Baling apparatus and method

Information

  • Patent Grant
  • 6474226
  • Patent Number
    6,474,226
  • Date Filed
    Wednesday, February 2, 2000
    25 years ago
  • Date Issued
    Tuesday, November 5, 2002
    22 years ago
Abstract
A vertical baler includes a horizontally disposed floor plate having an arched surface for receiving material to be compacted thereon. A compression plate is mounted for reciprocating vertical movement with respect to the floor plate, and left and right hydraulic pistons carried outside the wall of the baler are operably attached between the floor plate and the compression plate for reciprocating the compression plate relative to the floor plate. Material placed between the arched floor plate and the compression plate is compacted and formed with an arched bottom surface for ease in sliding fork elements of a lift truck thereunder. Once compacted and tied, the bale is pushed from the compaction chamber by pusher tabs vertically extending from a rear edge of the floor plate which is operable for horizontal reciprocation causing biasing of the pusher tabs against the material in a horizontal pushing of the bale from the chamber onto an adjacent floor surface. To enhance formation of the bale having a desired arched bottom shape, struts are carried on a top surface of the floor plate for forming a depression within the bale formed during the compression of the material. Yet further shaping of the bale is provided by a pair of opposing struts extending along opposing edges of the compression plate, for providing enhanced compression of the material along lower opposing edge portions of the floor plate.
Description




FIELD OF THE INVENTION




The present invention relates to compaction and baling of waste materials such as paper and cardboard, and in particular to a baling apparatus for forming and discharging a bale for efficient handling thereof.




BACKGROUND OF THE INVENTION




Both horizontal and vertical styled baling machines are well known in the art, as described by way of example with reference to U.S. Pat. Nos. 5,353,698 to Robbins and 4,057,009 to Burford et al. Overhead limitations make a horizontal baler attractive for use, yet added floor space is needed when compared to the vertical baler. Typically, a vertical baler will eject the bale by rolling or flipping the bale onto adjacent floor space making it hazardous for an operator standing near the baler. The horizontal baler of Robbins '698 pushes the bale from a compaction chamber at a level above the floor in order to locate a lift truck for receiving the bale. It would be desirable to push bales onto the floor directly, but difficulty comes when an operator attempts to move the bale by singlehandedly moving the bale for placing the lift forks under the bale, making safety an issue. With further regard to safe operation, an operator must take care to stand clear of the compaction chamber when a gate, such as described, by way of example only, in the Burford '009 patent is opened for depositing waste material to be compacted.




Therefore, in spite of the variety of baling machines available, there remains a need to provide for the ejection of a bale directly onto the floor while still providing ease in handling of the bale by a lift truck. There is further a need to provide for the safe operation of the baling machine by the operator who may spend hours operating the baler or only casually operate it in performing a part of his duties.




SUMMARY OF THE INVENTION




In view of the foregoing background, it is therefore an object of the present invention to provide a baler that addresses the needs of minimal space requirements relative to bale size, and provides a bale shape that is effectively handled by typically available handling equipment such as fork lifts and lift trucks. It is further an object to provide for safe operation of the baler by an operator.




These and other objects, advantages and features of the present invention are provided by a baling apparatus comprising a horizontally disposed floor plate having an arched surface for receiving material to be compacted thereon. A compression plate is mounted for reciprocating vertical movement with respect to the floor plate, and reciprocating means are operably attached between the horizontally disposed floor plate and the compression plate for reciprocating the compress floor plate, wherein material placed between the arched floor plate and the compression plate is compacted therebetween for forming an arched bottom surface therein. Pusher tabs vertically extend from an edge of the floor plate which floor plate is operable for horizontal reciprocation causing biasing of the pusher tabs against the material in a horizontal pushing movement, wherein material compacted between the compaction plate and the floor plate is pushed from the chamber onto an adjacent support surface.




To enhance formation of a bale having a desired arched bottom shape, at least one elongate strut is carried on a top surface of the floor plate for forming a depression within the bale formed during the compression of the material. Alternatively, two struts spaced for enhancing slidable movement of a fork lift under a bale formed by the apparatus. An alternate embodiment includes pusher tabs extending from rear edges of the strut. For yet further shaping of the bale, a pair of opposing struts extends along opposing edges of the compression plate, wherein compression of the material along lower opposing edge portions of the floor plate.




A method aspect of the present invention includes the steps of horizontally disposing the floor plate onto a base for providing a closed bottom end of the chamber, wherein the floor plate comprises the arched top surface for forming an arched bottom surface of the compacted material. Material to be compressed is loaded into the chamber, and the material compressed by reciprocating the compression plate relative to the chamber, wherein the material is compacted between the compression plate and the arched top surface of the floor plate.











BRIEF DESCRIPTION OF THE DRAWINGS




A preferred embodiment of the invention, as well as alternate embodiments are described by way of example with reference to the accompanying drawings in which:





FIG. 1

is a right front and top perspective view of a baling apparatus of the present invention, illustrated with a top cover removed for viewing hydraulics and controls electronics carried within a tip portion thereof;





FIG. 1A

is the embodiment of

FIG. 1

illustrating a closed operable position;





FIG. 2

is a left front perspective view of

FIG. 1

, illustrating a door in an open position;





FIG. 2A

is a front right perspective view of the embodiment of

FIG. 1

illustrating a feed gate in an open position;





FIG. 3

is a partial perspective view of the apparatus of

FIG. 1

illustrating a compacting position of a compression plate;





FIG. 3A

is a partial perspective view of

FIG. 3

illustrating a compression plate in a raised position with the door opening for access to a bale;





FIG. 4

is a perspective view of a bale prepared using the apparatus of the present invention;





FIG. 5

is a partial front elevation view of the apparatus of

FIG. 1

in a door open position illustrating exposure of a floor plate carrying waste material;





FIG. 6

is a partial perspective view of locking pins operable with the chamber door;





FIGS. 7 and 8

are partial perspective and top plan views of a floor plate of

FIG. 5

;





FIG. 9

is a partial perspective view of the floor plate of

FIG. 7

is a displaced position;





FIG. 10 and 11

are partial perspective and front elevation views of an alternate telescoping floor plate of the present invention;





FIG. 12

is a partial front elevation view illustrating one compression plate and floor plate of the present invention;





FIGS. 13 and 13A

are partial perspective views of alternate compression plate embodiments of the present invention; and





FIG. 14

is a flow diagram illustrating one operation of the baling apparatus of the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.




With reference initially to perspective views of

FIGS. 1

,


2


and


3


, one preferred embodiment of a baling apparatus


10


of the present invention comprises a base


12


and a wall


14


extending vertically upward from the base for defining a compaction chamber


16


having an open top end


18


. A horizontally disposed floor plate


20


having an arched top surface


22


is fixedly attached to the base


12


for providing a closed bottom end


24


of the chamber


16


. A compression plate


26


is mounted above the base


12


for reciprocating movement


28


within the chamber


16


. Left and right hydraulic piston assemblies


30


,


32


carried outside the wall


14


provide means for reciprocating the compression plate


26


relative to the chamber


16


, toward and away from the floor plate


20


, such that waste material


34


loaded into the chamber


16


is compacted between the compression plate and the floor plate while confined within the vertically extending wall


14


. Each of the hydraulic piston assemblies


30


,


32


is operably connected between the base


12


and the compression plate


26


, which plate will be further detailed later in this section.




For the apparatus


10


, herein described by way of example, baling of the compacted waste material


34


is completed manually for providing a bale


36


as illustrated, by way of example, with reference to FIG.


4


. In one embodiment of the present invention, strapping means is provided by strapping


38


stored on reels


40


for manually feeding through slots


42


within a rear wall section


44


, as illustrated with reference again to

FIG. 2A

, and placement over the floor plate


20


prior to loading of waste material into the chamber


16


, as earlier described. After compaction of the waste material


34


, a chamber door


46


, located on a front wall section


48


, is opened and the compacted waste material


34


tied after manually feeding the strapping


38


around the waste material and while the compression plate


26


maintains compaction of the material. After the waste material


34


is tied and the fabrication of the bale


36


completed, pressure placed onto the waste material is released and the bale is then pushed from the chamber


16


for handling by a lift truck


50


, by way of example, as will be further detailed later is in this section. Various strapping and tying methods and materials, well known in the art, may be used in completing the tying of the bale without departing from the intent and teachings of the present invention.




As illustrated with reference to

FIG. 1A

, the chamber door


46


forms a portion of the front wall section


48


of the wall


14


. The chamber door


46


is pivotally secured using hinges


52


attached along a left side wall section


54


, and is latched at the right side wall section


56


, as herein described and alternatively latched on the left side as desired. The chamber door


46


, as earlier described, provides access to the chamber


16


for exposing the compacted waste material


34


compressed onto the arched top surface


22


of the floor plate


20


for slidable movement of the waste material from the chamber when the chamber door is in an open position


58


, as illustrated with reference to FIG.


5


.




As illustrated with reference again to

FIG. 1

, a door latch


60


secures the door


46


in a closed position


62


as illustrated with reference to FIG.


1


A. Alternate embodiments of the door latch


60


A include the wheel styled latch illustrated with reference to

FIG. 1

, and the lever arm styled latch


60


B, illustrated with reference to

FIG. 1A

, by way of examples. The wheel styled latch


60


A includes a bracket


61


A which is latched to an edge portion of the door


46


, with the wheel rotated to secure the door in the closed position


62


. The latch


60


B includes a pivotal lever arm and clamp


61


B to secure the door in the closed position. To further secure the chamber door


46


, locking pins


64


are fixedly attached to the edge of the right side wall section


56


for mating with slots carried within the door


46


for a locking engagement of the chamber door


46


with the right wall section


56


, as illustrated with reference to

FIG. 6

, by way of example.




As illustrated with reference again to

FIGS. 1 and 1A

, the baling apparatus


10


further comprises a feed gate


65


: pivotally secured using a spring loaded pivot pin within a frame


67


integrally formed with the chamber door


46


. The feed gate


65


provides access to the chamber :


16


above the chamber door


46


and through an opening of the frame


67


for loading the waste material


34


into the chamber when the feed gate is in an open position


66


and the door in the closed position


62


. By pivoting about horizontally aligned hinge pins


68


, the feed gate


65


acts as a slide for loading the waste material


34


and serves to keep an operator distanced from the compaction chamber


16


and compression plate


26


, adding safety to the operation of the baling apparatus


10


. In addition, the feed gate


65


and the chamber door


46


can be simultaneously opened through the hinged action of the frame


67


, as illustrated with reference again to

FIG. 1. A

gate latch


70


is operable for insertion and removal of latch pins


72


into holes


74


carried within the left and right vertical frame sections.




As illustrated with reference again to

FIG. 5

, and to

FIGS. 7-9

, pusher tabs


76


are attached to a rear edge of the floor plate


20


and extend vertically therefrom for cradling the waste material


34


deposited onto the floor plate. The floor plate


20


is reciprocated by a floor plate piston assembly


78


for horizontal movement out of and into the chamber


16


when the chamber door


46


is in the open position


58


, wherein the bale


36


formed from the compacted waste material


34


is pushed from the chamber


16


. The pusher tabs


76


bias against an edge of the bale


36


in a pushing movement, while the floor plate slides back into the chamber


16


in the retracting movement, after depositing the bale onto a support surface


80


adjacent the apparatus


10


, as the retracting bale makes contact with the wall


14


of the apparatus and the support surface


80


allowing the bale to slide off of the floor plate


20


as the plate is retracted. In an alternate embodiment, and as illustrated with reference to

FIGS. 10 and 11

, the floor plate


20


comprises a plurality of telescoping plate sections


20




a


,


20




b


,


20




c


. In yet another embodiment, the bale


36


, tied and ready for removal from the chamber


16


, is removed therefrom using the lift truck


50


, by way of example, after the left and right side wall sections


54


,


56


are outwardly hinged from the rear wall section


44


to allow the fork elements


84


to contact the bale after biasing of the side wall sections against the bale is removed. The bale


36


is then removed using the fork elements


84


without the need to push the bale from the chamber


16


.




As illustrated with reference again to

FIGS. 4 and 5

, the arched top surface


22


of the floor plate


20


causes a desired arched bottom surface


82


of the bale


36


allowing fork elements


84


of the lift truck, by way of example, to easily slide under the bale. Because of the variables in the compacting process and the variety of waste materials compacted, a bale can deform after compacting. As a result, there is a need to shape the bale


36


such that any deformation will not hamper the handling operation by the lift truck


50


. An alternate embodiment of the present invention, as illustrated with reference to

FIGS. 3A and 12

, comprises a pair of elongate struts


86


carried on the arched top surface


22


of the floor plate


20


for forming depressions


88


within the bottom surface


82


of the bale


36


during the compression of the waste material


34


. It is anticipated that a single strut


86


, and various spacings between strut pairs will be useful depending on the type of waste material being compacted. The addition of the struts


86


has been shown to enhance the shaping of the bale


36


and the shape of the cavity


90


formed by the support surface


80


and the bale bottom surface


82


for providing ease in movement of the fork elements


84


under the bale


36


.




As illustrated with reference again to FIG.


3


and to

FIG. 12

, the compression plate


26


in one preferred embodiment herein described by way of example, comprises a plate member


92


, and a beam


94


connected to the plate member by vertical support members


96


for securing the beam in a spaced and rigid relation to the plate member. Various lengths for the support elements


96


can be used to provide a desired displacement of the plate member


92


and thus through of the compression plate


26


, further assuring the use of minimal floor space and height dimension needed for the apparatus


10


. The horizontally disposed beam


94


has its ends


93


,


95


extending beyond the left and right side wall sections


54


,


56


through corresponding vertically elongated slots


53


,


55


therein for connection, respectively, to the left and right piston assemblies


30


,


32


, earlier described and illustrated with reference again to FIG.


1


. Guide elements in the form of wheels


98


, and alternatively pads


99


, as illustrated with reference to

FIGS. 13 and 13A

, are carried by the plate member


92


at edges thereof, for slidable engagement with an inside surface of the left and right side wall sections


54


,


56


during the reciprocating movement of the compression plate


26


, and minimizing drift and friction between the plate


26


and inside wall surfaces. Slots


100


within the plate member


92


permit the strapping


38


earlier described, to be guided over the waste material for tying and forming the bale.




As illustrated with reference again to

FIGS. 12 and 13A

, to aid in the forming of the bale


36


, and provide a desired compression distribution onto the waste material


34


, a pair of opposing top struts


102


extends along opposing left and right edges


104


,


106


of the plate member


92


for cooperating with the arched surface


22


and the struts


86


in compressing of the waste material. The pair of opposing top struts


102


enhance compression of the waste material along left and right side and lower portions


108


,


110


of the arched floor plate. Noting

FIG. 3A

, tapered tabs


112


aligned with slots


100


and extend from front and rear inside wall surfaces


114


,


116


of the chamber, to enhance compaction by restricting upward expansion of the compressed waste material


34


.




The apparatus


10


provides for safe operation by an operator. As illustrated with reference to the flow chart of

FIG. 14

, one preferred operating procedure, referred to generally as


130


, includes the first step


132


of opening the chamber door


46


and then, at step


134


, placing the strapping


38


for subsequent wrapping and tying of the compacted waste material


34


. A preferred procedure, step


136


, includes the placing of a sheet of cardboard onto the arched surface


22


of the floor plate


20


for providing a uniform bale bottom surface


82


. At step


138


, the door


46


is then closed and secured in place using the door latch


60


as earlier described. For added safety, at step


140


a key is needed to select a baling mode of operation. As shown at steps


142


,


144


and


146


, with the door


46


closed and latched, the feed gate


65


is opened and waste material loaded into the chamber


16


with the compression plate


26


in its fully retracted position above the chamber. Sensors


115


communicating with the controller


117


are operable with the plate


92


for detecting plate position and thus chamber capacity, by way of example. When the chamber


16


is filled as desired as determined at steps


148


, the feed gate


65


is closed at step


150


and, at step


152


, the controller


117


operated by a keyed switch


118


initiates the compression process by pulling of the compression plate


26


by the left and right piston assemblies


30


,


32


if door and gate sensors


120


indicate a closed position at step


150


. The location sensors


116


detect the position of the compression plate


26


to determine if a full bale condition exists. If a desired full bale is possible, the door


46


is opened at step


158


while the compression plate is in a compressing position, and the bale tied with the strapping


38


at step


162


, after feeding the strapping around the waste material at step


160


. The tied bale


36


is then ejected from the chamber by activating an eject mode using the keyed switch at steps


164


,


166


. The bale


36


is pushed from the chamber


16


as earlier described. Once ejected at step


168


, the floor plate


20


is retracted back into the chamber


16


, the door closed, and apparatus


10


is ready for operation in preparing another bale.




Safety is of primary concern as emphasized throughout the above description, including operation of the gate swing out and downward to keep the operator distanced from potentially dangerous operable elements. Noting

FIG. 1A

, additional safety features include a handle


122


extending from the frame


67


and a textured frame corner


123


to discourage the operator from resting his hand on the gate. In yet another embodiment of the gate


65


, as illustrated with reference again to

FIG. 2

, an elongate gate handle


124


is provided for raising and lowering the gate. The handle


124


is positioned to avoid pinching of operator hands by the gate edges.




It is to be understood that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.



Claims
  • 1. A baling apparatus comprising:a base; a wall vertically extending from the base for defining a chamber having an open top end; a horizontally disposed floor plate having an arched top surface, the floor plate carried by the base for providing a closed bottom end of the chamber; a compression plate mounted above the base for reciprocating movement within the chamber; first reciprocating means carried outside the wall for reciprocating the compression plate relative to the chamber, wherein waste material loaded into the chamber is compacted between the compression plate and the floor plate while confined by the vertically extending wall; pusher tabs vertically extending from a rear edge of the floor plate for cradling the waste material; and second reciprocating means operable with the floor plate for horizontal reciprocation of at least a portion of the floor plate from within the chamber to outside the chamber through an opening within the wall, wherein waste material compacted within the chamber is pushed therefrom.
  • 2. The apparatus according to claim 1, further comprising a chamber door forming a front portion of the wall, the chamber door pivotally secured along a vertical side thereof for providing access to the chamber and exposing the floor plate for slidable movement of the waste material from the chamber when the door is in an open position.
  • 3. The apparatus according to claim 2, further comprising locking pins extending from the wall for engaging the chamber door for securing the door to the side walls during compression of the waste material.
  • 4. The apparatus according to claim 2, further comprising a feed gate moveably secured with the front portion for providing access to the chamber above the chamber door wherein the waste ;Material is loaded into the chamber when the feed gate is in an open position.
  • 5. The apparatus according to claim 4, further comprising a frame formed with the chamber door and upwardly extending therefrom, with the feed gate carried by the frame.
  • 6. The apparatus according to claim 5, wherein the frame is hingedly connected to the wall for providing access to the chamber through a simultaneously outwardly swinging movement of the feed gate and chamber door.
  • 7. The apparatus according to claim 1, wherein the floor plate comprises at least one telescoping plate sections.
  • 8. The apparatus according to claim 1, further comprising at least one elongate strut carried on a top surface of the floor plate for forming a depression within a bale formed during the compression of the waste material.
  • 9. The apparatus according to claim 8, wherein the at least one elongate strut comprises two struts spaced for enhancing slidable movement of a fork lift under a bale formed by the apparatus.
  • 10. The apparatus according to claim 1, further comprising strapping means operable therewith for permitting the compacted waste material to be strapped.
  • 11. The apparatus according to claim 1, wherein the first reciprocating means comprises first and second reciprocating pistons operably connected between the base and the compression plate.
  • 12. A baling apparatus comprising:a base; a wall vertically extending from the base for defining a chamber having an open top end; a horizontally disposed floor plate having an arched top surface, the floor plate carried by the base for providing a closed bottom end of the chamber; a compression plate mounted above the base for reciprocating movement within the chamber; first reciprocating means carried outside the wall for reciprocating the compression plate relative to the chamber, wherein waste material loaded into the chamber is compacted between the compression plate and the floor plate while confined within the vertically extending wall; pusher tabs vertically extending from a rear edge of the floor plate for cradling the waste material; second reciprocating means operable with the floor plate for horizontal reciprocation of at least a portion of the floor plate from within the chamber to outside the chamber through an opening within the wall, wherein waste material compacted within the chamber is pushed therefrom; the compression plate comprising a plate member; and a beam connected to the plate member by a vertical support for securing the beam in a spaced relation to the plate member, the beam horizontally extending beyond the wall for connection to the first reciprocating means.
  • 13. The apparatus according to claim 12, further comprising low friction means carried by the plate member for slidable engagement with an inside surface of the wall during the reciprocating movement of the compression plate.
  • 14. The apparatus according to claim 12, further comprising a pair of opposing struts extending along opposing edges of the plate member for shaping a bale formed in the compressing of the waste material, the pair of opposing struts enhancing compression of the waste material along a lower portion of the floor plate.
  • 15. A baling apparatus comprising:a horizontally disposed floor plate having an arched surface for receiving material to be compacted thereon; a compression plate mounted for reciprocating vertical movement with respect to the floor plate; first reciprocating means operably attached between the horizontally disposed floor plate and the compression plate for reciprocating the compression plate relative to the floor plate, wherein material placed between the floor plate and the compression plate is compacted therebetween for forming an arched bottom surface therein; the compression plate comprising a plate member; and a beam connected to the plate member by a vertical support for securing the beam in a spaced relation to the plate member, the beam secured to the first reciprocating means.
  • 16. The apparatus according to claim 15, further comprising at least one elongate strut carried on a top surface of the floor plate for forming a depression within a bale formed during the compression of the material.
  • 17. The apparatus according to claim 16, wherein the at least one elongate strut comprises two struts spaced for enhancing slidable movement of a fork lift under a bale formed by the apparatus.
  • 18. The apparatus according to claim 15, wherein the first reciprocating means comprises first and second hydraulic pistons operably connected between the base and opposing ends of the beam.
  • 19. The apparatus according to claim 15, further comprising a pair of opposing struts extending along opposing edges of the plate member for shaping a bale formed in the compressing of the material, the pair of opposing struts enhancing compression of the material along a lower portion of the floor plate.
  • 20. A baling apparatus comprising:a horizontally disposed floor plate having an arched surface for receiving material to be compacted thereon; a compression plate mounted for reciprocating vertical movement with respect to the floor plate; first reciprocating means operably attached between the horizontally disposed floor plate and the compression plate for reciprocating the compression plate relative to the floor plate, wherein material placed between the floor plate and the compression plate is compacted therebetween for forming an arched bottom surface therein; the compression plate comprising a plate member; a beam connected to the plate member by a vertical support for securing the beam in a spaced relation to the plate member, the beam secured to the first reciprocating means; pusher tabs vertically extending from an edge of the floor plate; and second reciprocating means operable with the floor plate for horizontal reciprocation of the floor plate for biasing the pusher tabs against the material in a horizontal pushing movement, wherein material compacted between the compaction plate and the floor plate is pushed therefrom with the arched bottom surface placed onto a support surface.
  • 21. The apparatus according to claim 20, wherein the floor plate comprises at least one telescoping plate section.
  • 22. A baling apparatus comprising:a horizontally disposed floor plate; a compression plate mounted for reciprocating vertical movement with respect to the floor plate; at least one elongate strut carried on at least one of the floor plate and the compression plate for forming a depression within a bale formed during compression of material placed between the compression plate and the floor plate; reciprocating means operably attached between the horizontally disposed floor plate and the compression plate for reciprocating the compression plate relative to the floor plate, wherein the material placed between the floor plate and the compression plate is compacted therebetween; the compression plate comprising a plate member; and a beam connected to the plate member, the beam also secured at ends thereof to the reciprocating means.
  • 23. The apparatus according to claim 22, wherein the at least one elongate strut comprises two struts carried by the floor plate in spaced relation thereon for enhancing slidable movement of a fork lift under a bale formed by the apparatus.
  • 24. The apparatus according to claim 22, wherein the at least one elongate strut comprises two struts carried by the compression plate in spaced relation thereon for providing a preselected shaped compression of the material.
  • 25. The apparatus according to claim 22, wherein the floor plate comprises an arched top surface for receiving the material thereon.
  • 26. The apparatus according to claim 22, wherein the reciprocating means comprises first and second reciprocating pistons each operably connected between the base and one of the beam ends.
  • 27. A method for compacting material and baling thereof, the method comprising the steps of:providing a baling apparatus having a chamber defined by enclosing front, rear and sidewalls carried on a base and a vertically reciprocating compression plate operable above the base for compacting the material in the chamber; horizontally disposing a floor plate onto the base for providing a closed bottom end of the chamber, the floor plate having an arched top surface for forming an arched bottom surface of the compacted material; placing a beam across the compression plate, the beam having opposing ends each of which extends beyond an adjacent sidewall of the chamber; fitting first and second generally vertical reciprocating pistons each along the outside of one of the sidewalls and each operably coupled at a lower end to the base and at an upper end to a corresponding end of the beam; loading material to be compressed into the chamber; and compressing the material by reciprocating the compression plate relative to the chamber, wherein the material loaded into the chamber is compacted between the compression plate and the arched top surface of the floor plate.
  • 28. The method according to claim 27, wherein the baling apparatus further comprises a chamber door moveably secured to the front wall for providing access to the chamber, and wherein the method further comprises the steps of:opening the door for providing access to the chamber and exposing the floor; and horizontally pushing the compacted material from the chamber for positioning the compacted material onto a surface adjacent the apparatus for placing a lifting fork element into a cavity formed by the surface and the arched material bottom surface.
  • 29. The method according to claim 28, further comprising the steps of:closing the door; and securing the door to a sidewall prior to the compressing step for locking engagement of the door therewith.
  • 30. The method according to claim 28, wherein the baling apparatus further comprises a feed gate means secured above the door for providing access to the chamber, and wherein the step of loading the material into the chamber comprises the steps of opening the feed gate for the material loading step and closing the feed gate for the compressing step.
  • 31. The method according to claim 28, further comprising the steps of: placing a lifting fork element into the cavity formed by the support surface and the arched bottom surface of the compacted material; and lifting the compacted material for transporting thereof.
  • 32. The method according to claim 27, further comprising the step of attaching at least one elongate strut onto the top surface of the floor plate for forming a depression within a bale formed during the material compressing step.
  • 33. The method according to claim 32, wherein the at least one elongate strut attaching step comprises the step of attaching two struts in a spaced relation for enhancing slidable, movement of a lifting fork element under the compacted material.
  • 34. The method according to claim 27, further comprising the steps of extending a pair of opposing struts along opposing edges of the compression plate for shaping a bale formed in the compressing of the waste material, the pair of opposing struts enhancing compression of the waste material along a lower portion of the floor plate.
  • 35. The method according to claim 27, further comprising the step of strapping the compacted material for forming a bale.
  • 36. The method according to claim 27, further comprising the step of reducing frictional contact between the wall surfaces and the compacted material.
  • 37. The method recited in claim 27, further comprising the step of dimensioning the first and second vertical reciprocating pistons to a dimension within the dimension between the upper and lower extremities of the adjacent sidewalls.
US Referenced Citations (21)
Number Name Date Kind
131805 Yarrell Oct 1872 A
705134 Pope et al. Jul 1902 A
797997 Webb Aug 1905 A
2570757 Bowman et al. Oct 1951 A
3195445 Meisler Jul 1965 A
3228166 Thiele Jan 1966 A
3911807 Birnbaum Oct 1975 A
3913475 Clar Oct 1975 A
3916781 Cerniglia Nov 1975 A
3924871 Mesenbring Dec 1975 A
4057009 Burford et al. Nov 1977 A
4092912 Simich Jun 1978 A
4232599 Ulrich Nov 1980 A
4541332 Horansky et al. Sep 1985 A
4953344 Wallace Sep 1990 A
5247880 Robbins Sep 1993 A
5353698 Robbins Oct 1994 A
5570630 Molitorisz et al. Nov 1996 A
5575199 Yamamoto Nov 1996 A
5632199 Molitorisz et al. May 1997 A
5852969 Anthony Dec 1998 A
Foreign Referenced Citations (3)
Number Date Country
296 15 598 Dec 1996 DE
0 810 083 Dec 1997 EP
1001039 Feb 1997 NL
Non-Patent Literature Citations (7)
Entry
Compact 750 Baler “Waste Management for the New Millennium” (date unknown).
Kenburn Bale Presses Single Chamber (date unknown).
GPI Model M60HP Baler (date unknown).
DIXI Baler Systems 6/97.
Marathon V-6030HD High-Density Recycler 1993.
Philadelphia Tramrail Hydraulic Balers (date unknown).
HSM Baling Presses 6/98.