Many devices are known for facilitating exercises done for therapy, conditioning or physical training. Other than variable resistance training equipment, these devices have not usually offered much adjustability to allow for exercises at different degrees of difficulty. Also, many of these devices have been dedicated to very specific exercises and therefore do not justify a significant investment of space and financial resources for such a narrow purpose.
Some exercise devices require a person to maintain balance and equilibrium. A large inflatable ball (for example, 65 cm) known as a Swiss ball, has been used for this purpose. While the ball is useful for certain stability training exercises, standing upon the ball or staying atop the ball requires a high degree of skill and is inappropriate for most.
In U.S. Pat. No. 4,801,140 a person suffering from a physical disability can stand on the flat side of a non-inflatable molded foam hemisphere to practice balancing. The practical disadvantage of this design is that a high degree of skill is required before someone can actually stand on such an unstable platform. Without assistance from a therapist or additional balancing accessories, this platform is accessible only to trained athletes.
In U.S. Pat. No. 5,810,703 the underside of a small board is fitted with a smaller spherical projection. The relatively small diameter of the spherical projection tends to make the board relatively unstable. The height of the spherical projection can be set to one of three discrete settings. Overall, the adjustment has little range and resolution. Also, the projection, if inverted to face upwardly, is too small to allow a person to perform an exercise while placing weight on the projection.
An inflated cushion in the shape of a disk (sold under the name DuraDisk through C.H.E.K. Institute) has been described as useful for certain exercises. This cushion is described as needing no inflation, but the product is shipped with an inflation valve that the user has access to. A separate wooden platform, 20 inches in diameter, is sold for the purpose of placing the platform over the cushion to create a balance board. This cushion is relatively flat and therefore offers little challenge to a user. It is not useful for the inflatable disk to be placed on the board as this would offer no advantage over putting the inflatable disk on the floor. Also, the use of a separate platform requires careful placement and centering of the platform and also introduces the need for regularly finding and associating the separate parts.
In U.S. Pat. No. 5,643,154, a relatively squat, rounded ballast is mounted under a relatively wide platform. If the user is willing to stock an inventory, the rounded ballast can be changed, but the individual ballasts are not adjustable. This device is designed for use on land or in water. For use in water, an edge bumper is inflated an adjustable amount to reach the desired buoyance. While this edge bumper is adjustable, this adjustment is only effective in water. The stability of the platform on land will not be substantially affected by adjusting an edge bumper, which inherently provides a stable base. See also U.S. Pat. No. 3,024,021 for a non-adjustable device employing a platform connected through a resilient member to a rounded base.
U.S. Pat. No. 5,643,165 shows a frustroconical balancing device with a flattened apex. This device is stable in only one central position, and becomes highly unstable once titled slightly. Furthermore, the stability of this device is not adjustable. See also U.S. Pat. No. 5,549,536 for a continually tilted platform.
Accordingly, there is a need for an improved device that offers a unique experience and range of possible exercises, and that can allow adjustment, preferably with an inflatable device, to accommodate persons with different levels of skill and capabilities.
The invention is directed to those needs.
One embodiment of the invention is a device for promoting balance. The device has a base to keep the device in contact with a planar surface, such as a floor. The device also has an inflatable flexible portion positioned on top of the base. The flexible portion is structured and arranged such that if it is compressed at a point adjacent but not at the center, the flexible portion exerts a force having a component away from the center of the flexible portion which tends to cause the person to be displaced unless the person exercised sufficient balance to resist the outside force.
Preferably, the inflatable portion is a bladder wherein at certain gas pressures within the chamber of the bladder, the top of the bladder is convex with respect to, and generally circular when viewed from, a point above the device. The volume of the chamber is proportional to the gas pressure.
It is also preferable for the bladder to be anchored to the base at points radially distant from the longitudinal axis of device (where the bladder defines a longitudinal axis generally transverse to the planer surface). The anchored points may be below the center of the top of the bladder. Moreover, for the majority of points along the top of the bladder between the center and the anchored points, as the radial distance from longitudinal axis increases so does the axial distance from the top center point of the bladder.
Another embodiment of the invention also provides a device for promoting balance. In this embodiment, the device has an inflatable flexible bladder defining a longitudinal axis extending through the center of the bladder. The upper and lower surface of the bladder define a chamber and meet at the outer edges. The upper surface of the bladder is structured and arranged so that the highest point of the bladder is at a point between the outer edges, and a user standing on the device has to exercise balance to remain on it. The bladder is also connected to a base at the outer edges.
It is desirable for the device to be generally circular about the longitudinal axis and the base generally cylindrical. It is also desirable for the base to be concave along the longitudinal axis when viewed from a point below the base, and to maintain at least three points of contact with a generally planer surface such as a floor. When the bladder is inflated, the expansion of the bladder causes the center of the base to move towards, but not contact, the planar surface. The lower surface may be generally planer prior to inflation.
Preferably, the device has a plurality of generally annular ridges disposed on the upper surface of the bladder that circumferentially extend around the longitudinal axis. The diameter of the generally annular ridges may be proportional to the gas pressure within the inflatable bladder.
It is also preferable for the bladder to have a hole extending through the bottom surface and connecting the chamber to atmosphere. A removable plug is used to close the bladder hole. In such an instance, the base also has a hole extending from the bottom of the base to the top of the base, the base hole being adjacent to the bladder hole. Preferably, the portion of the bottom surface of the bladder that is adjacent to the bladder hole has a truncated cone shape that extends downwardly into the base hole.
In yet another embodiment of the device, a device for promoting balance has a longitudinal axis and includes: an inflatable bladder having top and bottom surfaces that define a chamber and are joined at edges positioned a radial distance from the longitudinal axis; a rigid base having a top surface, bottom surface and outer edges, the bottom surface intended for placement on a planar surface, and the top surface of the rigid base opposing the bottom surface of the bladder; a clamp circumferentially extending around at least a portion of the base; and a groove defined by the clamp and the base to secure the bladder edges to the base.
Desirably, the outer edges of the bladder define a generally planer circle extending circumferentially around the longitudinal axis.
Optionally, the outer edges comprise a rim meeting one or more of the following conditions: a portion of the rim is below at least a portion of the bottom surface of the bladder; the outermost point of the rim is beyond the outermost point of the bladder top surface; the bottom surface and the top surface of the bladder meet at a point near the top of the rim and the radial width of the bottom edge of the rim is greater than the radial width at that point; the width at the top of the groove is less than width of the rim and the rim is disposed in the groove; the rim has a flange extending upwardly from the top, outer edge of the rim; the rim has a flange extending inwardly from the bottom half of the inner edge of the rim; and the rim has a rim chamber in communication with the chamber of the bladder whereby increasing the pressure within the rim chamber increases the size of the rim.
It is preferable for the clamp to have a side and a top extending inwardly from the side, so that the groove is at least partially defined by the side of the clamp and a portion of the base. Thus, the groove may further have a bottom and an inner side that are defined by the base. A portion of the base may also extend from the inner side and outwardly over the groove and the top of the clamp may extend inwardly over the groove.
In a further refinement of the foregoing embodiment, the outer edges comprise a rim, the rim comprises a first flange extending upwardly from the top outer edge of the rim and below the portion of the clamp extending inwardly over the groove, and the rim comprises a second flange extending inwardly from the bottom half of the inner edge of the rim and below the portion of the base extending outwardly over the groove.
It is desirable for the dimensions of the groove to be sufficient to secure the bladder edges to the base wherein if the clamp is removed from the base, the bladder will not remain secured to the base during use.
The clamp may also include a number of optional features. For example, it may have a rounded ridge extending upwardly from the top, inner-most edge of the clamp. It may also be made of polypropylene, no-break polypropylene or high-density polyethylene. The clamp may also comprise a plurality of separate clamp portions whereby each portion extends less than the entire circumference of the base. Even so, all of the clamp portions collectively may extend around the entire circumference of the base. The clamp portions may be removably affixed to one another by a screw or similar fastener. The clamp portions may also be removably affixed to one another by use of a lap joint. The radial thickness of the clamp may be greater at the lap joint than at the remainder of the clamp, such that the thickness of a clamp portion at the lap joint is approximately equivalent to the thickness of the remainder of the clamp portion.
A further embodiment of the present invention provides a method of manufacturing a device for promoting balance. The steps include: placing an inflatable flexible bladder on a base; placing a first clamp along the outer edges of a circumferential portion of the base in an abutting relationship with a portion of the outer edges of the inflatable bladder; placing a second clamp along the outer edges of another circumferential portion of the base in an abutting relationship with another portion of the outer edges of the inflatable bladder; securing the first clamp to the second clamp and thusly securing the outer edges of the bladder into a circumferential groove defined by the clamps and the base.
In the foregoing method, the first clamp may be removably secured to the second clamp and the method further includes: detaching the first clamp from the second clamp; replacing the bladder with another bladder; and securing the first clamp to the second clamp and thusly securing the outer edges of the other bladder. Preferably, the first clamp and the second clamp collectively extend around a majority, or the entire length, of the outer edges of the base. The clamps may be placed along the outer edges of the base primarily by movement in a direction transverse to the longitudinal axis of the device.
In still another embodiment of the present invention, a method of using a device for promoting balance comprises: providing a device having an inflatable flexible bladder and a base, whereby the center of the top of the inflatable bladder is higher than the remainder of the inflatable bladder and the bladder is above and secured to the base; placing the bottom of the base on a planar surface such that the center of the top of the inflatable bladder is above the base and the planar surface; and standing or moving on the top of the inflatable bladder. Balance is promoted when the bladder tends to direct the user in a direction away from the center of the bladder. By way of example, the step of standing or moving on the top of the bladder may comprise repeated jumping on bladder.
The foregoing device can be made from a variety of materials. For instance, the bladder may be a burst-resistant vinyl, PVC or an elastomeric resin. The hardness of the bladder can reflect the intended use of the device. The bladder may also use a foaming agent.
Preferably, the upper and lower surfaces of the bladder are formed of a single, integral material by the process of rotational molding. It is also desirable for the bladder material thickness to be thicker at the center of the upper surface when uninflated than at the edges. The material thickness at the rim may also be greater than the average material thickness of the bladder.
Preferably, the device is generally hemispherical about a longitudinal axis 20 as shown in
Although it should be understood that the actual dimensions of the device's components are not essential to the invention, certain dimensions are provided for illustrative purposes. For example, the device is particularly suited for use by a single adult when the radial distance from longitudinal axis 20 to the outer edge of bladder top 50 is about 16″ and 30″. However, the dimensions could increase or decrease depending on the intended uses. Other references to dimensions herein shall be made on the assumption that the device is about 24″ wide.
The inflatable portion may be formed out of a bladder 50. Such a bladder is shown in more detail and in an inflated state in
A number of annular ridges 55 are disposed on top of bladder top 50. The annular ridges extend in the circumferential direction and are radially spaced from one another such that they form concentric circles around the top of the device. The ridges should be large enough to aid the grip of a person standing or moving on the bladder (hereafter, a “user”). On the other hand, the ridges should not be so large that they are uncomfortable to the user. The ridges may be about 0.030″ high and spaced about 1.4″ apart from one another when the bladder partially inflated, which results in about 8 ridges being present on a 24″ wide bladder.
While the top 60 of bladder 50 is generally hemispherical, the bottom 62 is generally planer. Bladder bottom 62 includes a hole 63 that allows air to travel between the outside of the bladder and the chamber 65 defined by the top and bottom of the bladder. Hole 63 preferably resides along the longitudinal axis 20.
Surrounding the hole 63 is a raised portion 64. Raised portion 64 extends downwardly from bladder bottom 62 and away from chamber 65. The radial width of the raised portion 64 varies such that the raised portion is widest immediately adjacent the bladder bottom 62 and is most narrow at the axial distance furthest from the bottom 62. In other words, the radial distance decreases as the raised portion 64 extends further away from the bladder bottom 62. Preferably, even the most narrow portion of the raised portion 64 has a radial distance greater than the radius of hole 63. Thus, the raised portion 64 has a hollow-truncated cone shape with the base of the cone connected to bladder bottom 62.
The axial distance from the bladder bottom 62 to the bottom of the raised portion may be about 0.4″. At its widest, the raised portion may be about 1″ and at its most narrow may be about 0.75″. The diameter of the hole may be about 0.25″.
Because of the elastomeric nature of bladder 50, the volume of inner chamber 65 is proportional to the amount of air pressure within the chamber.
As shown in
As shown in more detail in
Rim 63 also includes two flanges. Specifically, top rim flange 66 extends upwardly from the top outer edge of rim 63. Bottom rim flange 67 extends inwardly from the bottom half of the inner edge of rim 63. The flanges also extend circumferentially around the longitudinal axis 20, and so may also be considered to comprise rings extending upwardly and inwardly from rim 63. As described in more detail in connection with
A chamber 68 may be formed in rim 63. The rim chamber 68 is in communication with bladder chamber 65. Under the pressure of inflation, this chamber may expand rim 63 to further help the bladder stay in place.
The radial width 61 of bottom edge 64 may be about 1″ and the radial width at dimension 65 may be about 0.25″. The top rim flange 66 may extend about 0.095″ above rim 63 and bottom rim flange 67 may extend about 0.275″ inwardly from the rim. The axial distance of gap 69 between bottom rim flange 67 and bladder bottom 62 may be about 0.56″. The distance from the bottom edge 64 to the top of top rim flange 66 may be about 0.5″.
Preferably, the bladder is made out of a burst-resistant vinyl such as PVC or another plastisol or elastomeric resin. The hardness of the bladder material should reflect the intended use of the device 10. For example, if device 10 is primarily intended for outside use, a harder and more durable resin may be desirable. Heavier athletes may also need a more durable material. On the other hand, if the device is intended for inside use, a softer and more flexible resin may also be appropriate. A foaming agent may also be added to the material. Sand or the like may also be incorporated into the material to prevent slippage.
It is also desirable for the entire bladder to be formed from a single, integral material. The bladder may be formed by the process of rotational molding. Preferably, the mold is kept hotter at top center 51 (
Although the bladder bottom 62 is shown in
The base 100 is generally cylindrical. As shown in
Preferably, although not shown in
Returning to
Outer wall 116 extends down from the outermost edge of lip 118. In terms of axial distance, the lowest point of outer wall 116 is disposed above the lowest point of the base 100. Outer wall 116 defines the outermost point of base 100. The axial height of outer wall 116 may be about 0.25″.
Middle wall 114 extends down from lip 118 at a radial point between outer wall 116 and inner wall 112. Middle wall 114 extends to a point which is at the same or slightly higher axial height along longitudinal axis 20 as outer base point 113. In other words, outer base point 113 is preferably lower than the bottom of middle wall 114. The axial height of middle wall 116 may be about 0.5″.
At the center of the base, a hole 163 extends along the longitudinal axis 20 from the bottom of the base to the top. The hole is defined by hole wall 164. The radial distance of hole wall 164 from longitudinal axis 20 varies, such that the radial width is greater at the top and bottom of the hole than at the middle. A shelf 130 extends radially outwardly from the top of the hole 163, and from there wall 128 extends radially outwardly and axially downwardly to base bottom 110. Shelf 130, hole wall 164 and base bottom 110 define a chamber 132. At its widest, the hole 163 is about 1.5″ wide and at its narrowest is about 1″ wide. The hole may be about 1.1″ high.
It should be understood that the structures discussed in connection with
As shown in
A variety of ribs connect the various walls. As more readily seen in
In order to make the base more rigid, base 100 also includes a number of channels 251 and rings 255. As most readily seen in
Rings 255 are also disposed on top of base bottom 110. Rings 255 extend in the circumferential direction and are radially spaced from one another in a pattern similar to concentric circles. Although
As shown in
As shown in more detail and in cross-section in
Although the base 100 may be formed of any material, such as wood, it is preferably made of a material such as PET, polypropylene, no-break polypropylene (polypropylene with added ethylene for extra resilience), filled polypropylene (the filler could be either glass or talc for extra rigidity) or PET. The various walls, flanges and the like of the base 100 may be about 0.15″ thick. The platform may also be made of wood, in which case the platform would be solid and the ribs, rings and channels could be omitted.
Rim 63 of bladder 50 is tucked under the flange 120. Specifically, the bottom rim flange 67 is tucked into the cavity created by flange 120, inner wall 112 and lip 118.
A C-shaped clamp 125 abuts base 100. As shown in
The inner edge of the clamp top 121 extends above top rim flange 66 of bladder 50. The presence of the flange helps hold the bladder in place. The inner edge of clamp side 122 faces outer edge 71 of bladder 50 and abuts outer wall 116 of base 100. The C-shaped clamp 125, lip 118 and flange 120 thus form a groove for holding the rib. The inner edge of clamp bottom 123 abuts the ribs 140 that extend between outer wall 116 and middle wall 114.
Upon assembly, the radial distance between clamp top 121 and flange 120 is roughly equal to the distance at dimension 65 (
Preferably, a short, rounded ridge 131 extends upwardly from the top, innermost edge of the clamp 125. The ridge provides a number of advantages. First, because it is round, it eliminates sharp edges that might tear the bladder 50. Second, when the device is in use, the top 121 of clamp 125 is may receive some blows from the user. Thus, the extra material at ridge 131 also adds strength to the edge.
Clamp 125 is preferably made of polypropylene, no-break polypropylene or high-density polyethylene.
As shown in
As shown in
As shown in
The structure of clamp 125 advantageously allows the bladder to be easily changed. The bladder can be replaced simply by removing two screws, sliding the clamps off, changing the bladder, sliding the clamps back on and reinserting the screws. As discussed above, the same base can be used with different bladders having different resilient properties, thus accommodating different exercise experiences. Therefore, rather than buying an entirely new device 10 for every purpose, the user may simply buy a single base and multiple bladders.
As shown in
When fully assembled, the device preferably weighs between 8 and 16 pounds, and even more preferably weighs about 14 pounds. It is desirable that the unit be light enough to be transportable, but not so light that it moves from side to side when a person is active on it or jumping from one device to the other.
In operation, plug 150 is removed and bladder chamber 65 is filled with air via hole 163. The plug is then replaced to seal the air in the chamber.
The solid and dashed lines shown in
When fully inflated, the bladder expands due to the increased pressure. Because the bladder is anchored at the edges, the greatest change occurs at the radial center of the bladder. Thus, bladder top 360 bulges upward to position 371 and bladder bottom 362 will tend to bulge downward to position 372. As the bottom 362 bulges downward, it pushes forcefully on the channels 351 and particularly on shelf 330 which is at the center of the base. Accordingly, the center of the base will tend to be pushed downward into position 373.
The concave nature of the base bottom accommodates the increased pressure without loss of stability. In order to remain stable, the base 100 should maintain at least three points of contact with a planar surface such as floor 380; having only one or two points of contact may cause the base to wobble. The concave shape allows the base to retain the three points of contact. As the center of the base is pushed downward, it will expand into the gap between the base bottom 310 and floor 380 as shown in
A variety of exercises may be performed in connection with the device 10. For example, to promote balance, users may stand or jump on the bladder 50. Some of the possible exercises are discussed in detail in U.S. patent application Ser. No. 09/411,997, incorporated herein by reference, and therefore will not be repeated here.
Performing exercises on top of bladder 50 as base 100 rests on the floor provides numerous advantages. The convex shape of bladder 50 challenges users in a way that typical inflated or resilient devices cannot. For example, when a load 490 is dropped on a trampoline device as shown in
The present invention has the opposite property. As shown in
In fact, the present invention promotes balance simply by standing on the device. Although the inventive aspects of the device are not dependant upon any particular theory of physics, physiology or exercise physiology, it is the inventor's understanding that the essence of balance may be to find a state of bodily organization from which the broadest range of movements are not only possible, but also involve the least amount of effort. Whether the activity is simply standing or skiing, a good sense of balance will tend to increase the user's ability to perform.
The present invention is believed to allow users to quickly achieve better balance. For example,
The present invention also has the advantage of being able to accommodate a user's increasing skill. The pressure in the bladder can be quickly decreased simply by removing the plug or quickly increased with a hand pump. For many people, it will be much more difficult at low pressures than high pressures. Thus, even an experienced user can increase the challenge, and thus her skills, by decreasing the air pressure. Continuously decreasing the pressure over time also has another advantage: it provides visual and tactile feedback on the user's progress. If a user wishes, she may quantitatively measure her progress by measuring the diameter of the ring 55 closest to the center 51 of bladder 50 (
Moreover, in the event a user needs to get off the device due to a loss of balance, the present invention will tend to have a smaller vertical distance for the user to overcome than a typical trampoline. In a trampoline such as that shown in
Moreover, despite the various forces exerted by the bladder against the user, the base tends to keep the entire unit in place and stable. The position of the device with the floor remains essentially constant.
The circular (when viewed from the top) shape of the present invention provides additional benefits. While the bladder may be elliptical or rectangular, a circular bladder tends to provide a set of forces in a predictable direction away from the center. Other shapes will not be as easily predictable. This not only adds a sense of consistency that the user can anticipate, but also helps prevent the user from finding a “sweet spot”, i.e. a portion of the bladder whereby it is easier to stand on that section of the bladder due its shape.
It is also preferable for the bladder top not to bulge over the base. When inflated, the widest part of the bladder should generally be the area where the bladder meets the base.
Unless stated to the contrary, use of the words such as “including,” “containing,” “comprising” and the like, means “including without limitation” and shall not be construed to limit any general statement that it follows to the specific or similar items or matters immediately following it.
Most of the foregoing alternative embodiments are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above can be utilized without departing from the invention as defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the invention as defined by the claims.
The present application is a continuation of U.S. patent application Ser. No. 10/286,178, filed Oct. 31, 2002, which is a divisional of U.S. patent application Ser. No. 09/687,896, filed Oct. 13, 2000, which application is a continuation-in-part of and claims the benefit of U.S. patent application Ser. Nos 09/596,709, filed Jun. 19, 2000, and 09/411,997, filed Oct. 4, 1999. The disclosures of the foregoing applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1545437 | Malone et al. | Jul 1925 | A |
1755205 | Christensen | Apr 1930 | A |
2077233 | Greenhill | Apr 1937 | A |
2521530 | McGuffage | Sep 1950 | A |
2991589 | Ayala | Jul 1961 | A |
3024021 | Coplin et al. | Mar 1962 | A |
3069162 | Samuel | Dec 1962 | A |
3165759 | O'Daniell | Jan 1965 | A |
3176982 | O'Daniell | Apr 1965 | A |
3356367 | Tewksbury | Dec 1967 | A |
3421163 | Stoughton | Jan 1969 | A |
3604726 | Tracy | Sep 1971 | A |
3627314 | Brown | Dec 1971 | A |
3716229 | Van Der Cleyen et al. | Feb 1973 | A |
4065124 | Egan | Dec 1977 | A |
4067078 | Winston | Jan 1978 | A |
4126129 | Rainbow | Nov 1978 | A |
4159826 | Hancock | Jul 1979 | A |
4191178 | Wisnieski | Mar 1980 | A |
4263682 | Bejarano | Apr 1981 | A |
4516767 | Eskijian | May 1985 | A |
4516768 | Gallaro | May 1985 | A |
4801140 | Bergeron | Jan 1989 | A |
4867451 | Mitchell | Sep 1989 | A |
4893809 | Blankenzee | Jan 1990 | A |
5048823 | Bean | Sep 1991 | A |
5116045 | Jahoda | May 1992 | A |
5282777 | Myers | Feb 1994 | A |
5301441 | Kownacki | Apr 1994 | A |
5333336 | Langsam | Aug 1994 | A |
D361604 | Stroppiana | Aug 1995 | S |
5549536 | Clark | Aug 1996 | A |
5643154 | Awbrey et al. | Jul 1997 | A |
5643165 | Klekamp | Jul 1997 | A |
5690389 | Ekman et al. | Nov 1997 | A |
5728031 | Honeycutt | Mar 1998 | A |
5735776 | Swezey et al. | Apr 1998 | A |
5810700 | Orcutt | Sep 1998 | A |
5810703 | Stack et al. | Sep 1998 | A |
5833587 | Strong et al. | Nov 1998 | A |
5881407 | Chu Pt | Mar 1999 | A |
6012188 | Daniels et al. | Jan 2000 | A |
6070943 | Guery-Strahm | Jun 2000 | A |
6309331 | Raymond | Oct 2001 | B1 |
6422983 | Weck | Jul 2002 | B1 |
6461285 | Theunissen et al. | Oct 2002 | B1 |
6554753 | Weck et al. | Apr 2003 | B1 |
6575885 | Weck et al. | Jun 2003 | B1 |
6634999 | Herbst | Oct 2003 | B2 |
6702726 | Lin | Mar 2004 | B2 |
7344488 | Weck et al. | Mar 2008 | B2 |
20030054927 | Weck et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
20 32 544 | Jan 1972 | DE |
2528217 | Jun 1975 | DE |
31 50 189 | Jul 1983 | DE |
36 20 706 | Dec 1987 | DE |
0 134 047 | Mar 1985 | EP |
2226769 | Nov 1990 | GB |
WO-0230519 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080064579 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09687896 | Oct 2000 | US |
Child | 10286178 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10286178 | Oct 2002 | US |
Child | 11981878 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09596709 | Jun 2000 | US |
Child | 09687896 | US | |
Parent | 09411997 | Oct 1999 | US |
Child | 09596709 | US |