In data transmission networks, cross-connect connectors (such as BIX, 110, 210, etc.) are commonly used in telecommunication rooms to interconnect the ends of telecommunications cables, thereby facilitating network maintenance. For example, the prior art reveals cross connectors comprised of a series of isolated flat straight conductors each comprised of a pair of reversed Insulation Displacement Contact (IDC) connectors connected end to end for interconnecting a conductor of a first cable with the conductors of a second cable.
As known in the art, all conductors transmitting signals act as antennas and radiate the signal they are carrying into their general vicinity. Other receiving conductors will receive the radiated signals as crosstalk. Cross talk typically adversely affects signals being carried by the receiving conductor and must be dealt with if the strength of the received crosstalk exceeds certain predetermined minimum values. The strength of received cross talk is dependant on the capacitive coupling between the transmitting conductor and the receiving conductor which is influenced by a number of mechanical factors, such as conductor geometry and spacing between the conductors, as well the frequency of the signals being carried by the conductors, shielding of the conductors, etc. As signal frequency increases, the influence of even quite small values of capacitive coupling can give rise to significant cross talk having a deleterious effect on signal transmission.
Systems designed for the transmission of high frequency signals, such as the ubiquitous four twisted pair cables conforming to ANSI/EIA 568, take advantage of a variety of mechanisms to minimise the capacitive coupling between conductors both within and between cables. One problem with such systems is that, although coupling, and therefore crosstalk, is reduced within the cable runs, conductors within the cables must inevitably be terminated, for example at device or cross connector. These terminations introduce irregularities into the system where coupling, and therefore cross talk, is increased. With the introduction of Category 6 and Augmented Category 6 standards and the 10 GBase-T transmission protocol, the allowable levels for all kinds of internal and external crosstalk, including Near End Crosstalk (NEXT), Far End Crosstalk (FEXT) and Alien Crosstalk, have been lowered. As a result, the prior art connectors and interconnectors are generally no longer able to meet the allowable levels for cross talk.
Additionally, although long cable elements such as the twisted pairs of conductors achieve good crosstalk characteristics through appropriate twisting and spacing of the pairs of conductors, when viewed as a whole, the cable is subject to additional crosstalk at every irregularity. Such irregularities occur primarily at connectors or interconnectors and typically lead to an aggressive generation of crosstalk between neighbouring pairs of conductors which in turn degrades the high frequency bandwidth and limits data throughput over the conductors. As the transmission frequencies continue to increase, each additional irregularity at local level, although small, adds to a collective irregularity which may have a considerable impact on the transmission performance of the cable. In particular, unraveling the ends of the twisted pairs of conductors in order to introduce them into an IDC type connections introduces capacitive coupling between the twisted pairs.
In order to address the above and other drawbacks, there is provided a connector for terminating two pairs of conductors. The connector comprises first and second pairs of elongate terminals, each of the terminal pairs terminating a respective one of the pairs of conductors, each of the first pair of terminals arranged substantially in parallel to and substantially equidistant from a first plane and each of the second pair of terminals arranged substantially in parallel to and substantially equidistant from a second plane at right angles to the first plane, the first plane intersecting the second plane substantially at right angles along a line of intersection substantially in parallel to each of the first and second terminal pairs. When viewed transversely, a first distance between a first terminal of the first terminal pair and a first terminal of the second terminal pair is less than a second distance between the first terminal of the first terminal pair and a second terminal of the second terminal pair and a third distance between a second terminal of the first terminal pair and the first terminal of the second terminal pair is less than a fourth distance between the second terminal of the first terminal pair and the second terminal of the second terminal pair.
There is also provided an interconnector for interconnecting a first set of two pairs of conductors with a second set of two pairs of conductors. The interconnector comprises a non conductive housing comprising a first outer surface and a second outer surface, and at least two pairs of like conducting elements, each element of each of the pairs comprising an elongate terminal at opposite first and second ends thereof, the terminals generally parallel and non-collinear, the terminals at the first ends for receiving a respective one of the first set of conductors and the terminals at the second ends for receiving a respective one of the second set of conductors. The elements of a first of the pairs lie on either side of a first plane and are arranged opposite one another as a reverse mirror image, wherein the elements of a second of the pairs lie on either side of a second plane and are arranged opposite one another as a reverse mirror image and wherein the first plane intersects the second plane at right angles along a first line of intersection which is parallel to the elongate terminals. At least a portion of each of the terminals at the first element ends are exposed on the first surface and at least a portion of each of the terminals at the second element ends are exposed on the second surface.
Furthermore, there is provided an interconnector for interconnecting a first cable comprising four twisted pairs of conductors with a second cable comprising four twisted pairs of conductors. The interconnector comprises a non conductive housing comprising a first outer surface and a second outer surface, and first, second, third and fourth pairs of like conducting connecting elements, each element of a given one of the pairs of elements comprising an elongate terminal at opposite first and second ends thereof, the terminals substantially parallel and non-collinear and adapted to receive a respective one of the conductors wherein each element of the given pair lies in a different plane and wherein a first element of the given pair is arranged opposite a second element of the given pair as a reverse mirror image. A first element of the first pair and a first element of the second pair lie in a first plane, a second element of the first pair and a second element of the second pair lie in a second plane, a first element of the third pair and a first element of the fourth pair lie in a third plane and a second element of the third pair and a second element of the fourth pair lie in a fourth plane and further wherein at least a portion of each of the terminals at the first ends is exposed on the first outer surface and at least a portion of each of the terminals at the second ends is exposed on the second outer surface.
Additionally, there is provided an interconnection between a first set of two pairs of conductors and a second set of two pairs of conductors. The interconnection comprises first and second pairs of like elongate connecting elements, a first end of each of the first pair of elements connected to a respective one of a first pair of the first set of pairs of conductors, a second end of each of the first pair of elements connected to a respective one of a first pair of the second set of pairs of conductors, a first end of each of the second pair of elements connected to a respective one of a second pair of the first set of pairs of conductors, and a second end of each of the second pair of elements connected to a respective one of a second pair of the second set of pairs of conductors, and a first capacitor connected between a first element of the first pair and a first element of the second pair, a second capacitor connected between a first element of the first pair and a second element of the second pair, a third capacitor connected between a second element of the first pair and a first element of the second pair, and a fourth capacitor connected between a second element of the first pair and a second element of the second pair. The capacitors have a capacitive value which is substantially equal.
Also, there is provided a method of interconnecting first and second conductors of a first pair of conductors respectively with first and second conductors of a second pair of conductors and first and second conductors of a third pair of conductors respectively with first and second conductors of fourth second pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same. The method comprises providing first and second interconnecting elements, providing a first capacitor having a capacitive value substantially the same as the parasitic capacitances, coupling the first and second elements with the first capacitor, interconnecting the first element between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and the second element between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors, providing third and fourth interconnecting elements, providing a second capacitor having a capacitive value substantially the same as the parasitic capacitances, coupling the third and fourth elements with the second capacitor, interconnecting the third element between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and the fourth element between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors.
Additionally, there is disclosed an interconnector for interconnecting first and second conductors of a first pair of conductors with first and second conductors of a second pair of conductors and first and second conductors of a third twisted pair of conductors with first and second conductors of a fourth twisted pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same. The interconnector comprises first and second Tip elements, the first Tip element interconnected between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and the second Tip element interconnected between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors, first and second Ring elements, the first Ring element interconnected between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and the second Ring element interconnected between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors, and first and second capacitors between respectively the first and second Tip elements and the first and second Ring elements. Each of the capacitors is substantially equal to the first and second parasitic capacitances.
There is also provided an interconnection panel for interconnecting a first plurality of cables with a second plurality of cables, each of the cables comprising at least two pairs of conductors. The panel comprises a plurality of interconnectors arranged in a row, each of the interconnectors adapted to interconnect a respective cable of the first plurality of cables with a respective cable of the second plurality of cables. Each of the interconnectors comprises a non conductive housing comprising a first outer surface and a second outer surface, and at least two pairs of like conducting elements, each element of each of the pairs comprising an elongate terminal at opposite first and second ends thereof, the terminals generally parallel and non-collinear, the terminals at the first ends for receiving a respective one of the conductors of the respective one of the first plurality of cables and the terminals at the second ends for receiving a respective one of the conductors of the respective one of the second plurality of cables. The elements of a first of the pairs lie on either side of a first plane arranged opposite one another as a reverse mirror image, wherein the elements of a second of the pairs lie on either side of a second plane arranged opposite one another as a reverse mirror image and wherein the first plane intersects the second plane at right angles along a first line of intersection which is parallel to the elongate terminals. At least a portion of each of the terminals at the first element ends are exposed on the first surface and at least a portion of each of the terminals at the second element ends are exposed on the second surface.
Referring now to
Referring now to
As known in the art, the IDCs as in 28, 30 are each comprised of a pair of opposed insulation displacing blades as in 34. Each connecting element 22 is illustratively stamped from a flat conducting material such as nickel plated steel, although in a particular embodiment the connecting element 22 could be formed in a number of ways, for example as an etched trace on a Printed Circuit Board (PCB) or the like.
Still referring to
As known in the art, the insulated conductors as in 40 are typically arranged into colour coded twisted pairs of conductors, and often referred to as Tip and Ring. In twisted pair wiring, the non-inverting wire of each pair is often referred to as the Ring and comprises an outer insulation having a solid colour, while the inverting wire is often referred to as the Tip and comprises a white outer insulation including a coloured stripe.
Note that although the first set of turrets 16 and the second set of turrets as in 20 in the above illustrative embodiment are each shown as being arranged in two (2) parallel rows of turrets, in a particular embodiment the first set of turrets 16 and the second set of turrets as in 20 could be arranged in a single row, alternatively also together with others, to form the inline cross connector as illustrated in
Referring now to
Referring now to
Referring now to
Referring back to
Still Referring to
The inherent capacitances CI1 and CI2 effectively cancel the differential mode signals that would otherwise be induced in the pair of conductors 404 and 405 by the pair of conductors 407 and 408 and vice versa.
This effect is illustrated in the capacitive network as shown in
Referring now to
Referring now to
Referring now to
As will now be apparent to a person of ordinary skill in the art, a differential signal travelling on conductors 404 and 405 will appear as equal and opposite signals on both conductors 407 and 408 which effectively cancel each other. Indeed, the positive phase of the differential signal carried on conductor 404 is coupled by CP4-7 and CP4-8 onto both conductors 407 and 408. Similarly, the negative phase of the differential signal carried on conductor 405 is coupled by CP5-8 and CP5-7 onto both conductors 407 and 408. As the parasitic capacitances are substantially equal and the lengths of the connecting elements as in 22 much less than the wavelength of the signal being transmitted (illustratively signals of 650 MHz having a wavelength of circa 0.46 meters), thereby resulting in only minimal shifts in phase, the differential signals coupled onto conductors 407 and 408 by the parasitic capacitances as cross talk will effectively cancel each other out.
Referring now to
Referring now to
Referring now to
Referring now to
A person of skill in the art will understand that the present invention could also be used together with shielded conductors and cables, for example with the provision of a shielding cover (not shown) on the cross connector 10 manufactured for example from a conductive material and interconnected with the shielding material surrounding the conductors/cables.
Although the present invention has been described hereinabove by way of an illustrative embodiment thereof, this embodiment can be modified at will without departing from the spirit and nature of the subject invention.
Number | Date | Country | Kind |
---|---|---|---|
2,487,760 | Nov 2004 | CA | national |
2,544,929 | Apr 2006 | CA | national |
This application is a Continuation-In-Part (CIP) application of PCT Application No. PCT/CA2005/001753 filed on Nov. 15, 2004 designating the United States and published in English under PCT Article 21(2), which itself claims priority on U.S. Provisional Application No. 60/628,136 filed on Nov. 17, 2004 and Canadian Patent Application No. 2,487,760 also filed on Nov. 17, 2004. This application also claims priority on U.S. Provisional Application No. 60/745,563 filed on Apr. 25, 2006 and Canadian Patent Application No. 2,544,929 also filed on Apr. 25, 2006. All documents cited above are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60745563 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2005/001753 | Nov 2005 | US |
Child | 11740154 | Apr 2007 | US |