The invention relates to a balanced-to-unbalanced transformer (BALUN) for transmitting large high-frequency power, for example at the balanced output of a transistor power amplifier for coupling to an unbalanced output line.
Balanced-to-unbalanced transformers for higher powers have hitherto been constructed in coaxial line technology. This results in relatively bulky arrangements that have to be relatively expensively produced manually and connected as separate components to the rest of the circuit.
It is also already known to produce balanced-to-unbalanced transformers in printed circuit technology and, in doing so, to construct the conductor loops of the transformer either only on the top of the conductor board (British Patent GB 2 084 809) or on the opposite sides of the conductor board (U.S. Pat. No. 4,193,048). The latter balanced-to-unbalanced transformers constructed in printed circuit technology are, however, normally only suitable for transmitting low high-frequency power.
An object of the invention is to provide a balanced-to-unbalanced transformer for transmitting high power that can be produced easily and inexpensively in printed circuit technology and to specify a method of producing it.
Proceeding from a balanced-to-unbalanced transformer, this object may be achieved. The object may further be achieved by a production method.
An inventive balanced-to-unbalanced transformer can be very easily and inexpensively produced in printed circuit technology directly integrated with the rest of the high-frequency circuit. The sheet-metal part additionally soldered on increases the thermal conduction of the balanced conductor loop to such an extent that the waste heat generated in the transmission of the high-frequency power can be completely dissipated to a heat sink. Compared with a known balanced-to-unbalanced transformer constructed in printed circuit technology, in which the conductor loops are formed only by the thin conductor-board layer, said additional sheet-metal part can therefore transmit two to three times the high-frequency power.
Depending on the transmitted frequency and, consequently, the size of the conductor loops, an inventive balanced-to-unbalanced transformer can be operated, for example, up to a transmission power of 150 watts despite its simple and inexpensive construction. The inventive principle can be applied to all standard balanced-to-unbalanced transformers that are constructed in printed circuit technology and in which the unbalanced conductor loop is constructed either on the same side or on the opposite side of the conductor board. In the same way, the inventive principle is also suitable for balanced-to-unbalanced transformers whose unbalanced loop is constructed as a double loop and that consequently acts as a 4:1 transformer.
An inventive balanced-to-unbalanced transformer can be used wherever fairly high power has to be transmitted between high-frequency circuits. This is the case, for example, in high-frequency transmitters for bringing together or distributing high-frequency power. It has proved particularly advantageous to use an inventive balanced-to-unbalanced transformer at the output of push-pull transistor power amplifiers since this then results in a particularly compact and simple overall structure of a power amplifier having unbalanced output.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the present invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The input circuit for the power transistor that is not shown and that is preferably likewise constructed as a balanced-to-unbalanced transformer is not shown in
Soldered onto the top of the balanced conductor loop 2 is an additional loop-shaped copper sheet part 20 shaped in the same way. As a result, the balanced conductor loop of the balanced-to-unbalanced transformer becomes thicker and conducts heat better. The heat that is produced in the transmission of large high-frequency power in the thickened conductor loop 2, 20, and that is also partly introduced into the loop by adjacent capacitors is uniformly distributed by the thickened ring and can be dissipated to the heat sink 14 via a screw 16 that is formed into an assembly bore 18 of a protrusion 17 projecting inwards and can be screwed into a threaded bore 19 in the heat sink 14, and can be extracted in said heat sink by means of the coolant circulating, for example in the heat sink.
Provided on the conductor loop 2 is a matching projection 21 having a matching assembly bore 22, the latter being interconnected and the interconnecting ring, formed on the back of the conductor board 1, of said bore 22 lying flat in the assembled state on the top of the heat sink 14, with the result that the thermal contact between conductor loop and heat sink is increased still further. The thickened construction of the balanced conductor loop 2, 20 on the top of the conductor board 1 makes it possible for the transformer capacitors 9, via which the high-frequency power of the transistor (terminal tracks 10, 11) are routed to the balanced input 7, 8 of the transformer, and, optionally, a further capacitor 23 disposed in the gap 6 to be capable of being soldered likewise over a relatively large area to the copper ring 20 with the result that the waste heat of such capacitors is dissipated well.
The production of such a balanced-to-unbalanced transformer is very easy and inexpensive since the additional copper sheet part 20 can be soldered onto the prepared printed circuit board like a standard component in automatic SMD (surface mounted devices) assembly technology together with the other components of the transistor circuit. For this purpose, shoulder paste is applied to the thin copper layer 2 of the conductor loop 2 in a known manner, the copper sheet part 20 is then placed flat on the solder paste and, finally, the conductor board, assembled in this way also with the remaining components, is introduced into the hot-air furnace. In order to fix the component 20 in position on the conductor loop 2 when the solder paste melts, strip-shaped solder resist 24 is applied to the opposite internal edges of the conductor track 2.
Exemplary embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
101 05 696 | Feb 2001 | DE | national |
This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/EP02/000146 which has an International filing date of Jan. 2, 2002, which designated the United States of America and which claims priority on Germany Patent Application number 101 05 696.6 filed Feb. 8, 2001, the entire contents of which are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/00146 | 1/9/2002 | WO | 00 | 10/27/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/06376 | 8/15/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4186352 | Hallford | Jan 1980 | A |
4193048 | Nyhus | Mar 1980 | A |
5061910 | Bouny | Oct 1991 | A |
5917386 | Dobrovolny | Jun 1999 | A |
6144276 | Booth | Nov 2000 | A |
6294965 | Merrill et al. | Sep 2001 | B1 |
Number | Date | Country |
---|---|---|
1938152 | Jan 1971 | DE |
2084809 | Apr 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20040080376 A1 | Apr 2004 | US |