8.5 inches, for example, about 5.5 inches according to one example embodiment. The width of the top end 126 of the base member 120 defines a dimension W2 of between about 2.5-5.5 inches, for example, about 3.5 inches according to one example embodiment. As similarly described above, the platform 160 defines a thickness T of between about 3-6 inches, for example, between about 3.25-4.5 inches, for example, about 4 inches according to some example embodiments. According to example embodiments, the outer stability surfaces 134 of the base member are all generally angled to define an angle α relative to a vertical axis, for example, wherein the angle α is generally between about 10-45 degrees, for example between about 12-35 degrees according to some example embodiments. According to one example embodiment, the lower surface of the bottom portion of the base member 20 comprises a generally polygonal footprint, for example a square-shaped footprint according to one example embodiment. According to example embodiments, the footprint comprises four equal sides and vertex angles, for example, wherein each side defines a dimension of W1, for example, between about 3.5-8.5 inches according to example embodiments.


According to one example embodiment, the lower surface of the bottom portion of the base member 20 comprises an I-shaped footprint, the I-shaped footprint defining an outer profile comprising a centrally-located narrowed portion and outwardly-located widened portions, the centrally-located narrowed portion comprising a central side-to-side dimension substantially similar to the second width W2, and wherein the outwardly-located widened portions define an outer side-to-side dimension that is substantially similar to the first width W1.


According to example embodiments, two or more balance training devices can be spaced apart in a random pattern or array, for example, wherein a user/athlete must move throughout a set of defined steps or moves from one device to the next, without touching the ground and thus remaining balanced on the platform of one of the devices at a time. According to example embodiments, it is the front inside quadrant of the user's foot that is ultimately engaging with the platform of each of the devices as the user moves throughout one or more spaced-apart balance devices 100. According to one example embodiment, the devices 100 are generally spaced between about 6-36 inches from each other, for example, and the user moves from one device 100 to another device 100 in a desired configuration or quantity, etc.


While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.

Claims
  • 1. A balance training aid comprising an upper standing platform and a lower base component, the upper standing platform configured for placement atop the lower base component and configured to receive at least a portion of a user's foot thereon, the lower base component being generally elongate and extending between first and second ends and comprising a top portion defining an upper surface and a bottom portion defining a lower surface, the lower base component further comprising a pair of stability surfaces at each of the first and second ends, wherein the first and second ends of the lower base component comprise an acute trapezoidal cross sectional shape, and the pair of stability surfaces extend from the upper surface to the lower surface at an angle α relative to a vertical axis, and wherein the lower base component comprises at least one adjustability feature for providing variability to the unstableness of the balance training aid.
  • 2. The balance training aid of claim 1, wherein the angle α is between about 12-35 degrees.
  • 3. The balance training aid of claim 1, wherein the at least one adjustability feature comprises a removable and reinsertable plug member.
  • 4. The balance training aid of claim 3, wherein the lower base comprises two or more removable and reinsertable plug members.
  • 5. The balance training aid of claim 3, wherein the plug member is generally elongate comprising a length and being generally cylindrical in cross section, and wherein one or more outwardly extending protrusions extend from an outer periphery of the plug member along at least a portion of its length.
  • 6. The balance training aid of claim 1, wherein the platform comprises a length of between about 8-20 inches, a width of between about 3-6 inches, and a thickness of between about 0.25-0.75 inches.
  • 7. The balance training aid of claim 1, wherein the lower base component defines a length of between about 8-20 inches between the first and second ends thereof, a first width of between about 3.5-7 inches defined at the lower surface and a second width of between about 2-5 inches defined at the upper surface.
  • 8. The balance training aid of claim 7, wherein the length is between about 12.50-14.88 inches, the first width is between about 4.69-5.50 inches, and the second width is between about 3-3.5 inches.
  • 9. The balance training aid of claim 7, wherein the lower surface comprises an I-shaped footprint, the I-shaped footprint defining an outer profile comprising a centrally-located narrowed portion and outwardly-located widened portions, the centrally-located narrowed portion comprising a central side-to-side dimension substantially similar to the second width, and wherein the outwardly-located widened portions define an outer side-to-side dimension that is substantially similar to the first width.
  • 10. The balance training aid of claim 1, wherein the lower base component comprises a foam material comprising cross-linked polyethylene, ethylene-vinyl acetate, or a combination thereof.
  • 11. A balance device comprising a lower base component and an upper standing platform configured for placement atop the lower base component, the lower base component extending a length between first and second ends and comprising a height defined between an upper surface and a lower surface, the lower base component further comprising side surfaces extending from the lower surface to the upper surface along the length thereof, wherein the lower base component comprises a first width defined between at least a portion of the side surfaces at about a midpoint of the length, wherein the lower base component comprises a second width defined between at least a portion of the side surfaces near the first and second ends thereof, wherein the first width is less than the second width, and wherein the lower base component comprises at least one selectively removable and reinsertable member for adjusting the stability of the lower base component.
  • 12. The balance device of claim 11, wherein the second width transitions to the first width in a non-linear fashion.
  • 13. The balance device of claim 11, wherein an outer profile of the lower surface of the lower base component is generally I-shaped.
  • 14. The balance training device of claim 11, wherein the lower surface of the lower base component defines a footprint and is configured for resting atop a surface, the footprint defining a polygonal shape.
  • 15. The balance training device of claim 11, wherein the lower base component comprises a polygonal cross-sectional shape when taken along its length.
  • 16. A balance device comprising a lower base component and an upper standing platform configured for placement atop the lower base component, the lower base component comprising an unstable or deformable material and the platform comprising a generally rigid material, the lower base component comprising a length, a height, an upper surface, a lower surface, and a sloped stability surface extending from the upper surface to the lower surface, the lower surface defining a footprint comprising a centrally located narrowed portion and outwardly located widened portions, wherein the lower base component further comprises removable and reinsertable members to adjust the stability thereof.
  • 17. The balance device of claim 16, wherein the upper standing platform is removably attachable to the upper surface of the lower base component.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-Provisional patent application Ser. No. 16/932,692 filed Jul. 17, 2020, which claims priority to U.S. Provisional Patent Application Ser. No. 62/849,379 filed May 17, 2019, the entirety of which is hereby incorporated herein by reference for all purposes.

US Referenced Citations (162)
Number Name Date Kind
1545437 Malone et al. Jul 1925 A
2539869 Sicklesteel Jan 1951 A
3423852 Smith Jan 1969 A
3570847 Bowen Mar 1971 A
3806116 Malmberg et al. Apr 1974 A
4253661 Russell Mar 1981 A
4491318 Francke Jan 1985 A
4601469 Sasser, Jr. Jul 1986 A
4893809 Blankenzee Jan 1990 A
5048823 Bean Sep 1991 A
5469740 French et al. Nov 1995 A
5584787 Guidry Dec 1996 A
5613690 McShane et al. Mar 1997 A
5643154 Awbrey et al. Jul 1997 A
5656000 Russell Aug 1997 A
5833587 Strong et al. Nov 1998 A
5897474 Romero Apr 1999 A
6389883 Berme et al. May 2002 B1
6461285 Theunissen et al. Oct 2002 B1
6551225 Romero Apr 2003 B1
6652432 Smith Nov 2003 B2
6702726 Lin Mar 2004 B2
6705977 Ziak Mar 2004 B1
6719676 Hsu Apr 2004 B1
6790166 Broudy Sep 2004 B2
6929588 Hobson Aug 2005 B2
6942487 Corbalis Sep 2005 B2
6945920 Kemery et al. Sep 2005 B1
7004886 Chen Feb 2006 B2
D517136 Chen Mar 2006 S
7074166 Weitzman Jul 2006 B2
7147593 Vittone Dec 2006 B2
7169099 Kemery et al. Jan 2007 B1
7288055 Blaum Oct 2007 B2
7335172 Laserow Feb 2008 B2
7374517 Lockett May 2008 B2
7488282 Leavitt Feb 2009 B2
7566291 Lickle Jul 2009 B2
7601107 Maloy et al. Oct 2009 B2
7632218 Sannes et al. Dec 2009 B2
7645221 Curry Jan 2010 B1
7717379 Kimmel May 2010 B2
7806807 Genua Oct 2010 B2
7811216 Babiarz Oct 2010 B2
7833144 Como et al. Nov 2010 B1
7922624 Fairhurst et al. Apr 2011 B1
7931570 Hoffman Apr 2011 B2
7946928 Mooney May 2011 B2
8105218 Vayntraub Jan 2012 B1
8105220 Schultheisz Jan 2012 B2
8434824 Spinabella et al. May 2013 B2
8517853 Miller et al. Aug 2013 B2
8632440 Pratson et al. Jan 2014 B2
8647239 Sokolovas et al. Feb 2014 B1
8678985 Mattox Mar 2014 B2
8900165 Jeka et al. Dec 2014 B2
D724162 James Mar 2015 S
8998319 Bahneman et al. Apr 2015 B2
8998784 Sloan et al. Apr 2015 B1
9095738 Senegal Aug 2015 B2
D740378 Walsh-Gomez Oct 2015 S
9295911 Claudel et al. Mar 2016 B2
9320940 Rainey Apr 2016 B2
9387363 Polinsky Jul 2016 B1
9446307 Klein et al. Sep 2016 B2
9457226 Heath Oct 2016 B2
9596936 Bahneman et al. Mar 2017 B2
9630040 Louis Apr 2017 B1
9744402 Klassen Aug 2017 B2
9750980 Khalili Sep 2017 B1
9913508 Tzeng Mar 2018 B2
D815700 Brodwick Apr 2018 S
9931540 Lazar et al. Apr 2018 B1
9999807 Rainey Jun 2018 B2
10029145 Douglass Jul 2018 B2
10045647 Publicover et al. Aug 2018 B2
10071287 Dedvukaj et al. Sep 2018 B2
10159372 Heath Dec 2018 B2
10220243 Koegel Mar 2019 B2
10252103 Irwin et al. Apr 2019 B2
10456626 Groshek Oct 2019 B2
10507359 Shubin Stein Dec 2019 B1
10512814 Conroy Dec 2019 B1
10674786 Adair et al. Jun 2020 B2
10751560 Hall Aug 2020 B2
10751594 Lee Aug 2020 B2
10894183 Irwin et al. Jan 2021 B2
10905915 Wallace Feb 2021 B2
10960260 Weber Mar 2021 B1
11406874 Stewart Aug 2022 B1
11638846 Olson May 2023 B2
20040018924 Szydlowski et al. Jan 2004 A1
20040082399 Shioda Apr 2004 A1
20040087421 Lin May 2004 A1
20040198573 Brydson et al. Oct 2004 A1
20050020418 Lin Jan 2005 A1
20050049123 Dalebout et al. Mar 2005 A1
20050148434 Stec Jul 2005 A1
20050245372 Mylrea et al. Nov 2005 A1
20060014615 Godbold Jan 2006 A1
20060035771 Gant Feb 2006 A1
20060040796 Holloway Feb 2006 A1
20060211553 Cantor Sep 2006 A1
20070087902 Penat et al. Apr 2007 A1
20070155495 Goo Jul 2007 A1
20070167301 Evans Jul 2007 A1
20070207901 Traub Sep 2007 A1
20070219076 Axelrod Sep 2007 A1
20070298947 Eksteen Dec 2007 A1
20080020856 Rosa Jan 2008 A1
20080039304 Mattox Feb 2008 A1
20080312043 Cook Dec 2008 A1
20090178596 Skiba Jul 2009 A1
20090215596 Obermaier Aug 2009 A1
20090270231 Hall et al. Oct 2009 A1
20090312165 Rempe Dec 2009 A1
20100167887 Berry Jul 2010 A1
20100279833 Gant Nov 2010 A1
20100331154 Taylor et al. Dec 2010 A1
20110224059 Crawley Sep 2011 A1
20110237412 Signorile et al. Sep 2011 A1
20120035029 Dye Feb 2012 A1
20120138113 Spinabella et al. Jun 2012 A1
20120208678 Knilans Aug 2012 A1
20120252644 Reade Oct 2012 A1
20120258841 James Oct 2012 A1
20130029814 D'Alessandro Jan 2013 A1
20130047461 Tzeng Feb 2013 A1
20130178346 Lin Jul 2013 A1
20130184131 Doyle Jul 2013 A1
20130252217 Grzesiak Sep 2013 A1
20130267390 Warren Oct 2013 A1
20130288866 Rainey Oct 2013 A1
20130316886 Lynch et al. Nov 2013 A1
20130334846 Bahneman et al. Dec 2013 A1
20140011649 Carney Jan 2014 A1
20140057758 Mack Feb 2014 A1
20140081177 Eguibar et al. Mar 2014 A1
20140162858 Dalebout Jun 2014 A1
20140171213 Newman et al. Jun 2014 A1
20140302973 Fitterer Oct 2014 A1
20140329653 Klopman Nov 2014 A1
20140371041 Terpstra et al. Dec 2014 A1
20150057138 Knilans Feb 2015 A1
20150202495 Klein et al. Jul 2015 A1
20150265878 Hjelt et al. Sep 2015 A1
20150321051 Olson Nov 2015 A1
20170144017 Crist May 2017 A1
20170172331 Publicover et al. Jun 2017 A1
20170291065 Klopman Oct 2017 A1
20170291069 Zakariasen Oct 2017 A1
20180001126 Klopman Jan 2018 A1
20180215434 Chen Aug 2018 A1
20190008302 Publicover Jan 2019 A1
20190076718 Lee Mar 2019 A1
20190269973 Kopke et al. Sep 2019 A1
20190282850 Chen Sep 2019 A1
20190282878 Gouzenko Sep 2019 A1
20200138662 Powell May 2020 A1
20200278757 Nir et al. Sep 2020 A1
20210086021 Constantz Mar 2021 A1
20220273982 Malagon Sep 2022 A1
Foreign Referenced Citations (4)
Number Date Country
104083175 Oct 2014 CN
0210253 Feb 1987 EP
0464280 Jan 1992 EP
1166718 Jan 2002 EP
Related Publications (1)
Number Date Country
20230020270 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62849379 May 2019 US
Continuations (1)
Number Date Country
Parent 16932692 Jul 2020 US
Child 17946056 US