The present invention relates to a balancer apparatus.
PTL 1 discloses a balancer apparatus coupled with an oil pump. In this balancer apparatus, an oil pump housing containing an oil pump mechanism therein, and a balancer housing containing a balancer shaft therein are formed integrally with each other.
[PTL 1] Japanese Patent No. 3668548
However, forming the oil pump housing and the balancer housing integrally with each other leads to low design flexibility.
According to a first aspect of the present invention, a balancer apparatus is provided. This balancer apparatus includes a balancer shaft configured to be rotationally driven, a balancer housing rotatably containing the balancer shaft therein, and an oil pump including an oil pump housing formed separately from the balancer housing and attached to the balancer housing. The balancer housing includes an upper housing and a lower housing formed separately from the upper housing. The lower housing includes a first boss and a second boss configured to fasten the oil pump to the lower housing and protruding downward on one end side of an axial direction of the balancer shaft, and a third boss configured to fasten the oil pump to the lower housing and disposed on an upper side with respect to the first boss and the second boss. The first boss and the second boss are disposed so as to be spaced apart from each other in a direction orthogonal to the axial direction in such a manner that a recessed portion is formed therebetween. The oil pump includes an intake portion having an opening portion for introducing oil into the oil pump. The intake portion is disposed at least partially in the recessed portion.
According to the above-described balancer apparatus, the balancer housing and the oil pump housing are different members. Therefore, the balancer apparatus can be designed highly flexibly. Further, the first boss and the second boss protrude downward, so that the first to third bosses can be arranged in a wide width in a vertical direction. In other words, the oil pump can be supported over a further wide range. Therefore, the oil pump can be supported with improved stiffness. In addition, the intake portion of the oil pump is disposed at least partially in the recessed portion formed between the first boss and the second boss, which contributes to preventing or cutting down an increase in a height of the balancer apparatus due to the downward protrusion of the first boss and the second boss.
According to a second aspect of the present invention, in the first aspect, the lower housing includes a fourth boss configured to fasten the oil pump to the lower housing and disposed on the upper side with respect to the first boss and the second boss. According to this aspect, the oil pump can be supported at at least four points, and therefore can be supported with improved stiffness.
According to a third aspect of the present invention, in the first or second aspect, the first boss includes a first screw hole on a distal end side thereof. The second boss includes a second screw hole on a distal end side thereof. Half or more of the intake portion is disposed on an upper side with respect to an imaginary line connecting a center of the first screw hole and a center of the second screw hole in a cross section orthogonal to the axial direction. According to this aspect, the increase in the height of the balancer apparatus can be effectively prevented or cut down.
According to a fourth aspect of the present invention, in any of the first to third aspects, the opening portion is opened toward an opposite end side in the axial direction. According to this aspect, the increase in the height of the balancer apparatus can be prevented or cut down.
According to a fifth aspect of the present invention, in the fourth aspect, the balancer apparatus further includes a strainer extending in the axial direction and including a first end portion connected to the opening portion and a second end portion opened downward. According to this aspect, while the increase in the height of the balancer apparatus is prevented or cut down, the oil can be introduced from a desired position in an oil pan covering a lower side of the balancer apparatus.
According to a sixth aspect of the present invention, in any of the first to third aspects, the opening portion is opened downward. According to this aspect, the increase in the height of the balancer apparatus can be prevented or cut down.
According to a seventh aspect of the present invention, in the seventh aspect, the intake portion includes a strainer portion extending from the opening portion downward. The strainer portion is formed integrally with the intake portion. According to this aspect, the number of components can be reduced. Further, the strainer portion allows the oil to be easily introduced.
According to an eighth aspect of the present invention, in the second aspect or any of the third to seventh aspects including the second aspect, at least one of the third boss and the fourth boss is formed so as to protrude upward beyond mating surfaces between the upper housing and the lower housing. According to this aspect, the first to fourth bosses can be arranged over a further wide width in the vertical direction without being accompanied by an increase in the height of the balancer apparatus. Therefore, the oil pump can be supported with further improved stiffness.
According to a ninth aspect of the present invention, in the second aspect, any of the third to seventh aspects including the second aspect, or the eighth aspect, at least one of the first to fourth bosses is reinforced by a reinforcement rib extending from the lower housing. According to this aspect, the oil pump can be supported with further improved stiffness.
According to a tenth aspect of the present invention, in the ninth aspect, the lower housing includes a bearing support portion partially containing therein a bearing configured to rotatably support the balancer shaft. The reinforcement rib is connected to the bearing support portion. The bearing support portion is normally formed so as to have higher stiffness than other portions of the housing, so that, according to this aspect, the oil pump can be supported with further improved stiffness.
According to an eleventh aspect of the present invention, in the tenth aspect, the reinforcement rib connects at least one of the first boss and the second boss and at least one of the third boss and the fourth boss, and the bearing support portion to each other. According to this aspect, the oil pump can be supported with further improved stiffness.
According to a twelfth aspect of the present invention, in any of the first to eleventh aspects, the balancer shaft includes a drive shaft to which a rotational force of a crankshaft of an engine is transmitted, and a driven shaft configured to rotate in an opposite direction from the drive shaft by a rotational force transmitted from the drive shaft. The rotational force is transmitted to the oil pump by the drive shaft or the driven shaft. According to this aspect, the balancer apparatus can have a compact size.
According to a thirteenth aspect of the present invention, a balancer apparatus is provided. This balancer apparatus includes a balancer shaft configured to be rotationally driven, a balancer housing rotatably containing the balancer shaft therein and including a first balancer housing and a second balancer housing formed separately from the first balancer housing and coupled with the first balancer housing, and an oil pump including an oil pump housing formed separately from the balancer housing and attached to the first balancer housing. The balancer housing includes a first boss and a second boss configured to fasten the oil pump to the first balancer housing and protruding downward on one end side of an axial direction of the balancer shaft, and a third boss configured to fasten the oil pump to the lower housing and disposed on an upper side with respect to the first boss and the second boss. The first boss and the second boss are disposed so as to be spaced apart from each other in a direction orthogonal to the axial direction in such a manner that a recessed portion is formed therebetween. The oil pump includes an intake portion having an opening portion for introducing oil into the oil pump. The intake portion is disposed at least partially in the recessed portion. According to this balancer apparatus, similar effect to the first aspect are brought about. Any of the third to eleventh aspects can also be applied to the twelfth aspect.
According to a fourteenth aspect of the present invention, in the thirteenth aspect, the first boss includes a first screw hole on a distal end side thereof. The second boss includes a second screw hole on a distal end side thereof. Half or more of the intake portion is disposed on an upper side with respect to an imaginary line connecting a center of the first screw hole and a center of the second screw hole in a cross section orthogonal to the axial direction. According to this aspect, a similar effect to the second aspect is brought about.
According to a fifteenth aspect of the present invention, in any of the first to fourteenth aspects, the balancer apparatus includes a speed reduction mechanism. The oil pump is a variable displacement oil pump capable of varying a discharge volume thereof. A rotational force of the balancer shaft is transmitted to the oil pump via the speed reduction mechanism.
According to a sixteenth aspect of the present invention, in the fifteenth aspect, the balancer shaft includes a drive shaft to which a rotational force of a crankshaft of an engine is transmitted, and a driven shaft configured to rotate in an opposite direction from the drive shaft by a rotational force transmitted from the drive shaft. The speed reduction mechanism includes a drive gear and a driven gear having a larger number of teeth than the drive gear. The drive gear is fixed to the driven shaft. The driven gear is fixed to a drive shaft of the oil pump. According to this aspect, the oil pump can be driven at a relatively low speed, so that pump efficiency is improved, as a result of which fuel efficiency is improved.
According to a seventeenth aspect of the present invention, in the sixteenth aspect, the recessed portion is disposed right below the driven shaft. A shaft center of the driven shaft is disposed on an upper side with respect to a shaft center of the driven gear. According to this aspect, a depth of the recessed portion can be increased by an amount corresponding to the upward offset of the shaft center of the driven shaft from the shaft center of the driven gear. In other words, the depth of the recessed portion containing the intake portion therein is increased, so that the intake portion can be contained further deeply in the recessed portion. Therefore, the increase in the height of the balancer apparatus can be further prevented or cut down. Any of the fourteenth to sixteenth aspects can also be applied to any of the first to eleventh aspects.
A first embodiment of the present invention will be described.
The balancer apparatus 1 is contained in an oil pan (not illustrated) attached to a lower portion of a cylinder block (not illustrated) of an engine. The engine is, for example, an in-line four-cylinder reciprocating engine. As illustrated in
In the following description, an X axis, a Y axis, and a Z axis are set to the front-rear direction, a vertical direction, and a left-right direction of the engine, respectively. Further, the present embodiment will be described, assuming that an X-axis positive direction, a Y-axis positive direction, and a Z-axis positive direction are a direction extending from a front side to a rear side of the engine, a direction extending from a lower side to an upper side of the engine (a vertically upward direction), and a direction extending from a right side to a left side as viewed from the front side of the engine, respectively.
The balancer shafts 2 and 3 each include an axis (a rotational axis) extending in the X-axis direction. The balancer shafts 2 and 3 each include a generally semi-cylindrical balancer weight (not illustrated) having a center of gravity offset from the axis of the balancer shaft 2 or 3 as viewed in the X-axis direction. Both the balancer weights are constantly located at the same heights as each other during rotations of the balancer shafts 2 and 3. A pair of interlocking gears 2a and 3a meshed with each other is provided at ends of the balancer shafts 2 and 3 in the X-axis positive direction, respectively. Further, reference holes 2b and 3b are formed at the ends of the balancer shafts 2 and 3 in the X-axis positive direction, respectively. A positioning clip (not illustrated) is mounted in each of the reference holes 2b and 3b when the balancer apparatus 1 is attached to the cylinder block. A driven gear 2c meshed with a drive gear (not illustrated) fixed to the crankshaft is fixed at around an end of the drive shaft 2 in the X-axis negative direction (refer to
The balancer housing 4 includes an upper housing 5 and a lower housing 6 formed separately from the upper housing 5. The upper housing 5 and the lower housing 6 (hereinafter also referred to as balancer housings 5 and 6) are formed so as to have generally half-divided shapes divided vertically into two members, and are in abutment with each other by mating surfaces 5a and 6a extending in parallel with the X axis. The balancer housings 5 and 6 are fastened in the Y-axis direction with use of six housing fastening bolts 7.
Bearings (not illustrated), which rotatably support the balancer shaft 2 or 3, are provided on both sides of a weight containing portion (not illustrated) in the X-axis direction inside the balancer housings 5 and 6. The weight containing portion contains therein each of the balancer weights of the balancer shafts 2 and 3. Bearing support portions 8 and 9, which contain these bearings, are formed on the lower housing 6. The bearing support portions 8 and 9 are formed with a great thickness compared to other portions of the lower housing 6, thereby having high stiffness. The bearing support portion 8 is positioned on an X-axis negative direction side of the balancer weight, and the bearing support portion 9 is positioned on an X-axis positive direction side of the balancer weight. A bottom surface (a surface on a Y-axis negative direction side) of each of the bearing support portions 8 and 9 has a predetermined width in the X-axis direction and extends in the Z-axis direction. Three of the six housing fastening bolts 7 are disposed outside the balancer shafts 2 and 3 and between the balancer shafts 2 and 3, and are lined up in the Z-axis direction, at the bearing support portion 8. The remaining three bolts 7 are disposed outside the balancer shafts 2 and 3 and between the balancer shafts 2 and 3, and are lined up in the Z-axis direction, at the bearing support portion 9.
Four leg portions 10 extending in the Y-axis positive direction are provided at four corners of the upper housing 5 in the X-axis direction and the Z-axis direction. A positioning hollow pin 10a protrudes upward at an end of each of the leg portions 10 in the Y-axis positive direction. The positioning hollow pin 10a is press-fitted in the leg portion 10. A balancer fastening bolt (not illustrated) is inserted in each of the leg portions 10 and the positioning hollow pin 10a. The balancer fastening bolt is used to fasten the balancer housing 4 to the cylinder block from the Y-axis negative direction side.
An oil pump 12 is coupled with an end of the driven shaft 3 in the X-axis negative direction via a speed reduction mechanism 11 as illustrated in
The oil pump 12 pressurizes oil introduced from an oil strainer 13 and discharges this oil to a main oil gallery (not illustrated). The oil discharged to the main oil gallery is transmitted mainly to each sliding portion of the engine and provided for lubrication. Further, a part of the oil is provided for lubrication of the balancer shafts 2 and 3. In the present embodiment, the oil pump 12 is a variable displacement oil pump capable of varying an amount of a change in a volume of a pump chamber (i.e., a discharge volume). The variable displacement oil pump is a vane pump having a mechanism that reduces the amount of the change in the volume of the pump chamber at the time of a high rotation of the pump. Any known pump (for example, a pump disclosed in Japanese Patent Application Public Disclosure No. 2011-111926) can be used as the variable displacement oil pump.
The oil pump 12 includes an oil pump housing 14. The oil pump housing 14 includes a pump body 15 and a pump cover 16. The pump body 15 and the pump cove 16 are in abutment with each other on mating surfaces thereof extending in parallel with a YZ plane. The pump housing 14 and the pump body 15 are assembled with use of three pump assembling bolts 17a. The oil pump 12 and the balancer housing 4 are fastened together from the X-axis negative direction side with use of four pump fastening bolts 17b. As illustrated in
The pump cover 16 includes an intake portion 18 at an end thereof in the Y-axis negative direction. The intake portion 18 includes an opening portion 18d for introducing the oil into the oil pump 12. The opening portion 18d is opened toward the X-axis positive direction. One end of the oil strainer 13 is connected to this opening portion 18d. The oil strainer 13 extends to the bearing support portion 9 in the X-axis positive direction. The other end (a distal end portion 13a) of the oil strainer 13 is curved at 90 degrees toward the Y-axis negative direction side at the bearing support portion 9, and is opened downward (in the Y-axis negative direction). The intake portion 18 and the oil strainer 13 are disposed between the adjacent housing fastening bolts 7 in the Z-axis direction. Therefore, the oil strainer 13 and the housing fastening bolts 7 are prevented from interfering with each other in the Y-axis direction. Therefore, the oil strainer 13 can be disposed on the Y-axis positive direction side with respect to head portions of the housing fastening bolts 7. As a result, a dimension of the balancer apparatus 1 in the Y-axis direction can be reduced, and the apparatus can have a compact size. Further, according to the balancer apparatus 1, the intake portion 18 is disposed at generally the same position as the driven shaft 3 in the Z-axis direction. In other words, the intake portion 18 is not disposed on one side where the drive shaft 2 is located but is located on the other side where the driven shaft 3 is located. Therefore, the intake portion 18 is prevented from interfering with a driven gear chamber containing the driven gear 2c therein unlike when the intake portion 18 is disposed on the one side where the drive shaft 2 is located. Therefore, the intake portion 18 can be disposed in such a manner that the intake portion 18 and the driven gear chamber partially overlap each other in the Y-axis direction. As a result, since the intake portion 18 and the driven gear chamber can be disposed so as to overlap each other, the dimension of the balancer apparatus 1 in the Y-axis direction can be reduced and the apparatus can have a compact size. Further, the intake portion 18 and the oil strainer 13 are provided so as to be entirely contained in an area over which the oil pump housing 14 is projected as viewed in the X-axis direction. Therefore, the balancer apparatus 1 can have a compact size. As illustrated in
An intake passage 18a extending in the X-axis direction is formed inside the intake portion 18. The intake passage 18a is in communication with a pump chamber (not illustrated) of the oil pump 12 on one end side thereof and with the oil strainer 13 on the other end side thereof. Due to this configuration, when the oil pump 12 is driven, the oil introduced from the oil pan into the oil strainer 13 is supplied into the pump chamber via the intake passage 18a.
As illustrated in
The lower housing 6 further includes a third boss 20c and a fourth boss 20d. The third boss 20c and the fourth boss 20d are disposed on an upper side (the Y-axis positive direction side) with respect to the first boss 20a and the second boss 20b. Further, the third boss 20c is provided on the same side as the first boss 20a, and the fourth boss 20d is provided on the same side as the second boss 20b, in the Z-axis direction (a direction in which the balancer shafts 2 and 3 are lined up). In other words, the third boss 20c is disposed at a position closer to the first boss 20a than to the second boss 20b, and the fourth boss 20d is disposed at a position closer to the second boss 20b than to the first boss 20a, in a horizontal direction orthogonal to the axial direction of the balancer shafts 2 and 3. In the present embodiment, the third boss 20c is disposed at the same position as the first boss 20a, and the fourth boss 20d is disposed on the Z-axis negative direction side with respect to the second boss 20b, in the Z-axis direction. A third screw hole 21c is formed on the third boss 20c, and a fourth screw hole 21d is formed on the fourth boss 20d. In the present embodiment, the third boss 20c is formed so as to protrude upward beyond the mating surfaces 5a and 6a of the upper housing 5 and the lower housing 6. As a result, the third screw hole 21c is also formed on an upper side with respect to the mating surfaces 5a and 6a. The screw holes 21a to 21d are disposed at positions corresponding to the bosses 14a of the oil pump housing 14. Therefore, the oil pump 12 is fastened to the lower housing 6 by insertion of the pump fastening bolts 17b in the screw holes of the bosses 14a and the screw holes 21a to 21d from the X-axis negative direction side.
With the oil pump 12 attached to the lower housing 6, the intake portion 18 is disposed at least partially in the recessed portion 24 formed between the first boss 20a and the second boss 20b. In the present embodiment, as illustrated in
As illustrated in
In the above-described balancer apparatus 1, when the engine is activated and the crankshaft is rotationally driven, the balancer shaft 2 rotates at the speed twice the crankshaft. The driven shaft 3 rotates in an opposite direction from the drive shaft 2 at the same speed as the drive shaft 2 through transmission of a rotational force due to meshed engagement between the interlocking gears 2a and 3a. By this operation, the balancer weights of the balancer shafts 2 and 3 also rotate in opposite directions from each other, and cancel left and right centrifugal forces of the balancer shafts 2 and 3 themselves. In this manner, both the balancer weights rotate according to the rotations of the balancer shafts 2 and 3 to transmit a vibratory force to the engine, by which a secondary vibration of the engine is prevented or reduced.
According to the above-described balancer apparatus 1, the balancer housing 4 and the oil pump housing 14 are different members. Therefore, the balancer apparatus 1 can be designed highly flexibly. Further, the first boss 20a and the second boss 20b protrude downward, so that a great width can be secured as a width over which the bosses 20a to 20d are arranged in the vertical direction (i.e., a width between the positions at which the oil pump 12 is supported). Therefore, the oil pump 12 can be supported with improved stiffness. In addition, the intake portion 18 of the oil pump 12 is disposed at least partially in the recessed portion 24 formed between the first boss 20a and the second boss 20b, which contributes to preventing or cutting down an increase in a height of the balancer apparatus 1 due to the downward protrusion of the first boss 20a and the second boss 20b. Especially in the present embodiment, half or more of the intake portion 18 is disposed on the upper side with respect to the imaginary line L2 connecting the center of the screw hole 21a of the first boss 20a and the center of the screw hole 21b of the second boss 20b in the cross section orthogonal to the X axis. Therefore, the increase in the height of the balancer apparatus 1 can be effectively prevented or cut down.
Further, according to the balancer apparatus 1, the opening portion 18d of the intake portion 18 is opened toward the opposite side from the first boss 20a and the second boss 20b in the X-axis direction. Therefore, the increase in the height of the balancer apparatus 1 can be prevented or cut down. Further, the balancer apparatus 1 includes the oil strainer 13 extending in the X-axis direction. The oil strainer 13 includes a first end portion connected to the opening portion 18d and a second end portion opened downward (the distal end portion 13a). Therefore, while the increase in the height of the balancer apparatus 1 is prevented or cut down, the intake portion 18 and a desired position in the oil pan covering the lower side of the balancer apparatus 1 can be brought into communication with each other. For example, even when the oil is disproportionally distributed in the oil pan because the vehicle runs on a sloping road, the distal end portion 13a can be placed at a position that ensures the introduction of the oil.
Further, according to the balancer apparatus 1, the third boss 20c is formed so as to protrude upward beyond the mating surfaces 5a and 6a between the upper housing 5 and the lower housing 6. Therefore, a further longer distance can be secured as the distance between the first boss 20a and the third boss 20c without an increase in the height of the balancer apparatus 1. Therefore, the oil pump 12 can be supported with further improved stiffness. Instead of or in addition to the third boss 20c, the fourth boss 20d may be formed so as to protrude upward beyond the mating surfaces 5a and 6a between the upper housing 5 and the lower housing 6.
Further, according to the balancer apparatus 1, the first boss 20a and the third boss 20c are reinforced by the reinforcement ribs 22a and 22b extending from the lower housing 6, respectively. Similarly, the second boss 20b and the fourth boss 20d are reinforced by the reinforcement rib 23 extending from the lower housing 6. Therefore, the oil pump 12 can be supported with further high stiffness. Especially in the present embodiment, the first boss 20a, the second boss 20b, and the fourth boss 20d are connected to the bearing support portion 8 having relatively high stiffness, so that the oil pump 12 can be supported with further enhanced stiffness. Further, the reinforcement rib 23 connects the second boss 20b and the fourth boss 20d, and the bearing support portion 8 to each other, so that the oil pump 12 can be supported with further high stiffness. At least one of the bosses 20a to 20d may be reinforced by a reinforcement rib according to the layout of the bosses 20a to 20d. Further, at least one of the first boss 20a and the second boss 20b and at least one of the third boss 20c and the fourth boss 20d, and the bearing support portion 8 may be connected to each other according to the layout of the bosses 20a to 20d.
Further, according to the balancer apparatus 1, the balancer shafts include the drive shaft 2, to which the rotational force of the crankshaft is transmitted, and the driven shaft 3, which rotates in the opposite direction from the drive shaft 2 by the rotational force transmitted from the drive shaft 2. The drive gear is fixed to the driven shaft, and the driven gear 2c is fixed to the drive shaft 12a of the oil pump 12. Then, the rotational force of the driven shaft 3 is transmitted to the oil pump 12 via the speed reduction mechanism 11. As a result, a dimension of the balancer apparatus 1 in the Y-axis direction can be reduced, and the apparatus can have a compact size. Further, the oil pump 12 can be driven at a relatively low speed, so that pump efficiency is improved, as a result of which fuel efficiency is improved. Further, occurrence of cavitation can also be prevented or reduced. Instead of the rotational force of the driven shaft 3, the rotational force of the drive shaft 2 may be transmitted to the oil pump 12.
A second embodiment of the present invention will be described. In the following description, similar components to the first embodiment will be identified by the same reference numerals as the first embodiment. Further, components corresponding to the components of the first embodiment will be identified by reference numerals having the same values as the first embodiment in the last two digits. In the following description, the second embodiment will be described, focusing only on differences from the first embodiment. A balancer apparatus 101 according to the second embodiment includes an oil pump 112 instead of the oil pump 12. The balancer apparatus 101 has the same configuration as the balancer apparatus 1 in terms of features that are not especially otherwise specified.
The oil pump 112 includes an intake portion 118. The intake portion 118 includes an opening portion 118d for introducing the oil into the oil pump 112. The opening portion 118d is opened toward the Y-axis negative direction (downward). The intake portion 118 includes a strainer portion 113. The strainer portion 113 linearly extends from the opening portion 118d downward only by a slight distance, and a distal end portion 13a thereof is opened downward. This strainer portion 113 is formed integrally with the intake portion 118. According to this configuration, the number of components can be reduced. Further, the strainer portion 113 allows the oil to be easily introduced.
Further, as illustrated in
Having described several embodiments of the present invention, the above-described embodiments of the present invention are intended to only facilitate the understanding of the present invention, and are not intended to limit the present invention thereto. Needless to say, the present invention can be modified or improved without departing from the spirit of the present invention, and includes equivalents thereof. Further, the individual components described in the claims and the specification can be arbitrarily combined or omitted within a range that allows them to remain capable of achieving at least a part of the above-described objects or producing at least a part of the above-described advantageous effects. For example, the balancer housing 4 may include a first balancer housing and a second balancer housing formed separately from the first balancer housing and coupled with the first balancer housing, instead of the upper housing 5 and the lower housing 6. In this case, the first balancer housing and the second balancer housing may be divided in the direction orthogonal to the axial directions of the balancer shafts 2 and 3. In other words, the balancer housing may be divided into a front-side balancer housing and a rear-side balancer housing. Further, in another embodiment, the oil pump 12 may be supported at three points or five or more points instead of being supported at the four points by the first bosses 20a to 20d according to the above-described embodiments. For example, the oil pump 12 may be supported at three points by the bosses 20a to 20c.
The present application claims priority to Japanese Patent Application No. 2016-29431 filed on Feb. 19, 2016. The entire disclosure of Japanese Patent Application No. 2016-29431 filed on Feb. 19, 2016 including the specification, the claims, the drawings, and the abstract is incorporated herein by reference in its entirety.
1, 101 balancer apparatus
2 balancer shaft (drive shaft)
2
c driven gear
3 balancer shaft (driven shaft)
2
a,
3
a interlocking gear
2
b,
3
b reference hole
4 balancer housing
5 balancer housing (upper housing)
6 balancer housing (lower housing)
5
a,
6
a mating surface
7 housing fastening bolt
8, 9 bearing support portion
10 leg portion
10
a hollow pin
11, 111 speed reduction mechanism
11
a,
111
a drive gear
11
b, 111b driven gear
12, 112 oil pump
12
a drive shaft
13 oil strainer
13
a distal end portion
14 oil pump housing
14
a,
14
b boss
15 pump body
16 pump cover
17
a pump assembling bot
17
b pump fastening bolt
18, 118 intake portion
18
a intake passage
18
b screw hole
18
c boss
18
d,
118
d opening portion
19 strainer fastening bolt
20
a first boss
20
b second boss
20
c third boss
20
d fourth boss
21
a,
21
b,
21
c,
21
d screw hole
22
a,
22
b,
23 reinforcement rib
24 recessed portion
113 strainer portion
L1 imaginary line
C1, C2 shaft center
Number | Date | Country | Kind |
---|---|---|---|
2016-029431 | Feb 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/005368 | 2/14/2017 | WO | 00 |