The invention relates, in one general aspect, to capillary viscometers, including capillary bridge viscometers that include an automatic balancing mechanism.
Referring to
In the illustrative viscometer, R1, R2, R3, and R4 are capillary tubes of a small diameter giving them a measurable resistance to the solvent flow, and if R1=R2=R3=R4, the differential pressure (DP) output should theoretically be zero. This is the output signal from the bridge and should be within a small percentage of the total pressure across the bridge measured between the two differential measurement points IP+ and IP− when solvent is flowing. This is called the bridge balance and is given by the equation, Balance=4DP/IP-2DP, where DP is the differential signal from the DP+ and DP− readings measured in Pascals and IP is as mentioned above measured in kPa. Capillary bridge viscometers are described in more detail, for example, in U.S. Pat. No. 4,463,598 to Haney, which is herein incorporated by reference.
When a delay volume is placed in series with one or more capillaries, the bridge can be balanced or rebalanced to make up for additional resistance introduced by the presence of the delay volume(s). This can be accomplished by adjusting the length(s) of one or more of the capillary tubing runs to get the bridge balance back to the manufacturing standard balance. Upon installation or during use, it may become necessary to adjust this delay volume according to the analytical column set required for analysis. One or more additional delay volumes of different sizes may therefore be shipped with the instrument or purchased to meet the specific need of the customer. With these changes comes either increased or decreased resistance within the combined capillary and delay column flow path, and the viscometer can be rebalanced by adding or subtracting to the length of the appropriate capillary tubing in order to achieve the most efficient performance by returning to a balanced condition.
The traditional method for balancing a viscometer bridge is to change the length of one or more of the capillary flow paths. This is accomplished by calculating the amount to subtract (or add) from a length of one or more of the capillaries. The bridge is then disassembled to make the change and reassembled by a skilled technician. This can be extremely inconvenient and may also require the instrument to be returned to the manufacturer for qualified servicing. It is also common for the balance to change due to the introduction of different solvents. These changes are typically ignored because of the inconvenience and because the length difference involved can be physically too small to allow an accurate adjustment to be accurately accomplished, and the result can be a decrease in instrument performance.
Temperature-based balancing has also been proposed in U.S. Pat. No. 7,213,439 to Trainoff, which is herein incorporated by reference. But this approach can have the potential drawback of causing thermally induced changes to properties of the fluids in the viscometer. Understanding whether such changes are a concern for a particular experimental setup and whether they should possibly be compensated for can introduce the prospect of an undesirable level of theoretical complexity for the end user of the viscometer.
Several aspects of the invention are presented in this application.
Referring to
Referring to
The actuating mechanism 30 can move the Nitinol rod in and out of the second conduit to change the pressure across the mechanical balancing unit. The actuating mechanism 30 in the illustrative embodiment can be a linear actuating mechanism that includes a motor 32, such as a stepper motor, that drives a lead screw 34 to advance a carriage 36 on a track 38. Other embodiments can employ a variety of other mechanisms to adjust resistance to flow, such as linkages, racks-and-pinions, magnetically coupled linear actuators, or cam-based mechanisms. And while the use of a machined plumbing block with standard fittings is presently preferred to allow movement of the core without leakage, one of ordinary skill in the art would readily recognize that other approaches could also be employed to achieve the same end. The complete assembly can be mounted on a mounting plate for stability.
Referring also to
Operation begins with a solvent being introduced into the bridge viscometer 14. The differential pressure between the two intermediate measurement points DP+ and DP− is measured to determine whether the bridge is in balance. If it is not, the mechanical balancing unit is adjusted by moving the core in or out of the second conduit to balance the bridge.
The Nitinol rod and carriage assembly are situated in relation to the plumbing block such that, when the rod is pulled all the way out, the resistance of the bridge balance device has almost no resistance to fluid flow. As the rod is pushed into the tube the effective diameter of the tube is decreased, which increases the resistance of the flow path containing the device and capillary. This is in essence the same as adding to the length of the capillary. Conversely, drawing the rod back out of the tube reduces the resistance in the flow path containing the device and capillary. This allows the user to obtain excellent precision in viscometer balance and performance.
The adjustment may be performed automatically, semi-automatically, or manually. In automatically balanced embodiments, a controller can detect an imbalance between signals from transducers that measure the two intermediate measurement points DP+ and DP−. The controller can then produce a driving signal 42 that it provides to the actuator 32 until the imbalance is resolved. In semi-automatically balanced embodiments, an operator can provide a signal to the actuator until he or she determines that the bridge is balanced. In a manually balanced embodiment, no actuator is needed and the user can balance the bridge mechanically, such as by manually turning a knob attached to the lead screw 34. All of these methods are less cumbersome than prior art methods that involve replacing lengths of capillary tubing and can be readily performed in situ by the customer.
The mechanical balancing unit mechanism described above has been found to allow very fine pressure adjustments. This can allow for the construction of a highly precise instrument. A variety of other types of balancing unit mechanisms, such as ones based on micrometering valves or ones that that operate by squeezing or stretching flexible tubing, may also be suitable in some circumstances.
The mechanical balancing unit can be used in a variety of different kinds of instruments. It can be used in a more complex capillary viscometer that provides for eliminating break through peaks, for example, such as is described in US Pub. No. 2008/045133 to Titterton, which is herein incorporated by reference. It can also be used in other types of instruments that benefit from the ability to make small changes in flow resistance.
The present invention has now been described in connection with a number of specific embodiments thereof. However, numerous modifications which are contemplated as falling within the scope of the present invention should now be apparent to those skilled in the art. Therefore, it is intended that the scope of the present invention be limited only by the scope of the claims appended hereto. In addition, the order of presentation of the claims should not be construed to limit the scope of any particular term in the claims.
This application is a continuation of U.S. patent application Ser. No. 13/825,622 (U.S. Pat. No. 9,759,644), which is a National Stage entry of PCT/GB2011/051805, filed Sep. 23, 2011, which, in turn, claims priority to U.S. provisional patent application No. 61/385,952, filed Sep. 23, 2010. All of these applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2449067 | Guillemin | Sep 1948 | A |
3086386 | Frederick | Apr 1963 | A |
3302448 | Mocker | Feb 1967 | A |
4463598 | Haney | Aug 1984 | A |
4779642 | Wood | Oct 1988 | A |
6561480 | Komiya | May 2003 | B1 |
7213439 | Trainoff | May 2007 | B2 |
7331218 | Trainoff | Feb 2008 | B2 |
9759644 | Nicholls | Sep 2017 | B2 |
20020166367 | Bures | Nov 2002 | A1 |
20070068229 | Trainoff | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
S59160740 | Oct 1983 | JP |
2006276018 | Oct 2006 | JP |
2009133726 | Jun 2009 | JP |
Entry |
---|
PCT International Search Report. |
PCT Written Opinion. |
apanese Office Action, dated Apr. 25, 2016. |
Communication about intention to grant a European patent, including text intended for grant, dated Sep. 11, 2018. |
Number | Date | Country | |
---|---|---|---|
20180106710 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61385952 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13825622 | US | |
Child | 15701043 | US |