The present application is a U.S. National Stage Application of International Application No. PCT/US2015/030736 filed May 14, 2015, which is incorporated herein by reference in its entirety for all purposes.
This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and in one example described below more particularly, provides a ball and seat valve capable of withstanding high temperature and high pressure applications.
Hydrocarbons, such as oil and gas, are commonly obtained from subterranean formations that may be located onshore or offshore. The development of subterranean operations and the processes involved in removing hydrocarbons from a subterranean formation typically include a number of different steps such as, for example, drilling a wellbore at a desired well site, treating the wellbore to optimize production of hydrocarbons, and performing the necessary steps to produce and process the hydrocarbons from the subterranean formation.
As oil and gas wells increase in depth to find sustainable reserves, the resultant reservoir pressures and temperatures have increased significantly. For example, at depths of 30,000 feet, it is not uncommon to experience temperatures over 350° F. and pressures over 10,000 psi. These increased downhole conditions have placed increased demands on downhole equipment, including, Isolation Barrier Valves. Current Isolation Barrier Valves utilize a simple spherical ball and seat arrangement as the closure device. In order to meet the current performance demands, the choice of materials to manufacture the ball and seat is becoming restricted and may be nearing the limits of currently approved materials.
The present disclosure is directed to an improved ball and seat valve which incorporates thermally fitted sleeves into the ball and/or the seat to allow greater pressures and temperatures due to the resultant stresses left within the parts due to interference.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
An isolation barrier valve 10 in accordance with the present disclosure is illustrated in
The ball 12 is formed with an axis 18 about which the ball is capable of rotating. As will be described further below, the ball 12 is capable of rotating through at least 90 degrees so as to assume one of two positions, one which can be characterized as an “open” position and the other which can be characterized as a “closed” position. In the “open” position, fluids are permitted to flow through the flow passage 16, for example, during the production of hydrocarbons from a subterranean formation of an oil and gas reservoir to the surface. In the “closed” position, fluid flow is shut off, thereby ceasing the flow of hydrocarbons to the surface. The isolation barrier valve can also be used to open and close the flow of completion and/or enhancement fluids downhole.
The seat 14 is a generally cylindrically-shaped tubular member. Like the ball 12, the seat 14, is formed of a metal alloy, for example, a 41XX Series chromium-molybdenum alloy or more noble nickel alloy. Again, as those of ordinary skill in the art will appreciate, other materials capable of withstanding the high temperature, high pressure environment of deep and ultra-deep wells can be used. The seat 14 in one example may have an inner diameter of approximately 4.5 inches and an outer diameter of approximately 5.0 inches, although, as those of ordinary skill in the art will appreciate, any suitably sized seat may be employed.
In one embodiment in accordance with the present disclosure, a support sleeve 20 is formed in and lines the surface of the flow passage 16 of the ball 12. In one embodiment, the support sleeve 20 is formed of the same metal alloy used to form the ball 12 and seat 14. The support sleeve is generally cylindrically-shaped and in one embodiment may vary in thickness from 0.0625 to 0.125 inches, although other suitable thicknesses and materials may be used. The support sleeve 20 may be thermally fit to the inner cylindrical surface of the ball 12 forming the flow passage 16. In one embodiment, the support sleeve 20 is cooled before being placed into the flow passage 16. Once it warms again, it forms an interference fit with the inner cylindrical surface of the ball 12. Alternatively, the ball 12 is heated hereby causing it to expand. The support sleeve 20 is then inserted into the ball 12, which is then allowed to cool. Once cooled, the support sleeve 20 is interference fit within the flow passage 16 of the ball 12. In the embodiment illustrated in
In another embodiment in accordance with the present disclosure, a pair of generally cylindrically-shaped support sleeves 22 and 24 are used in place of the single support sleeve 20, as shown in
In accordance with the present disclosure, the seat 14 also may be provided with a support sleeve 26, as shown in
As those of ordinary skill will appreciate at high temperatures and/or pressures which are experienced in deep well applications, the ball 12 and seat 14 have a tendency to deform due to the stresses created by the high temperature, high pressure fluid flow. This is illustrated in
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/030736 | 5/14/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/182574 | 11/17/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3227174 | Yost | Jan 1966 | A |
3428663 | Whitehouse | Feb 1969 | A |
3450151 | Heutzenroeder | Jun 1969 | A |
3460803 | Scaramucci | Aug 1969 | A |
3463449 | Eilers | Aug 1969 | A |
3463450 | Works | Aug 1969 | A |
3488033 | Priese | Jan 1970 | A |
3501128 | Pool | Mar 1970 | A |
3503415 | Deangelis et al. | Mar 1970 | A |
3792835 | Shafer | Feb 1974 | A |
4235418 | Natalizia | Nov 1980 | A |
4273309 | Morrison | Jun 1981 | A |
4460157 | Marchal | Jul 1984 | A |
4577830 | Winegart | Mar 1986 | A |
4696323 | Iff | Sep 1987 | A |
4738431 | Perkins | Apr 1988 | A |
4932432 | Berchem | Jun 1990 | A |
5154396 | Conley et al. | Oct 1992 | A |
5746417 | Bowers | May 1998 | A |
5806563 | Rabby | Sep 1998 | A |
6651958 | James | Nov 2003 | B1 |
6698712 | Milberger et al. | Mar 2004 | B2 |
6899132 | Mikiya et al. | May 2005 | B2 |
7004638 | Nicholson | Feb 2006 | B2 |
7287544 | Seneviratne | Oct 2007 | B2 |
7758016 | Scott | Jul 2010 | B2 |
8505639 | Robison et al. | Aug 2013 | B2 |
8663170 | Wenchell et al. | Mar 2014 | B2 |
8727315 | Ringgenberg | May 2014 | B2 |
8783279 | Williams et al. | Jul 2014 | B2 |
8864105 | Xu | Oct 2014 | B2 |
9212536 | Biddick | Dec 2015 | B2 |
20030205688 | Milberger et al. | Nov 2003 | A1 |
20080283787 | Zambonin et al. | Nov 2008 | A1 |
20090032762 | Junier | Feb 2009 | A1 |
20090056952 | Churchill | Mar 2009 | A1 |
20120273223 | Kalb | Nov 2012 | A1 |
20130082202 | Morrison | Apr 2013 | A1 |
20130291962 | Telfer | Nov 2013 | A1 |
20140174728 | Speer et al. | Jun 2014 | A1 |
20150008351 | Hartman et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
0224642 | Jun 1987 | EP |
0326844 | Aug 1989 | EP |
S61127977 | Jun 1986 | JP |
2008-146012 | Dec 2008 | WO |
2011033544 | Mar 2011 | WO |
2013-119255 | Aug 2013 | WO |
WO 2015105555 | Jul 2015 | WO |
Entry |
---|
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2015/030736, dated Nov. 23, 2017, 14 pages. |
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2015/030736 dated Jan. 26, 2016, 17 pages. |
Examiner's Letter issued in Canadian patent application No. 2,979,540 dated Oct. 12, 2018, 4 pages. |
Search report issued in Netherlands patent application No. NL1041768 dated Jan. 16, 2017, 7 pages. |
Written Opinion issued in Singapore patent application No. 11201708087Y dated Oct. 30, 2018, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180119824 A1 | May 2018 | US |