The present invention pertains to a ball-and-socket joint with a pivot pin, which is accommodated rotatably and tiltably with a spherical joint area in a bearing shell, which is in turn arranged in the recess of a joint housing, wherein a closing ring fixes the bearing shell in the joint housing in the axial longitudinal direction of the pivot pin by at least one contact surface.
Various different designs of ball-and-socket joints of the type described in the introduction have been known from the state of the art, and they are used, in particular, in vehicles and steering mechanisms of passenger cars and utility vehicles. A decisive criterion for the quality of the ball-and-socket joints used is their service life, which should be sufficiently long under difficult stress conditions. An essential requirement for ensuring a sufficient service life is the narrowest possible tolerances of the ball-and-socket joint components, and what is especially significant is the spherical joint area of the pivot pin, the bearing shell accommodating same, as well as the fixation of the bearing shell by the closing ring in the joint housing in relation to narrow dimensional tolerances. The closing rings used are often manufactured by a turning operation and are especially sensitive in respect to radial displacements in relation to the longitudinal axis of the pivot pin at the time of mounting. The mounting is usually performed by a rolling operation, as a result of which a one-sided contact of the bearing shell with the closing ring may develop, which leads to premature wear of the joint and as a consequence of this to an excessive clearance in the joint.
The object of the present invention is therefore to improve a ball-and-socket joint of this type such that the high requirements in terms of dimensional tolerances which affect the service life can be reduced during the manufacture of the ball-and-socket joint.
According to the invention, a ball-and-socket joint is provided with a pivot pin accommodated rotatably and tiltably with a spherical joint area in a bearing shell. The bearing shell is in turn arranged in a recess of a joint housing. A closing ring fixes the bearing shell in the joint housing in the axial longitudinal direction of the pivot pin by at least one surface pair. An intermediate element made of an elastic material (elastic element) is arranged between the corresponding contact surfaces on the bearing shell and the closing ring. The intercalation of the elastic element permits within certain limits an oblique position of the contact surfaces for fixing the bearing shell, so that the function of the ball-and-socket joint is essentially preserved both in the new state and after a wear situation resulting from the advanced duration of use, because tilting between the bearing shell and the closing ring is prevented from occurring. Increased tolerances as a consequence of advanced wear can be avoided by a defined pretension of the intermediate element.
In addition, axial tolerances can also be compensated within certain limits. A reduction of the manufacturing costs of the individual components of the ball-and-socket joint and consequently an overall cost advantage are achieved due to the design according to the present invention without adverse effects on the desired long service life having to be feared.
Corresponding to an advantageous variant of the subject of the present invention, the intermediate element may be designed as an elastomer layer. This elastomer layer may be advantageously vulcanized or bonded to the closing ring. The handling of different individual parts during the mounting of the ball-and-socket joint is avoided by this measure, and, moreover, the amount of parts to be stocked is reduced.
Moreover, the dimensional tolerances of the closing ring can be additionally reduced by arranging an additional intermediate element made of an elastic material between the closing ring and the inner wall of the recess that accommodates the bearing shell and in which the closing ring is usually fixed by a step. According to an advantageous variant, this additional intermediate element may likewise be designed as an elastomer layer, and the handling is again facilitated by the intermediate element or the elastomer layer being vulcanized or bonded to the closing ring.
To eliminate another cause for increased wear and the reduced service life resulting therefrom, the first intermediate element may have locking means for rotatorily fixing the bearing shell at the intermediate element in relation to the longitudinal axis of the pivot pin according to an advantageous embodiment of the idea of the present invention. Rotation around the longitudinal axis of the pivot pin or a relative movement between the corresponding components, which would inevitably lead to a premature wear as a consequence of the increased wear, is thus prevented.
As an alternative to the technical teaching described so far, another solution to the object is essentially that an insert element, which is arranged between the outer surface of the bearing shell and the inner surface of the recess accommodating the bearing shell in the bottom area of the recess, has an intermediate element made of an elastic material on at least part of the outer surface of the insert element. The intermediate element may be arranged between the insert element and the inner surface of the recess, or it may be provided between the bearing shell and the insert element.
The properties of the elastic intermediate element likewise act as a tolerance compensation and can, moreover, compensate wear-induced increases in the clearance between the corresponding components within certain limits. In addition, the intermediate element may exert a damping action, and, in particular, impact forces acting on the ball-and-socket joint in the axial direction can be absorbed by the elastic intermediate element. Corresponding to an advantageous variant, the intermediate element may be designed as an elastomer layer, which is arranged both in the bottom area and in the lateral area between the insert element and the recess accommodating same. Vulcanization or bonding to the insert element is available for easier handling for the intermediate element made of an elastic material as well as for its variant as an elastomer layer.
The two solutions according to the present invention will be explained in greater detail below on the basis of several exemplary embodiments, which are shown in the drawings attached. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
Referring to the drawings in particular,
In another operation, the opening 11 of the joint housing 2 is subsequently closed with the closing ring 5. The closing ring 5 comprises essentially two cylindrical areas or portions 15 and 16, the area 15 being designed as a ring projecting in the axial direction toward the inside of the joint housing 2. The inner surface of the area 15 facing the bearing shell 4 has a spherical design here and forms a contact surface for the bearing shell 4 together with the front area of the closing ring 5 directed toward the inside of the joint housing and secures the fixation of the bearing shell in the axial longitudinal direction of the longitudinal axis 10 of the pivot pin.
Should the thin areas 14 of the bearing shell 4 have a cylindrical shape in the unassembled state of the ball-and-socket joint, the area 15 of the closing ring 5 ensures the contact of the areas 14 of the bearing shell 4 with the joint area 9 of the pivot pin 1 during the mounting the ball-and-socket joint, and the bearing shell 4 may be provided with axial longitudinal slots for easier deformation.
The area 16 joining the area 15 of the closing ring 5 has a larger external diameter than the area 15 and is in contact with a step 17 of the joint housing 2. The closing ring 5 is subjected to a rolling operation within the framework of the mounting of the ball-and-socket joint, while the edge of the joint housing is deformed in some sections, but preferably beaded. The closing ring can be fixed by means of this deformation operation, which generates a beaded edge 18 on the axial outer side of the closing ring 5. The opening 11 of the joint housing 2 is closed in a final manufacturing step by means of a sealing bellows 6, which is arranged between the joint housing 2 and the cone 7 of the pivot pin 1 and is held in its position by means of straining rings 19 and 20.
In the exemplary embodiment shown in
Due to this measure, the bearing shell 4 is fixed in the axial longitudinal direction, on the one hand, and the elastomer layer acting as an intermediate element 21 can compensate dimensional inaccuracies between the corresponding contact surfaces of the surface pair formed by the bearing shell 4 and the closing ring 5, on the other hand. This compensation of dimensional inaccuracies can also be improved by arranging an additional intermediate element 22 at the cylindrical outer surface of the closing ring 5 in the area in which it is accommodated in the cylindrical area of the recess 3. This additional intermediate element 22 is likewise made of an elastic material and is preferably likewise designed as an elastomer layer vulcanized or bonded to the closing ring 5. Differences in diameter between the recess 3 in the joint housing 2 and the closing ring 5 can also be compensated by means of this additional intermediate element 22.
Contrary to the view in
The bearing shell 34 is fixed in this exemplary embodiment by means of two closing rings 35 and 43 in the axial direction of the longitudinal axis 40 of the pivot pin. For fixing the bearing shell 34, these closing rings 35 and 43 have essentially the same shape as was already described in detail in the description of
The exemplary embodiment according to
An embodiment variant corresponding, in principle, to that in
The difference between the exemplary embodiment according to
The springy areas 73 of the insert element 66 may, of course, be designed not only as beads, but it is also possible to arrange elastic straps in the cone area of the insert element 66, which project over the installation space of the insert element 66, and the projecting outer contour of these straps forms a contact surface toward the inner side of the recess 63 in the conical area of the insert element 66 located adjacent to the bottom area 72, which is, however, not shown in the figures.
The different embodiments of all the solution variants shown improve the compensation especially of axial loads within the ball-and-socket joint and can, moreover, compensate a tolerance for a wear-induced increased clearance between the bearing shell and the joint housing. The measures described thus lead directly to a prolonged service life of the ball-and-socket joint according to the present invention compared with the embodiments known from the state of the art.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
102 01 022 | Jan 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/00048 | 1/9/2003 | WO | 00 | 11/12/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/058080 | 7/17/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3005647 | Collier | Oct 1961 | A |
3108830 | Fierstine | Oct 1963 | A |
3350122 | Ulderup | Oct 1967 | A |
3381987 | Husen | May 1968 | A |
4259027 | Hata | Mar 1981 | A |
4883263 | Buhl | Nov 1989 | A |
4974985 | Glatzel | Dec 1990 | A |
5066159 | Urbach | Nov 1991 | A |
5067841 | Fukukawa et al. | Nov 1991 | A |
5230580 | Henkel | Jul 1993 | A |
5395176 | Zivkovic | Mar 1995 | A |
5601305 | Nordloh et al. | Feb 1997 | A |
5704727 | Atkins et al. | Jan 1998 | A |
5752780 | Dorr | May 1998 | A |
5782574 | Henkel | Jul 1998 | A |
6113302 | Buhl | Sep 2000 | A |
6488436 | Modat | Dec 2002 | B1 |
6719476 | Hisi | Apr 2004 | B2 |
6773196 | Broker et al. | Aug 2004 | B2 |
6821047 | Broker | Nov 2004 | B2 |
6857810 | Ersoy et al. | Feb 2005 | B2 |
6902345 | Kur | Jun 2005 | B2 |
20010036385 | Menotti | Nov 2001 | A1 |
20030077114 | Broker et al. | Apr 2003 | A1 |
20030081989 | Kondoh | May 2003 | A1 |
20040057781 | Bohne et al. | Mar 2004 | A1 |
20040202507 | Kur | Oct 2004 | A1 |
20050105961 | Kondoh | May 2005 | A1 |
Number | Date | Country |
---|---|---|
39 40 679 | Jun 1991 | DE |
195 42 071 | May 1997 | DE |
197 55 284 | Jun 1999 | DE |
WO 0159312 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040146338 A1 | Jul 2004 | US |