Claims
- 1. A balanced L-section low-pass common mode filter, said common mode filter being externally connected in series with balanced pair of data I/O lines to remove common mode signals from balanced line difference mode signals, common mode signals being by definition in-phase and difference mode signals being by definition out-of-phase, said filter employing a series transformer configured such that the magnetic fields in the transformer are subtractive for out-of-phase difference mode signals and additive for in-phase common mode signals, said filter also employing another transformer configured in shunt across the data lines such that the magnetic fields in the transformer are additive for out-of-phase difference mode signals and subtractive for in-phase common mode signals, said common mode filter comprising:
- a first and second ferrite core, each having a winding aperture;
- a series transformer formed by first and second windings wound bifilar with a plurality of turns through said aperture of said first ferrite core and around outside surface of said first ferrite core, said first and second windings each having an input and an output, said inputs of said first and second windings being connected to external input data I/O lines, said first and second windings wound in the same direction through said aperture of said first ferrite core so that difference mode signals react to a low impedance because the magnetic fields in said first transformer are subtractive for out-of-phase difference mode signals while common mode signals react to a high impedance because the magnetic fields in said first transformer are additive for in-phase common mode signals;
- a shunt transformer formed by third and fourth windings wound bifilar with a plurality of turns through said aperture of said second ferrite core and around outside surface of said second ferrite core, said third and fourth windings each having an input and an output, said input of said third winding connected to said output of said first winding, said output of said fourth winding connected to said output of said second winding, said third and fourth windings wound in the same direction through said second aperture, said output of said third winding connected externally to ground, said output of said third winding also being connected in series with said input of said fourth winding so that common mode signals react to a short circuit impedance to ground because the magnetic fields in said second transformer are subtractive for in-phase signals, while difference mode signals react to a high impedance from line to line because the magnetic fields in said second transformer are additive for out-of-phase signals.
- 2. The L-section common mode filter according to claim 1, wherein for ease of assembly, said first and second ferrite cores are formed in a common ferrite core having two winding apertures, each transformer utilizing a separate winding aperture in said common ferrite core in order to minimize magnetic coupling between the windings of said first and second transformers.
- 3. A balanced T-section low-pass common mode filter, said common mode filter being externally connected in series with a pair of balanced data I/O lines to remove common mode signals from balanced line difference mode signals, common mode signals being by definition in-phase and difference mode signals being by definition out-of-phase, said filter employing a series transformer configured such that the magnetic fields in the transformer are subtractive for out-of-phase difference mode signals and additive for in-phase common mode signals, said filter also employing another transformer configured in shunt across the data lines such that the magnetic fields in the transformer are additive for out-of-phase difference mode signals and subtractive for in-phase common mode signals, said common mode filter comprising:
- a first and second ferrite core, each having a winding aperture;
- a series transformer formed by first and second windings wound bifilar with a plurality of turns through said aperture of said first ferrite core and around outside surface of said first ferrite core, said first and second windings each having an input and an output, said inputs of said first and second windings being connected to external input data I/O lines, said first and second windings wound in the same direction through said aperture of said first ferrite core so that difference mode signals react to a low impedance because the magnetic fields in said first transformer are subtractive for out-of-phase difference mode signals while common mode signals react to a high impedance because the magnetic fields in said first transformer are additive for in-phase common mode signals;
- first and second D.C. blocking capacitors, each having an input and an output, said input of said first capacitor connected to said output of said first winding, said input of said second capacitor connected to said output of said second winding, said inputs of said first and second capacitors being connected to external output data I/O lines;
- a shunt transformer formed by third and fourth windings wound bifilar with a plurality of turns through said aperture of said second ferrite core and around outside surface of said second ferrite core, said third and fourth windings each having an input and an output, said input of said third winding connected to said output of said first capacitor, said output of said fourth winding connected to said output of said second capacitor, said third and fourth windings wound in the same direction through said second aperture, said output of said third winding connected externally to ground, said output of said third winding also being connected in series with said input of said fourth winding so that common mode signals react to a short circuit impedance to ground because the magnetic fields in said second transformer are subtractive for in-phase signals, while difference mode signals react to a high impedance from line to line because the magnetic fields in said second transformer are additive for out-of-phase signals.
- 4. The L-section common mode filter according to claim 3, wherein for ease of assembly, said first and second ferrite cores are formed in a common ferrite core having two winding apertures, each transformer utilizing a separate winding aperture in said common ferrite core in order to minimize magnetic coupling between the windings of said first and second transformers.
Parent Case Info
This is a continuation of application Ser. No. 07/651,884 filed Feb. 7, 1991 now U.S. Pat. No. 5,077,543.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
4409569 |
Potash |
Oct 1983 |
|
5077543 |
Carlile |
Dec 1991 |
|
Non-Patent Literature Citations (1)
Entry |
A schematic of the Schwartzbeck device, Fernmelde-T-Netznachbildung, VDE 0878, Tell 1 (Walter), NTFM 8132, Feb. 7, 1991. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
651884 |
Feb 1991 |
|