Baseball and softball governing bodies have imposed various bat performance limits over the years with the goal of regulating batted ball speeds. Each association generally independently develops various standards and methods to achieve a desired level of play. Bat designers typically comply with these performance standards by adjusting the performance, or bat-ball coefficient of restitution (“BBCOR”), of their bat barrels. Typical methods of controlling BBCOR include thickening the barrel wall of a hollow metal bat, or increasing the radial stiffness of a composite bat via the selection of specific materials and fiber angles. A composite bat's radial stiffness and fiber orientations are limited, however, by a given material thickness. The barrel walls in composite bats, therefore, are also often thickened to provide additional stiffness, which in turn limits BBCOR and barrel performance.
Thickening a barrel wall generally increases the bat's weight and, more importantly, it's “swing weight” or moment of inertia (“MOI”). MOI is the product of: (a) a mass, and (b) the square of the distance between the center of the mass and the point from which the mass is pivoted. Mathematically, this is expressed as follows:
MOI=ΣMass×(Distance)2
Accordingly, the MOI dictates that it becomes increasingly difficult to swing a bat as the bat's mass increases or as the center of the bat's mass moves farther from the pivot point of the swing (i.e., farther from the batter's hands). Because thickening the barrel wall increases the bat's weight at a region relatively distal from the batter's hands, doing so also increases the bat's MOI. Thus, while thickening a barrel wall effectively stiffens the barrel and reduces its performance, the consequent increase in MOI is generally undesirable for batters.
A ball bat includes a barrel in which one or more stiffening elements or damping elements, or both, are located. The stiffening or damping elements may be positioned at a variety of locations, and may have a variety of configurations, for selectively limiting the barrel's performance without appreciably increasing the bat's moment of inertia.
Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.
In the drawings, wherein the same reference number indicates the same element throughout the several views:
Various embodiments of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments.
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.
Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list.
The embodiments described herein are directed to a ball bat having a limited bat-ball coefficient of restitution (“BBCOR”), or limited barrel performance, allowing the bat to perform within regulatory association performance limits. The National Collegiate Athletic Association (“NCAA”), for example, has proposed limiting a barrel's BBCOR to below 0.510 or below 0.500. Limiting of the BBCOR is preferably accomplished without appreciably increasing (or by decreasing) the ball bat's moment of inertia (“MOI”).
Turning now in detail to the drawings, as shown in
The ball bat 10 is preferably constructed from one or more composite or metallic materials. Some examples of suitable composite materials include fiber-reinforced glass, graphite, boron, carbon, aramid, ceramic, Kevlar, or Astroquartz®. Aluminum or another suitable metallic material may also be used to construct the ball bat 10. A ball bat including a combination of metallic and composite materials may also be constructed. For example, a ball bat having a metal barrel and a composite handle, or a composite barrel and a metal handle, may be used in the embodiments described herein.
The bat barrel 14 may include a single-wall or multi-wall construction. A multi-wall barrel may include, for example, barrel walls that are separated from one another by one or more interface shear control zones (“ISCZs”), as described in detail in U.S. Pat. No. 7,115,054, which is incorporated herein by reference. An ISCZ may include, for example, a disbonding layer or other element, mechanism, or space suitable for preventing transfer of shear stresses between neighboring barrel walls. A disbanding layer or other ISCZ preferably further prevents neighboring barrel walls from bonding to each other during curing of, and throughout the life of, the ball bat 10.
The ball bat 10 may have any suitable dimensions. The ball bat 10 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. Typical ball bats have diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the bat 10, and may vary greatly between users.
The ball striking area of the bat 10 typically extends throughout the length of the barrel 14, and may extend partially into the tapered section 16 of the bat 10. For ease of description, this striking area will generally be referred to as the “barrel” throughout the remainder of the description. A bat barrel 14 generally includes a maximum performance location or “sweet spot,” which is the impact location where the transfer of energy from the bat 10 to a ball is maximal, while the transfer of energy to a player's hands is minimal. The sweet spot is generally located at the intersection of the bat's center of percussion (COP) and its first three fundamental nodes of vibration. This location, which is typically about 4 to 8 inches from the free end of the barrel 14, does not move when the bat is vibrating in its first (or fundamental) bending mode.
The barrel regions between the sweet spot and the free end of the barrel 14, and between the sweet spot and the tapered section 16 of the bat 10, do not provide the maximum performance that occurs at the sweet spot of the barrel 14. Indeed, in a typical ball bat, the barrel's performance, or trampoline effect, decreases as the impact location moves away from the sweet spot. Accordingly, the sweet spot generally requires the greatest limitation or reduction of BBCOR to bring the bat within regulatory association limits.
In one embodiment, a stiffening element 22 is positioned in the bat barrel 14, at or near the sweet spot of the barrel 14, to limit or reduce the BBCOR of the barrel 14. The stiffening element 22 may be co-molded with the inner surface of a composite bat barrel, or may be adhesively bonded, welded, or otherwise affixed to the inner surface of a composite or metallic bat barrel. In some embodiments, as further described below, the stiffening element 22 may optionally be spaced from, and affixed to, the inner surface of the bat barrel 14. While the stiffening element is generally identified with reference numeral “22” in
Any of the stiffening elements described herein, unless otherwise specified, may be made of any suitable stiffening materials. A stiffening element may be made of, for example, aluminum, titanium, or steel; composites of polyester, epoxy, or urethane resins with fibers of carbon, glass, boron, Spectra®, Kevlar®, Vectran®, and so forth, including sheet molding compound or bulk molding compound; or thermoplastics such as ABS, nylon, polycarbonate, acrylic, PVC, Delrin®, and so forth, with or without additive fibers, platelets, and particulates, such as nano-clay, nano-particulates, platelets, or short or long fibers of glass, carbon, and so forth.
The inclusion of one or more discrete stiffening elements 22 in the barrel 14, as opposed to significantly thickening a substantial portion of the barrel 14, provides a significant reduction in BBCOR without a substantial increase in the bat's MOI. Surprisingly, inclusion of a single discrete stiffening element 22 can appreciably reduce BBCOR along a substantial length of the bat barrel 14. It has been found, for example, that affixing a 0.5-inch thick urethane disk or slug on the inside surface of the bat barrel 14, approximately 6 inches from the cap-end of the bat 10, can reduce the barrel's performance over approximately 1.5 inches in either direction from the stiffening element 22.
Several examples of stiffening elements are shown in
Any of the stiffening elements disclosed herein may optionally be attached to only a single region of the inner surface of the barrel 14 to provide limited barrel flexure or compliance.
The amount of allowable barrel movement or flexure may be modified by adjusting the gap between the barrel and the stiffening element. Alternatively, the stiffening element may be spaced from, but connected to, the inner surface of the barrel 14 with a compliant adhesive, such as a compliant urethane. Accordingly, when contact with a ball occurs, the barrel wall flexes inwardly to compress or displace the compliant adhesive such that the barrel wall moves toward the stiffening element.
Alternatively, as shown in
As shown in
Stiffening sections of this nature are preferably made of one or more high strength materials, such as one or more of the high strength metals or composite materials described above, since they generally include less material than the solid disks or slugs described above. As with all of the stiffening elements described herein, material selection may be dictated by the performance limits of a given regulatory association.
The hat section element 92 may be formed from a cylindrical tube simply by changing the tube's outer diameter into a hat shape, or by depressing the outer surface of the tube, or by molding the tube with a constant outer diameter and varying the tube's inner diameter. In the case of varying the inner diameter, the hollow opening 96 may be molded using a bladder placed circumferentially between the outer and inner diameter surfaces. The hollow opening 96 could alternatively be molded using a rotational blow molding process, or using removable or dissolvable cores, such as polyvinyl alcohol or another suitable substance. Alternatively, the hat section 92 could result from the assembly of a first cylindrical section of tube and a second cylindrical section of tube having a smaller diameter and a depression formed in its outer diameter.
Another approach to governing barrel performance, which may be used alone or in combination with any of the stiffening elements described herein, involves damping the bat barrel 14. While adding stiffness is an effective manner of lowering a bat's BBCOR, the feel of a relatively stiff or rigid bat can sometimes be somewhat harsh, as vibrations resulting from off-center hits may result in a batter feeling “sting” in the batter's hands. Thus, many batters prefer that the barrel have some compliance, as such a barrel tends to provide improved feel during off-center hits away from the sweet spot.
Damping lowers the frequency of an object by adding mass to the object to slow its vibrational response. A damping material also wastes some energy when it is deformed, as it converts some of the energy of deformation into heat through internal hysteresis or friction. Adding damping materials to a bat barrel reduces the barrel's hoop frequency, which leads to a resultant reduction in the bat's BBCOR.
Damping materials can be added to a bat barrel 14 in multiple ways. One preferred embodiment involves adding damping material in a manner that limits the barrel's BBCOR without significantly increasing the bat's MOI by, for example, using a lightweight damping material or limiting the pivot radius of the material by locating it relatively close to the bat handle.
As shown in
Surprisingly, molding a very small amount of elastomeric material, for example, into a composite bat barrel provides a relatively dramatic reduction in the bat's BBCOR. It has been found, for example, that replacing a release ply acting as an ISCZ in a dual wall composite bat with a 6-inch wide, 0.008-inch thick thermoplastic urethane sheet caused an approximately 7.7% drop in the bat's BBCOR. It has further been found that adding three such thermoplastic urethane sheets (with a combined 0.024-inch thickness) merely increased the bat's MOI by approximately 180 oz·in2, while significantly lowering the bat's BBCOR. The use of a foam material could reduce the MOI effect of the material even further. If foam is used, it should be a type capable of maintaining its properties, shape, and strength through the temperatures and pressures involved in the composite molding process. Closed silicone foam, for example, could withstand the molding temperatures and pressures.
A variety of materials that could be used to create a damping element 100 include elastomeric materials, thermoplastic urethane, neoprene, Santoprene®, nitrile-butadiene rubber, styrene-butadiene rubber, urethane foam, flexible adhesives such as urethane adhesive (DP620), or any other suitable damping materials. The use of foam materials, in particular, tends to increase the damping coefficient of the material (i.e., provides more energy waste) while limiting the weight of the material. In one embodiment, an air bladder with a relief valve, such as a piece of foam positioned between two plastic sheets, could be used as a damper to effectively lower the rebound speed of the bat barrel. The use of any of these damping materials reduces BBCOR and also reduces vibrations and the resultant sting, thus improving the bat's feel.
In the embodiments described herein, the stiffening elements or damping elements are generally described as being located at or near the sweet spot of the barrel 14. In some embodiments, it may be desirable to locate the stiffening elements or damping elements closer to the handle 12 to reduce the effect on the bat's MOI. Since the MOI is related to the square of the pivot distance, moving any added weight closer to the hands considerably lowers the bat's MOI. While doing so may necessitate an “over-reduction” in BBCOR at the location of the stiffening or damping element (since the sweet spot will still need to be brought within association performance limits, and a lesser reduction in BBCOR generally occurs at locations spaced from the stiffening or damping element), the tradeoff in substantially reduced MOI may be preferred for certain bats or batters.
In some embodiments, one or more damping elements may be used in conjunction with one or more stiffening elements to reduce the bats' BBCOR without appreciably increasing its MOI. The one or more damping elements will enhance the batter's feel and reduce sting while also reducing the bat's BBCOR, and the stiffening element will further reduce the bat's BBCOR and increase its durability.
In a composite bat, for example, a 2-inch wide, 0.006-inch thick layer of foamed thermoplastic urethane may be located approximately at the barrel's radially mid-laminate region, while a stiffening disk or slug may be bonded or otherwise affixed to the inner surface of the barrel. Alternatively, the stiffening element may be omitted and the composite barrel itself may have a stiff design, such as a laminate with mostly carbon fibers angled at greater than 35 degrees, preferably at approximately 60 degrees, relative to the longitudinal axis of the ball bat. Such a design has been found to reduce the bat barrel's BBCOR below 0.500. Indeed, in a composite bat having a laminate with carbon fibers angled at 60 degrees and a single 0.006-inch thick layer of foamed thermoplastic urethane located approximately at the barrel's radially mid-laminate region, the BBCOR was found to be approximately 0.472 (most existing bats designed for competitive play, by comparison, generally have BBCOR's greater than 0.530).
In an aluminum bat, a stiffening slug or “spoked wheel,” for example, may be bonded or otherwise affixed to an inner surface of the barrel using a foamed thermoplastic urethane or a flexible elastomeric adhesive. Any other suitable combination of damping and stiffening elements may alternatively be utilized to meet the requirements of a given regulatory association or batter.
The stiffening elements and damping elements described herein may be co-molded with the inner surface of a composite bat barrel, or may be adhesively bonded, welded, or otherwise affixed to the inner surface of a composite or metallic bat barrel. In some embodiments, the stiffening elements and damping elements may alternatively be held in place in the barrel via an interference fit. As described above, damping elements may additionally or alternatively be positioned between composite layers or metal walls in a ball bat. While the dimensions and weight of the stiffening elements and damping elements may vary greatly depending on the requirements of a particular regulatory association or batter, it is generally preferred that they weigh less than one ounce so as to minimize the effect on the bat's MOI. In some applications, however, heavier stiffening or damping elements may be used.
Any of the above-described embodiments may be used alone or in combination with one another. Furthermore, the ball bats may include additional features not described herein. While several embodiments have been shown and described, various changes and substitutions may of course be made, without departing from the spirit and scope of the invention. The invention, therefore, should not be limited, except by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2099521 | Herkimer et al. | Nov 1937 | A |
3703290 | Wilson | Nov 1972 | A |
3727295 | Gildemeister | Apr 1973 | A |
3729196 | Heald, Jr. | Apr 1973 | A |
3801098 | Gildemeister | Apr 1974 | A |
3830496 | Reizer | Aug 1974 | A |
3861682 | Fujii | Jan 1975 | A |
3876204 | Moore et al. | Apr 1975 | A |
3877698 | Volpe | Apr 1975 | A |
3880423 | Kreag | Apr 1975 | A |
3921978 | Warren | Nov 1975 | A |
3963239 | Fujii | Jun 1976 | A |
4014542 | Tanikawa | Mar 1977 | A |
4032143 | Mueller et al. | Jun 1977 | A |
4056267 | Krieger | Nov 1977 | A |
4079936 | Schachter | Mar 1978 | A |
4343467 | Newcomb et al. | Aug 1982 | A |
4348247 | Loyd et al. | Sep 1982 | A |
4543284 | Baum | Sep 1985 | A |
4600193 | Merritt | Jul 1986 | A |
4746117 | Noble et al. | May 1988 | A |
5094453 | Douglas et al. | Mar 1992 | A |
5104123 | Okitsu et al. | Apr 1992 | A |
5180163 | Lanctot et al. | Jan 1993 | A |
5393055 | McKay, Jr. | Feb 1995 | A |
5395108 | Souders et al. | Mar 1995 | A |
5458330 | Baum | Oct 1995 | A |
5533723 | Baum | Jul 1996 | A |
5575722 | Saia et al. | Nov 1996 | A |
5624115 | Baum | Apr 1997 | A |
5759113 | Lai et al. | Jun 1998 | A |
5964673 | MacKay, Jr. | Oct 1999 | A |
6042485 | Cheng | Mar 2000 | A |
6042493 | Chauvin et al. | Mar 2000 | A |
6077178 | Brandt | Jun 2000 | A |
6152840 | Baum | Nov 2000 | A |
6334824 | Filice et al. | Jan 2002 | B1 |
6398675 | Eggiman et al. | Jun 2002 | B1 |
6497631 | Fritzke et al. | Dec 2002 | B1 |
6729983 | Vakili et al. | May 2004 | B1 |
6755757 | Sutherland | Jun 2004 | B2 |
6869372 | Higginbotham et al. | Mar 2005 | B1 |
6872156 | Ogawa et al. | Mar 2005 | B2 |
6949038 | Fritzke | Sep 2005 | B2 |
7011588 | Fritzke et al. | Mar 2006 | B2 |
20020151392 | Buiatti et al. | Oct 2002 | A1 |
20050070384 | Fitzgerald et al. | Mar 2005 | A1 |
20060025253 | Giannetti et al. | Feb 2006 | A1 |
20090029810 | Fitzgerald et al. | Jan 2009 | A1 |
20090143176 | Burger | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100160095 A1 | Jun 2010 | US |