The disclosed devices and methods generally relates to hammer toe and claw toe correction implants and devices.
A hammer toe or contracted toe is a deformity of the proximal inter-phalangeal joint of the second, third, or fourth toe causing it to be permanently bent and giving it a semblance of a hammer. Initially, the hammer toes are flexible and may be corrected with simple measures but, if left untreated, they get fixed and require surgical intervention for correcting them. People with hammer toe can have corns or calluses on the top of the middle joint of the toe or on the tip of the toe. They can also feel pain in their toes or feet and have difficulty in finding comfortable shoes. A claw toe is a typically a deformity of the metatarsal phalangeal joint of the second, third, fourth, or fifth toe causing unopposed flexion of the proximal inter-phalangeal joint and distal inter-phalangeal joint in the respective toe and giving it a semblance of a claw.
Various treatment strategies are available for correcting hammer toes and claw toes. First line treatment of hammer toes starts with new shoes that have soft and spacious toe boxes. Some toe exercises may also be prescribed, to stretch and strengthen the muscles. For example, gently stretching the toes manually, using the toes to pick up things off the floor etc. Another line of treatment includes using straps, cushions or non-medicated corn pads to relieve symptoms. Further, a hammer toe or claw toe can be corrected by a surgery if the other treatment options fail. Surgery can involve inserting screws, wires etc. or other similar implants in toes to straighten them.
Traditional surgical methods include use of k-wires. But of late, due to various disadvantages of using K-wires, compression screws are being used as an implant. K-wires require pings protruding through end of toes because they are temporarily inserted. Because of this, k-wires lead to pin tract infections, loss of fixation etc. Other disadvantages of k-wires include migration of k-wires and breakage, and may therefore require multiple surgeries.
Accordingly, there remains a need for developing improved toe bone implants and methods of correcting toe bone deformities.
Various aspects of the present disclosure will be or become apparent to one with skill in the art by reference to the following detailed description when considered in connection with the accompanying exemplary non-limiting embodiments.
With reference to the Figures, where like elements have been given like numerical designations to facilitate an understanding of the drawings, the various embodiments of cyclic deposition and etch methods are described. The figures are not drawn to scale.
The following description is provided as an enabling teaching of a representative set of examples. Many changes can be made to the embodiments described herein while still obtaining beneficial results. Some of the desired benefits discussed below can be obtained by selecting some of the features or steps discussed herein without utilizing other features or steps. Accordingly, many modifications and adaptations, as well as subsets of the features and steps described herein are possible and can even be desirable in certain circumstances. Thus, the following description is provided as illustrative and is not limiting.
This description of illustrative embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present disclosure. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. Terms such as “longitudinal” and “lateral” are to be interpreted relative to one another or relative to an axis of elongation, or an axis or center of rotation, as appropriate. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship. The term “adjacent” as used herein to describe the relationship between structures/components includes both direct contact between the respective structures/components referenced and the presence of other intervening structures/components between respective structures/components. When only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. In the claims, means-plus-function clauses, if used, are intended to cover the structures described, suggested, or rendered obvious by the written description or drawings for performing the recited function, including not only structural equivalents but also equivalent structures. The terms “implant” and “device” are used interchangeably in this disclosure and such use should not limit the scope of the claims appended herewith.
As used herein, use of a singular article such as “a,” “an” and “the” is not intended to exclude pluralities of the article's object unless the context clearly and unambiguously dictates otherwise.
Improved implants for hammer toe and/or claw toe correction are provided. Embodiments of the present subject matter provide a surgeon with a non-rigid construct and fusion of a joint after correction and a period of post-operative healing. Some embodiments can provide a rigid construct for initial post-operative wound healing and soft tissue release/relaxation while permitting predetermined motion back to the joint following a period of initial post-operative healing. Some embodiments can feature a proximal end of an implant including a ball portion and a distal end of the implant including a socket portion. A ball portion can include a portion of the implant having a surface of a suitable shape, including, but not limited to, a spherical, oval, cylindrical, or ellipsoidal shape, and permitting a predetermined movement of the ball portion when operatively connected to the socket portion. The inventors have observed that an implant having a ball portion and a socket portion can provide improved flexibility, stretching and movement at a respective joint post-insertion.
As shown in
Referring now to
With reference to
Referring now to
In various embodiments, an implant 100 can be implanted into targeted bones by any suitable method. For example, an implant 100 can be implanted or installed via a retrograde approach between, for example, proximate and middle phalanxes in a foot. One skilled in the art will understand that the method described herein may be applied to the middle and distal phalanxes, respective metatarsals, as well or other adjacent bones. In some embodiments, an implant 100 can be implanted via a retrograde approach between, for example, a phalanx and a metatarsal in a foot. In some embodiments, a driver can be used to implant an implant 100 into a joint. For example, a driver can be an elongated instrument and include one end having an adaptable portion suitable for mating with an implant 100 described above. In some embodiments, the adaptable portion can include a male hexagonal head adaptable to mate to a corresponding female depression in an edge portion 135, 115 of an implant 100. In some embodiments, an opposing end of the driver can include a driving pin or trocar and can include a flat modular section configured to accept a handle or other suitable mechanism to assist a surgeon during installation of an implant 100.
Referring now to
The first bone, for example a distal phalanx, can be predrilled or broached using a drill, or other suitable device, to create a hole. In some embodiments, a reamer can be used for precise drilling or broaching The predrilled or broached first bone is then repositioned such that the predrilled hole or broach aligns with the blade portion 136 of first portion 130 of implant 100. The first bone is then pressed into engagement with the blade portion 136 of first portion 130. The serrated edges of blade portion 136 of first portion 130 help to maintain engagement between first bone and blade portion 136 of first portion 130 of implant 100. In some embodiments, a ball portion 120 of second portion 110 can be operatively connected to a socket portion 140 of first portion 130 in situ. In some embodiments, a ball portion 120 of second portion 110 can be operatively connected to a socket portion 140 of first portion 130 prior to insertion of toe implant 100 into the joint. At block 740, the ball portion 120 is aligned with socket portion 140 such that ball portion 120 is configured to rotate a predetermined amount relative to socket portion 140. In some embodiments (e.g.
With reference now to
In some embodiments, an open procedure can be used to expose a joint (710), for inserting the implant 200 into the joint, and for soft tissue release. As discussed above, first and second bones can be resected in some embodiments. In some embodiments, a reamer can be used to for accurate and precise drilling of a canal into respective first and second bones. As shown in
Referring now to
In some embodiments, an open procedure can be used to expose a joint (710), for inserting the implant 300 into the joint, and for soft tissue release. As discussed above, first and second bones can be resected in some embodiments. In some embodiments, a reamer can be used to for accurate and precise drilling of a canal into respective first and second bones. As shown in
Referring now to
In some embodiments, an open procedure can be used to expose a joint (710), for inserting the implant 400 into the joint, and for soft tissue release. As discussed above, first and second bones can be resected in some embodiments. In some embodiments, a reamer can be used to for accurate and precise drilling of a canal into respective first and second bones. In some embodiments (not shown), first 430 and second 410 portions can include respective threaded portions (not shown). In some embodiments (not shown), respective edge portions 435, 415 can be threaded into canals as described above (715) as the first 430 and second 410 portions are implanted independently and operatively connected in situ. As shown in
Referring now to
In some embodiments, an open procedure can be used to expose a joint (710), for inserting the implant 500 into the joint, and for soft tissue release. As discussed above, first and second bones can be resected in some embodiments. In some embodiments, a reamer can be used to for accurate and precise drilling of a canal into respective first and second bones. In some embodiments (not shown), one of the first 530 or second 510 portions can include a respective threaded portions (not shown) as the implant 500 is assembled prior to insertion into a joint. In some embodiments (not shown), the respective edge portion 435 (or 415) of the respective portion including a threaded portion can be threaded into a respective canal as described above (715). In some embodiments, the other one of the first 530 or second 510 portions of the implant 500 can include a bladed portion. In some embodiments, the other one of the first 530 or second 510 portions of the implant 500 can include a barbed portion.
With reference now to
As shown in
Referring now to
Although reference has been made to a patient's proximal and distal interphalangeal joints and metatarsal phalangeal joints, one skilled in the art will understand that embodiments of the present disclosure may be implemented for other respective bones including, but not limited to other phalanges/digits and phalangeal/digital joints.
It may be emphasized that the above-described and illustrated embodiments are merely possible examples of implementations and merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiments of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
While this specification contains many specifics, these should not be construed as limitations on the scope of the claimed subject matter, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As shown by the various configurations and embodiments illustrated in
Some embodiments provide a toe bone implant. The toe bone implant includes a first portion having a socket portion. The toe bone implant also includes a second portion having a ball portion operatively connected to the socket portion. The toe bone implant is implanted in a joint such that the ball portion is configured to rotate a predetermined amount respective to the socket portion.
Some embodiments provide a method of correcting a toe bone deformity. The method includes exposing a joint between first and second bones and inserting a bone implant into the joint. The bone implant includes a first portion including a socket portion and a second portion including a ball portion operatively connected to the socket portion. The method includes inserting an edge portion of the respective first and second portions into the respective first and second bones, and aligning the ball portion with the socket portion such that the ball portion is configured to rotate a predetermined amount relative to the socket portion.
Some embodiments provide a toe bone implant. The toe bone implant includes a first portion having a socket portion. The toe bone implant includes a second portion having a ball portion operatively connected to the socket portion such that the ball portion is configured to rotate a predetermined amount respective to the socket portion. The toe bone implant also includes a resorbable portion operatively connected to the first and second portions and configured to limit rotation of the ball portion respective to the socket portion for a predetermined period of time.
While various embodiments are described herein, it is to be understood that the embodiments described are illustrative only and that the scope of the subject matter is to be accorded a full range of equivalents, many variations and modifications naturally occurring to those of skill in the art from a perusal hereof.
The present application is co-pending with and claims the priority benefit of the provisional application entitled, “Ball and Socket Implants for Correction of Hammer Toes and Claw Toes” Application Ser. No. 61/747,429, filed on Dec. 31, 2012, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
348589 | Sloan | Sep 1886 | A |
373074 | Jones | Nov 1887 | A |
430236 | Rogers | Jun 1890 | A |
561968 | Coulon | Jun 1896 | A |
821025 | Davies | May 1906 | A |
1966835 | Stites | Jul 1934 | A |
2140749 | Kaplan | Dec 1938 | A |
2361107 | Johnson | Oct 1944 | A |
2600517 | Rushing | Jun 1952 | A |
2895368 | Place | Jul 1959 | A |
3466669 | Flatt | Sep 1969 | A |
3681786 | Lynch | Aug 1972 | A |
4156296 | Johnson et al. | May 1979 | A |
4204284 | Koeneman | May 1980 | A |
4213208 | Marne | Jul 1980 | A |
4262665 | Roalstad et al. | Apr 1981 | A |
4275717 | Bolesky | Jun 1981 | A |
4276660 | Laure | Jul 1981 | A |
4304011 | Whelan, III | Dec 1981 | A |
4367562 | Gauthier | Jan 1983 | A |
4516569 | Evans et al. | May 1985 | A |
4590928 | Hunt et al. | May 1986 | A |
4642122 | Steffee | Feb 1987 | A |
4655661 | Brandt | Apr 1987 | A |
4731087 | Sculco et al. | Mar 1988 | A |
4865606 | Rehder | Sep 1989 | A |
4908031 | Frisch | Mar 1990 | A |
4915092 | Firica et al. | Apr 1990 | A |
4932974 | Pappas et al. | Jun 1990 | A |
4955916 | Carignan et al. | Sep 1990 | A |
4963144 | Huene | Oct 1990 | A |
4969909 | Barouk | Nov 1990 | A |
5007932 | Bekki et al. | Apr 1991 | A |
5011497 | Persson et al. | Apr 1991 | A |
5037440 | Koenig | Aug 1991 | A |
5047059 | Saffar | Sep 1991 | A |
5062851 | Branemark | Nov 1991 | A |
5092896 | Meuli et al. | Mar 1992 | A |
5133761 | Krouskop | Jul 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5179915 | Cohen et al. | Jan 1993 | A |
5199839 | DeHaitre | Apr 1993 | A |
5207712 | Cohen | May 1993 | A |
5246443 | Mai | Sep 1993 | A |
5326366 | Pascarella et al. | Jul 1994 | A |
5330476 | Hiot et al. | Jul 1994 | A |
5354301 | Castellano | Oct 1994 | A |
5358405 | Imai | Oct 1994 | A |
5360450 | Giannini | Nov 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5417692 | Goble et al. | May 1995 | A |
5425776 | Cohen | Jun 1995 | A |
5425777 | Sarkisian et al. | Jun 1995 | A |
5437674 | Worcel et al. | Aug 1995 | A |
5458648 | Berman et al. | Oct 1995 | A |
5470230 | Daftary et al. | Nov 1995 | A |
5480447 | Skiba | Jan 1996 | A |
5484443 | Pascarella et al. | Jan 1996 | A |
5498265 | Asnis et al. | Mar 1996 | A |
5516248 | DeHaitre | May 1996 | A |
5522903 | Sokolow et al. | Jun 1996 | A |
5529075 | Clark | Jun 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5595563 | Moisdon | Jan 1997 | A |
5601558 | Torrie et al. | Feb 1997 | A |
5634925 | Urbanski | Jun 1997 | A |
5669913 | Zobel | Sep 1997 | A |
5674297 | Lane et al. | Oct 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5707395 | Li | Jan 1998 | A |
5713904 | Errico et al. | Feb 1998 | A |
5725585 | Zobel | Mar 1998 | A |
5776202 | Copf et al. | Jul 1998 | A |
5779707 | Bertholet et al. | Jul 1998 | A |
5919193 | Slavitt | Jul 1999 | A |
5951288 | Sawa | Sep 1999 | A |
5984971 | Faccioli et al. | Nov 1999 | A |
6030162 | Huebner | Feb 2000 | A |
6045573 | Wenstrom, Jr. et al. | Apr 2000 | A |
6048343 | Mathis et al. | Apr 2000 | A |
6099571 | Knapp | Aug 2000 | A |
6200321 | Orbay et al. | Mar 2001 | B1 |
6200345 | Morgan | Mar 2001 | B1 |
6224600 | Protogirou | May 2001 | B1 |
6248109 | Stofella | Jun 2001 | B1 |
6319284 | Rushdy et al. | Nov 2001 | B1 |
6332885 | Martella | Dec 2001 | B1 |
6336928 | Guerin et al. | Jan 2002 | B1 |
6352560 | Poeschmann et al. | Mar 2002 | B1 |
6383223 | Baehler et al. | May 2002 | B1 |
6386877 | Sutter | May 2002 | B1 |
6413260 | Berrevoets et al. | Jul 2002 | B1 |
6423097 | Rauscher | Jul 2002 | B2 |
6454808 | Masada | Sep 2002 | B1 |
6458134 | Songer et al. | Oct 2002 | B1 |
6475242 | Bramlet | Nov 2002 | B1 |
6508841 | Martin et al. | Jan 2003 | B2 |
6517543 | Berrevoets et al. | Feb 2003 | B1 |
6533788 | Orbay | Mar 2003 | B1 |
6551343 | Törmälä et al. | Apr 2003 | B1 |
6575976 | Grafton | Jun 2003 | B2 |
6682565 | Krishnan | Jan 2004 | B1 |
6875235 | Ferree | Apr 2005 | B2 |
7037309 | Weil et al. | May 2006 | B2 |
7041106 | Carver et al. | May 2006 | B1 |
7192445 | Ellingsen et al. | Mar 2007 | B2 |
7207994 | Vlahos et al. | Apr 2007 | B2 |
7291175 | Gordon | Nov 2007 | B1 |
7585316 | Trieu | Sep 2009 | B2 |
7588603 | Leonard | Sep 2009 | B2 |
7695471 | Cheung et al. | Apr 2010 | B2 |
7708759 | Lubbers et al. | May 2010 | B2 |
7727235 | Contiliano et al. | Jun 2010 | B2 |
7837738 | Reigstad et al. | Nov 2010 | B2 |
7887589 | Glenn et al. | Feb 2011 | B2 |
7909880 | Grant | Mar 2011 | B1 |
7918879 | Yeung et al. | Apr 2011 | B2 |
7959681 | Lavi | Jun 2011 | B2 |
8002811 | Corradi et al. | Aug 2011 | B2 |
8100983 | Schulte | Jan 2012 | B2 |
8118839 | Taylor | Feb 2012 | B2 |
8118849 | Wahl et al. | Feb 2012 | B2 |
8197509 | Contiliano et al. | Jun 2012 | B2 |
8262712 | Coilard-Lavirotte et al. | Sep 2012 | B2 |
8394132 | Lewis et al. | Mar 2013 | B2 |
8414583 | Prandi et al. | Apr 2013 | B2 |
20010049529 | Cachia et al. | Dec 2001 | A1 |
20020072803 | Saunders et al. | Jun 2002 | A1 |
20020111690 | Hyde | Aug 2002 | A1 |
20030191422 | Sossong | Oct 2003 | A1 |
20040097941 | Weiner et al. | May 2004 | A1 |
20040220574 | Pelo et al. | Nov 2004 | A1 |
20040230313 | Saunders | Nov 2004 | A1 |
20050123672 | Justin et al. | Jun 2005 | A1 |
20050149031 | Ciccone et al. | Jul 2005 | A1 |
20050187636 | Graham | Aug 2005 | A1 |
20050283159 | Amara | Dec 2005 | A1 |
20060074492 | Frey | Apr 2006 | A1 |
20060100715 | De Villiers | May 2006 | A1 |
20060129153 | Klaue et al. | Jun 2006 | A1 |
20060200151 | Ducharme et al. | Sep 2006 | A1 |
20060247787 | Rydell et al. | Nov 2006 | A1 |
20070078518 | Lavi | Apr 2007 | A1 |
20070142920 | Niemi | Jun 2007 | A1 |
20070185583 | Branemark | Aug 2007 | A1 |
20070213831 | de Cubber | Sep 2007 | A1 |
20080051912 | Hollawell | Feb 2008 | A1 |
20080086139 | Bourke et al. | Apr 2008 | A1 |
20080132894 | Coilard-Lavirotte et al. | Jun 2008 | A1 |
20080132958 | Pech et al. | Jun 2008 | A1 |
20080161919 | Melkent | Jul 2008 | A1 |
20080177262 | Augoyard et al. | Jul 2008 | A1 |
20080177334 | Stinnette | Jul 2008 | A1 |
20080195215 | Morton | Aug 2008 | A1 |
20080221697 | Graser | Sep 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20090036893 | Kartalian et al. | Feb 2009 | A1 |
20100131014 | Peyrot et al. | May 2010 | A1 |
20100131072 | Schulte | May 2010 | A1 |
20100185295 | Emmanuel | Jul 2010 | A1 |
20100249942 | Goswami et al. | Sep 2010 | A1 |
20100262254 | Lawrence et al. | Oct 2010 | A1 |
20100274293 | Terrill et al. | Oct 2010 | A1 |
20110004255 | Weiner et al. | Jan 2011 | A1 |
20110082507 | Slaue | Apr 2011 | A1 |
20110082508 | Reed | Apr 2011 | A1 |
20110093017 | Prasad et al. | Apr 2011 | A1 |
20110093085 | Morton | Apr 2011 | A1 |
20110144644 | Prandi et al. | Jun 2011 | A1 |
20110257652 | Roman | Oct 2011 | A1 |
20110301652 | Reed et al. | Dec 2011 | A1 |
20110301653 | Reed et al. | Dec 2011 | A1 |
20120016428 | White et al. | Jan 2012 | A1 |
20120065692 | Champagne et al. | Mar 2012 | A1 |
20120089197 | Anderson | Apr 2012 | A1 |
20120259419 | Brown et al. | Oct 2012 | A1 |
20130030475 | Weiner et al. | Jan 2013 | A1 |
20130053975 | Reed et al. | Feb 2013 | A1 |
20130060295 | Reed et al. | Mar 2013 | A1 |
20130066383 | Anderson et al. | Mar 2013 | A1 |
20130066435 | Averous et al. | Mar 2013 | A1 |
20130079776 | Zwirkoski et al. | Mar 2013 | A1 |
20130131822 | Lewis et al. | May 2013 | A1 |
20130150965 | Taylor et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
0340159 | Nov 1989 | EP |
0409364 | Jan 1991 | EP |
0551846 | Jul 1993 | EP |
0611557 | Aug 1994 | EP |
0738502 | Oct 1996 | EP |
1708653 | Sep 2009 | EP |
1923012 | Jun 2010 | EP |
1868536 | Nov 2010 | EP |
2275055 | May 2012 | EP |
2221025 | Dec 2012 | EP |
2221026 | Mar 2013 | EP |
736058 | Nov 1932 | FR |
1036978 | Sep 1953 | FR |
2605878 | May 1988 | FR |
2645735 | Oct 1990 | FR |
2651119 | Mar 1991 | FR |
2783702 | Mar 2000 | FR |
2787313 | Jun 2000 | FR |
2794019 | Dec 2000 | FR |
2846545 | May 2004 | FR |
140983 | Apr 1920 | GB |
2119655 | Nov 1983 | GB |
2227540 | Aug 1990 | GB |
2336415 | Oct 1999 | GB |
2430625 | Apr 2007 | GB |
9641596 | Dec 1996 | WO |
9847449 | Oct 1998 | WO |
2005094706 | Oct 2005 | WO |
2006109004 | Oct 2006 | WO |
2007135322 | Nov 2007 | WO |
Entry |
---|
European Search Report for Application No. EP 13 19 9832 dated Mar. 25, 2014. |
Number | Date | Country | |
---|---|---|---|
20140188238 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61747429 | Dec 2012 | US |