Ball bat including a stiffening element in the barrel

Information

  • Patent Grant
  • 9895588
  • Patent Number
    9,895,588
  • Date Filed
    Monday, August 29, 2016
    8 years ago
  • Date Issued
    Tuesday, February 20, 2018
    6 years ago
Abstract
A ball bat includes a barrel in which one or more stiffening elements are located. The stiffening element may be positioned at a variety of locations, and may have a variety of configurations, for selectively limiting the barrel's performance without appreciably increasing the bat's moment of inertia. In one configuration, the stiffening element includes two radially outer flanges, a radially inner flange, and two web members connecting the outer flanges to the inner flange. The radially outer surfaces of the radially outer flanges contact, and may be affixed to, the inner surface of the barrel wall.
Description
BACKGROUND

Baseball and softball governing bodies have imposed various bat performance limits over the years with the goal of regulating batted ball speeds. Each association generally independently develops various standards and methods to achieve a desired level of play. Bat designers typically comply with these performance standards by adjusting the performance, or bat-ball coefficient of restitution (“BBCOR”), of their bat barrels. Typical methods of controlling BBCOR include thickening the barrel wall of a hollow metal bat, or increasing the radial stiffness of a composite bat via the selection of specific materials and fiber angles. A composite bat's radial stiffness and fiber orientations are limited, however, by a given material thickness. The barrel walls in composite bats, therefore, are also often thickened to provide additional stiffness, which in turn limits BBCOR and barrel performance.


Thickening a barrel wall generally increases the bat's weight and, more importantly, it's “swing weight” or moment of inertia (“MOI”). MOI is the product of: (a) a mass, and (b) the square of the distance between the center of the mass and the point from which the mass is pivoted. Mathematically, this is expressed as follows:

MOI=ΣMass×(Distance)2


Accordingly, the MOI dictates that it becomes increasingly difficult to swing a bat as the bat's mass increases or as the center of the bat's mass moves farther from the pivot point of the swing (i.e., farther from the batter's hands). Because thickening the barrel wall increases the bat's weight at a region relatively distal from the batter's hands, doing so also increases the bat's MOI. Thus, while thickening a barrel wall effectively stiffens the barrel and reduces its performance, the consequent increase in MOI is generally undesirable for batters.


SUMMARY

A ball bat includes a barrel in which one or more stiffening elements are located. The stiffening element may be positioned at a variety of locations, and may have a variety of configurations, for selectively limiting the barrel's performance without appreciably increasing the bat's moment of inertia. In one configuration, the stiffening element includes two radially outer flanges, a radially inner flange, and two web members connecting the outer flanges to the inner flange. The radially outer surfaces of the radially outer flanges contact, and may be affixed to, the inner surface of the barrel wall. Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side-sectional view of a ball bat, according to one embodiment.



FIG. 2 illustrates a stiffening element in a ball bat, according to one embodiment.





DETAILED DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments.


The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.


Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list. Further, unless otherwise specified, terms such as “attached” or “connected” are intended to include integral connections, as well as connections between physically separate components.


The embodiments described herein are directed to a ball bat having a limited bat-ball coefficient of restitution (“BBCOR”), or limited barrel performance, allowing the bat to perform within regulatory association performance limits. The National Collegiate Athletic Association (“NCAA”), for example, has proposed limiting a barrel's BBCOR to below 0.510 or below 0.500. Limiting of the BBCOR is preferably accomplished without appreciably increasing (or by decreasing) the ball bat's moment of inertia (“MOI”).


Turning now in detail to the drawings, as shown in FIG. 1, a baseball or softball bat 10, hereinafter collectively referred to as a “ball bat” or “bat,” includes a handle 12, a barrel 14, and a tapered section 16 joining the handle 12 to the barrel 14. The free end of the handle 12 includes a knob 18 or similar structure. The barrel 14 is preferably closed off by a suitable cap 20 or plug. The interior of the bat 10 is optionally hollow, allowing the bat 10 to be relatively lightweight so that ball players may generate substantial bat speed when swinging the bat 10. The ball bat 10 may be a one-piece construction or may include two or more separate attached pieces (e.g., a separate handle and barrel), as described, for example, in U.S. Pat. No. 5,593,158, which is incorporated herein by reference.


The ball bat 10 is preferably constructed from one or more composite or metallic materials. Some examples of suitable composite materials include fiber-reinforced glass, graphite, boron, carbon, aramid, ceramic, Kevlar, or Astroquartz®. Aluminum or another suitable metallic material may also be used to construct the ball bat 10. A ball bat including a combination of metallic and composite materials may also be constructed. For example, a ball bat having a metal barrel and a composite handle, or a composite barrel and a metal handle, may be used in the embodiments described herein.


The bat barrel 14 may include a single-wall or multi-wall construction. A multi-wall barrel may include, for example, barrel walls that are separated from one another by one or more interface shear control zones (“ISCZs”), as described in detail in U.S. Pat. No. 7,115,054, which is incorporated herein by reference. An ISCZ may include, for example, a disbonding layer or other element, mechanism, or space suitable for preventing transfer of shear stresses between neighboring barrel walls. A disbonding layer or other ISCZ preferably further prevents neighboring barrel walls from bonding to each other during curing of, and throughout the life of, the ball bat 10.


The ball bat 10 may have any suitable dimensions. The ball bat 10 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. Typical ball bats have diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the bat 10, and may vary greatly between users.


The ball striking area of the bat 10 typically extends throughout the length of the barrel 14, and may extend partially into the tapered section 16 of the bat 10. For ease of description, this striking area will generally be referred to as the “barrel” throughout the remainder of the description. A bat barrel 14 generally includes a maximum performance location or “sweet spot,” which is the impact location where the transfer of energy from the bat 10 to a ball is maximal (in the absence of a stiffening element or other performance-reducing feature located at or near the sweet spot), while the transfer of energy to a player's hands is minimal. The sweet spot is generally located at the intersection, i.e., average location, of the bat's center of percussion (COP) and its first three fundamental nodes of vibration. This location, which is typically about 4 to 8 inches from the free end of the barrel 14, does not move appreciably when the bat is vibrating. While the sweet spot is not typically located precisely at the COP of the bat, for ease of description, and for ease in locating the “sweet spot” in a given ball bat, the COP will be considered the location of the sweet spot throughout this description. The COP of a ball bat may be measured using ASTM F2398-11.


The barrel regions between the sweet spot and the free end of the barrel 14, and between the sweet spot and the tapered section 16 of the bat 10, do not provide the maximum performance that occurs at the sweet spot of the barrel 14. Indeed, in a typical ball bat, the barrel's performance, or trampoline effect, decreases as the impact location moves away from the sweet spot. Accordingly, the sweet spot generally requires the greatest limitation or reduction of BBCOR to bring the bat within regulatory association limits.


One approach to reducing BBCOR without significantly increasing MOI is to include one or more stiffening elements in the bat barrel, as described, for example, in U.S. Pat. No. 8,298,102, which is incorporated herein by reference. In one embodiment, a stiffening element 22 is positioned in the bat barrel 14, at or near the sweet spot of the barrel 14, to limit or reduce the BBCOR of the barrel 14 (such that the sweet spot is no longer the maximum performance location in the barrel). The stiffening element 22 may be co-molded with the inner surface of a composite bat barrel, or may be adhesively bonded, welded, or otherwise affixed to the inner surface of a composite or metallic bat barrel. In some embodiments, the stiffening element 22 may optionally be spaced from, and affixed to, the inner surface of the bat barrel 14. In other embodiments, the stiffening element 22 may alternatively be held in place in the barrel via an interference fit. Further, in some embodiments, more than one stiffening element may be positioned in the bat barrel 14.


Any of the stiffening elements described herein, unless otherwise specified, may be made of any suitable stiffening materials. A stiffening element may be made of, for example, aluminum, titanium, or steel; composites of polyester, epoxy, or urethane resins with fibers of carbon, glass, boron, Spectra®, Kevlar®, Vectran®, and so forth, including sheet molding compound or bulk molding compound; or thermoplastics such as ABS, nylon, polycarbonate, acrylic, PVC, Delrin®, and so forth, with or without additive fibers, platelets, and particulates, such as nano-clay, nano-particulates, platelets, or short or long fibers of glass, carbon, and so forth.


While the dimensions and weight of the stiffening elements may vary greatly depending on the requirements of a particular regulatory association or batter, it is generally preferred that they weigh less than one ounce so as to minimize the effect on the bat's MOI. In some applications, however, heavier stiffening elements may be used.


Further, while it is generally preferred that the stiffening elements be positioned at or near the sweet spot of the barrel 14, it may be preferable in some embodiments to locate a stiffening element in other bat regions, such as closer to the handle 12 to limit the increase in MOI resulting from inclusion of the stiffening element. While doing so may necessitate an “over-reduction” in BBCOR at the location of the stiffening element (since the sweet spot will still need to be brought within association performance limits, and a lesser reduction in BBCOR generally occurs at locations spaced from the stiffening element), the tradeoff in substantially reduced MOI may be preferred for certain bats or batters. Thus, depending on the design goals for a particular bat, stiffening elements may be utilized at one or more locations of the ball bat 10.


The inclusion of one or more stiffening elements 22 in the barrel 14, as opposed to significantly thickening a substantial portion of the barrel 14, provides a significant reduction in BBCOR without a substantial increase in the bat's MOI. Surprisingly, inclusion of a single stiffening element 22 can appreciably reduce BBCOR along a substantial length of the bat barrel 14.



FIG. 2 illustrates a ball bat including one embodiment of a stiffening element 84 that increases barrel stiffness over a substantial length of the barrel. The bat includes a barrel wall 82 that may be of uniform or varying thickness, depending on local stiffness goals. The stiffening element 84 includes two annular base members or radially outer flanges 86a and 86b, an annular radially inner flange 88, and two web members or webs 90a and 90b connecting the outer flanges 86a and 86b to the inner flange 88. The radially outer surfaces of the radially outer flanges 86a and 86b contact the inner surface of the barrel wall 82. In some embodiments, they may be affixed or otherwise connected to the inner surface of the barrel wall 82.


This “double-web” stiffening element 84 with an elongated inner flange 88 includes more material located toward a centerline 98 of the bat barrel 82 than does a typical single-web design, resulting in a stiffening element 84 with a higher cross-sectional moment of inertia. Further, the centroid of the stiffening element 84 may be located closer to the centerline 98 of the barrel if the radially inner flange 88 is of sufficient length, resulting in increased barrel stiffness relative to a single-web design.


This configuration also increases stiffness over a greater length of the barrel 82 because the radially inner flange 88 is connected at both of its ends by stiffening webs 90a and 90b. Additionally, smaller diameter pipes or flanges have a higher hoop stiffness than larger diameter pipes or flanges of like material, and the longer the flange 88, the greater the stiffness effect on the barrel. As a result, the double-web stiffening element 84 may be relatively lightweight, which minimizes the overall bat weight and MOI in a manner that is generally not possible with single-web designs. Indeed, a limitation of single-web stiffening elements is that they increase barrel stiffness where the web is located but the overall length of the stiffness zone may be somewhat limited.


The stiffening element 84 may have any suitable dimensions to meet desired stiffness and performance goals. In one embodiment, the radially outer flanges 86a and 86b are each approximately 0.375 inches long and run parallel to the bat axis 104. The outside diameter of each of the radially outer flanges 86a and 86b may be designed to fit tightly within a bat barrel. For example, the outer flanges 86a and 86b may each have an outside diameter of approximately 2.400 inches to fit tightly inside of a typical baseball bat barrel. The connecting webs 90a and 90b may be angled at approximately 10-45 degrees from a line running perpendicular to the bat's centerline or axis 98. In one embodiment, the connecting webs 90a and 90b are angled at approximately 15 degrees from such a line (i.e., 105 degrees from the longitudinal axes of the outer flanges 86a and 86b).


The radially inner flange 88 runs between the radially inner ends of the webs 90a and 90b. The inner flange 88 may be oriented in the same direction or in substantially the same direction as the outer flanges 86a and 86b (i.e., parallel or substantially parallel to the centerline 98 of the barrel 82). The inner flange 88 may have a length of approximately 0.10 inches to 0.60 inches. In one embodiment, the inner flange 88 has a length of approximately 0.13 inches.


The radially outer surface of the inner flange 88 may be spaced from the radially outer surface of each outer flange 86a and 86b (in a direction perpendicular to the barrel's centerline 98) by approximately 0.10-0.40 inches. In one embodiment, this spacing is approximately 0.32 inches. The thickness of the inner flange 88 may be approximately 0.03 inches to 0.150 inches. In one embodiment, the inner flange has a thickness of approximately 0.08 inches. The overall length of the stiffening element 84 in the direction of the barrel's centerline 98 (i.e., the distance between the extreme ends of the outer flanges 86a and 86b) may be approximately 1.0-2.0 inches. In one embodiment, the stiffening element 84 has a length of approximately 1.25 inches.


As described above, the stiffening element 84 may be made of one or more suitable materials. For example, it may be made of a metal or composite material. Some suitable metals include aluminum and aluminum alloys, as well as light weight metals such as titanium and magnesium. A metal stiffening element 84 may be made via machining, forging, casting, or welding. Some suitable composite materials include fibers of carbon, glass, aramid, flax, boron, ceramic, or nano-based materials. Suitable resins for the composite material may include thermoset resins of epoxy, polyester, phenolic, or vinylester, or thermoplastic resins of polyamide, polyurethane, polypropylene, polyphenylsulfide, or polyehteretherketone.


In one embodiment, a carbon-fiber-reinforced epoxy material, or other fiber-reinforced epoxy material, is used to form the stiffening element 84. The stiffening element 84 may be formed, for example, using carbon-fiber strips preimpregnated with epoxy resin. The strips may have any suitable dimensions and fiber angles. Fiber angles of 90 degrees relative to the centerline 98 or axis of the bat produce the highest effective modulus of the stiffening element. Due to shear loads resulting from barrel compression, however, plies oriented at approximately +/−60 degrees relative to the barrel axis may be desired to adequately transfer stress.


The preimpregnated strips may be rolled into a tubular preform to conform to the dimensions of a mold used to form the stiffening element 84. A typical mold may include two halves with annular protrusions that shape the stiffening element 84. Once formed, the tubular preform is placed in the mold and a bladder is positioned inside the preform. The bladder may be made of silicone rubber or of another material that restricts shifting of the preimpregnated strips. The mold is then closed and heat is applied. As the preform warms up, air pressure is applied inside the bladder. The preform expands to conform to the mold cavity. After the mold cycle is completed, the air pressure is released and the mold is cooled. Once the stiffening element 84 cools, it may be removed from the mold.


Features of the above-described embodiments may be used alone or in combination with one another. Furthermore, the ball bats may include additional features not described herein. While several embodiments have been shown and described, various changes and substitutions may of course be made, without departing from the spirit and scope of the invention. The invention, therefore, should not be limited, except by the following claims and their equivalents.

Claims
  • 1. A ball bat, comprising: a substantially hollow barrel having an inner surface and a center of percussion;a handle attached to or integral with the barrel and extending from the barrel in a longitudinal direction; anda stiffening element in the barrel, the stiffening element including:a base positioned against the inner surface of the barrel, wherein the base includes first and second longitudinally spaced base portions;a first radially inwardly protruding portion extending from the base; anda second radially inwardly protruding portion extending from the base;wherein the first and second radially inwardly protruding portions are located in the barrel between the handle and the center of percussion, and wherein the first and second radially inwardly protruding portions are oriented at obtuse angles relative to the first and second base portions, respectively.
  • 2. The ball bat of claim 1 wherein the first radially inwardly protruding portion is connected to the second radially inwardly protruding portion by a flange.
  • 3. The ball bat of claim 1 wherein the ball bat further comprises a tapered section joining the handle to the barrel, and wherein at least one of the first or second radially inwardly protruding portions is located in the barrel between the tapered section and the center of percussion.
  • 4. The ball bat of claim 3 wherein both of the first and second radially inwardly protruding portions are located in the barrel between the tapered section and the center of percussion.
  • 5. The ball bat of claim 1 wherein the stiffening element comprises a fiber-reinforced composite material.
  • 6. The ball bat of claim 1 wherein the stiffening element comprises a metal material.
  • 7. The ball bat of claim 1 wherein the stiffening element includes a central opening oriented along a centerline of the barrel.
  • 8. A ball bat, comprising: a substantially hollow barrel having an inner surface and a center of percussion;a handle attached to or integral with the barrel and extending from the barrel in a longitudinal direction; anda stiffening element in the barrel positioned entirely between the handle and the center of percussion, the stiffening element including: a first outer flange positioned against the inner surface of the barrel;a second outer flange positioned against the inner surface of the barrel and spaced longitudinally from the first outer flange;an inner flange extending longitudinally from a first end to a second end, wherein the inner flange is positioned radially inwardly from, and longitudinally between, the first and second outer flanges;a first web member extending from an end of the first outer flange to the first end of the inner flange; anda second web member extending from an end of the second outer flange to the second end of the inner flange;wherein the first and second web members are oriented at obtuse angles relative to the first and second outer flanges, respectively.
  • 9. The ball bat of claim 8 wherein the first and second web members are oriented at angles of approximately 105° relative to the first and second outer flanges, respectively.
  • 10. The ball bat of claim 8 wherein the ball bat further comprises a tapered section joining the handle to the barrel, and wherein at least one of the first or second web members is located in the barrel between the tapered section and the center of percussion.
  • 11. The ball bat of claim 10 wherein both of the first and second web members are located in the barrel between the tapered section and the center of percussion.
  • 12. The ball bat of claim 8 wherein the inner flange is oriented substantially parallel to the first and second outer flanges.
  • 13. The ball bat of claim 8 wherein the inner flange defines a central opening along a centerline of the barrel.
  • 14. The ball bat of claim 8 wherein the stiffening element comprises a fiber-reinforced composite material.
  • 15. The ball bat of claim 8 wherein the stiffening element comprises a metal material.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/251,181, filed Apr. 11, 2014 and now pending, which is incorporated herein by reference in its entirety.

US Referenced Citations (70)
Number Name Date Kind
2099521 Herkimer et al. Nov 1937 A
3703290 Wilson Nov 1972 A
3727295 Gildemeister Apr 1973 A
3729196 Heald, Jr. Apr 1973 A
3801098 Gildemeister Apr 1974 A
3830496 Reizer Aug 1974 A
3861682 Fujii Jan 1975 A
3876204 Moore et al. Apr 1975 A
3877698 Volpe Apr 1975 A
3880423 Kreag Apr 1975 A
3921978 Warren Nov 1975 A
3963239 Fujii Jun 1976 A
4014542 Tanikawa Mar 1977 A
4032143 Mueller et al. Jun 1977 A
4056267 Krieger Nov 1977 A
4079936 Schachter Mar 1978 A
4343467 Newcomb et al. Aug 1982 A
4348247 Loyd et al. Sep 1982 A
4543284 Baum Sep 1985 A
4600193 Merritt Jul 1986 A
4746117 Noble et al. May 1988 A
5094453 Douglas et al. Mar 1992 A
5104123 Okitsu et al. Apr 1992 A
5180163 Lanctot et al. Jan 1993 A
5364095 Easton et al. Nov 1994 A
5393055 McKay, Jr. Feb 1995 A
5395108 Souders et al. Mar 1995 A
5458330 Baum Oct 1995 A
5533723 Baum Jul 1996 A
5575722 Saia et al. Nov 1996 A
5593158 Filice et al. Jan 1997 A
5624115 Baum Apr 1997 A
5759113 Lai et al. Jun 1998 A
5964673 MacKay, Jr. Oct 1999 A
6042485 Cheng Mar 2000 A
6042493 Chauvin et al. Mar 2000 A
6077178 Brandt Jun 2000 A
6152840 Baum Nov 2000 A
6334824 Filice et al. Jan 2002 B1
6398675 Eggiman et al. Jun 2002 B1
6497631 Fritzke et al. Dec 2002 B1
6612945 Anderson Sep 2003 B1
6729983 Vakili et al. May 2004 B1
6755757 Sutherland Jun 2004 B2
6869372 Higginbotham et al. Mar 2005 B1
6872156 Ogawa et al. Mar 2005 B2
6949038 Fritzke Sep 2005 B2
6994641 Hebreo et al. Feb 2006 B2
7011588 Fritzke et al. Mar 2006 B2
7115054 Giannetti et al. Oct 2006 B2
7534179 Vasek et al. May 2009 B1
7850554 Burger Dec 2010 B2
7867114 Sutherland et al. Jan 2011 B2
8062154 Burger Nov 2011 B2
8298102 Chauvin et al. Oct 2012 B2
8435143 Vander Pol et al. May 2013 B2
8449412 Vander Pol et al. May 2013 B2
8632428 Burger et al. Jan 2014 B2
9427640 Davis Aug 2016 B2
20020151392 Buiatti et al. Oct 2002 A1
20050070384 Fitzgerald et al. Mar 2005 A1
20060025253 Giannetti et al. Feb 2006 A1
20090029810 Fitzgerald et al. Jan 2009 A1
20090143176 Burger Jun 2009 A1
20090280934 Watari Nov 2009 A1
20100160095 Chauvin et al. Jun 2010 A1
20110111894 Thouin May 2011 A1
20110287875 Vander Pol et al. Nov 2011 A1
20120184402 McNamee et al. Jul 2012 A1
20130035181 Chauvin et al. Feb 2013 A1
Non-Patent Literature Citations (2)
Entry
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US09/69045, dated Mar. 2, 2010.
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US15/25371, dated Jul. 13, 2015.
Related Publications (1)
Number Date Country
20160367874 A1 Dec 2016 US
Continuations (1)
Number Date Country
Parent 14251181 Apr 2014 US
Child 15250671 US