Baseball and softball governing bodies have imposed various bat performance limits over the years with the goal of regulating batted ball speeds. Each association generally independently develops various standards and methods to achieve a desired level of play.
During repeated use of bats made from composite materials, the matrix or resin of the composite material tends to crack, the fibers tend to stretch or break, and the composite layers or plies tend to delaminate or separate from each other. For example, delamination or separation of the plies may result from the bat being deflected beyond the interlaminar shear strength limits of the composite material. This break-in tends to reduce stiffness and increase the elasticity or trampoline effect of a bat against a ball, which tends to temporarily increase bat performance.
Some unscrupulous players choose to intentionally break in composite bats to increase performance. Intentional break-in processes may be referred to as accelerated break-in (ABI), and may include techniques such as “rolling” a bat or otherwise compressing it, or generating hard hits to the bat with an object other than a ball.
In some circumstances, a broken-in bat may temporarily exceed performance limitations specified by a governing body, such as limitations related to batted ball speed. Recent regulations require composite bats to comply with performance limitations regardless of whether they have been broken-in through normal use or through abuse.
Representative embodiments of the present technology include a ball bat with a barrel having a composite laminate including a plurality of composite plies, the barrel further including one or more translaminar elements passing through the plurality of composite plies and positioned around a circumference of the barrel to reduce relative movement between the plies. The one or more translaminar elements may include a first line of stitching. In some embodiments, the first line of stitching includes aramid fiber. In some embodiments, the first line of stitching passes around the circumference of the barrel to form two or more coils around the barrel. The one or more translaminar elements may include a second line of stitching. In some embodiments, the first and second lines of stitching may be positioned on opposing sides of a center of percussion of the ball bat along a longitudinal axis of the ball bat. In some embodiments, the one or more translaminar elements may include a line of staples distributed around the circumference of the barrel. The composite laminate may include at least one of carbon fibers or aramid fibers. The lines of stitching may be oriented at an oblique angle relative to a transverse plane passing through the barrel.
In a further representative embodiment of the present technology, a method of making a ball bat includes arranging two or more plies of composite material to form a cylinder, passing a first translaminar element through the two or more plies of composite material, and curing the two or more plies of composite material to form a barrel of the bat. Passing a first translaminar element through the two or more plies of composite material may include stitching a line connecting the two or more plies of composite material. The method may include stitching a line around the cylinder to form two or more coils around the cylinder. In some embodiments, a method of making a ball bat may include passing a second translaminar element through the two or more plies of composite material, the second translaminar element being positioned on an opposing side of a center of percussion of the ball bat relative to the first translaminar element. In some embodiments, the translaminar element may include one or more staples.
Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.
In the drawings, wherein the same reference number indicates the same element throughout the views:
The present technology is directed to ball bats with stitched composite layers, and associated systems and methods. Various embodiments of the technology will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions, such as structures or functions common to ball bats and composite materials, methods of making composite materials, or systems and methods for stitching materials together, may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Accordingly, embodiments of the present technology may include additional elements or exclude some of the elements described below with reference to
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.
Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list. Further, unless otherwise specified, terms such as “attached” or “connected” are intended to include integral connections, as well as connections between physically separate components.
Specific details of several embodiments of the present technology are described herein with reference to baseball or softball. The technology may also be used in other sporting good implements or in other sports or industries involving striking implements.
Turning now to the drawings,
The bat 100 may have any suitable dimensions. For example, the bat 100 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. Typical ball bats have diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the bat 100, and may vary greatly among users.
The barrel portion 110 may be constructed with one or more composite materials. Some examples of suitable composite materials include plies reinforced with fibers of carbon, glass, graphite, boron, aramid (such as Kevlar®), ceramic, or silica (such as Astroquartz®). Accordingly, in various embodiments, a number of different composite plies suitable for use in ball bats may be used, including, for example, composites formed from carbon fiber, fiberglass, aramid fibers, or other composite materials or combinations of matrices, resins, fibers, laminates, and meshes forming composite materials. In some embodiments, the barrel portion 110 may include layers or plies made of the same material (for example, each ply or layer may be formed from carbon fiber), while in further embodiments, the barrel portion 110 may include layers or plies made of multiple different materials (for example, one or more plies or layers may be formed with carbon fiber and one or more other plies or layers may be formed with fiberglass).
The handle portion 120 may be constructed from the same material as, or different materials than, the barrel portion 110. In a two-piece ball bat, for example, the handle portion 120 may be constructed from a composite material (the same or a different material than that used to construct the barrel portion 110), a metal material, or any other material suitable for use in a striking implement such as the bat 100.
A center of percussion 180 is located in the barrel portion 110. The center of percussion 180 is a location along the length of the bat 100 where some of the highest or maximum batted ball speeds can be achieved. The center of percussion 180 is generally located at or near the “sweet spot” of the ball bat 100, and it may be measured or located according to the ASTM F2398-11 Standard. For example, in some bats, the center of percussion 180 may be located between 5.75 inches and 6.25 inches from the end of the bat having the end cap 150 (such as 6 inches from the end), depending on the characteristics of the bat assembly, including the optional cap 150. Note that although the center of percussion 180 is described and illustrated at a location in
The barrel wall 200 may be formed from a plurality of plies 220 of composite material, such as the composite materials described above. For example, the barrel wall 200 may include between two to seven plies, such as five plies, or even more plies depending on the thickness of the plies, the materials used in each ply, and the desired structural qualities of the assembled bat 100. The plies 220 may include layers of pre-impregnated (“pre-preg”) material that may be stacked around a bat-shaped mold and cured into their final shape. The plies may also be cured together in a resin-transfer-molding process known to those of ordinary skill in the art. Layering composite plies into a bat shape (sometimes known as a preform) and then curing the preform is known to those of ordinary skill in the art.
According to embodiments of the present technology, one or more lines 230 of translaminar elements, such as translaminar stitching, are routed through the plies 220 forming the barrel wall 200 before curing the preform. The plies 220 are stitched together about all or a portion of the circumference of the barrel wall 200. Stitching the plies 220 of the preform before curing increases the cured bat barrel's resistance to delamination, thereby reducing or preventing an increase of the bat-ball coefficient of restitution (BBCOR) as the bat 100 breaks in during normal use or even during abuse.
The inventors tested both unstitched control bats and stitched bats according to embodiments of the present technology. Both types of bats (unstitched and stitched) underwent an ABI process (rolling) to damage the bats. Specifically, both types of bats were rolled to cause them to sustain equivalent decreases in compression (stiffness), such as five percent or ten percent of the original compression value (depending on the sport). The inventors discovered that the unstitched control bats exhibited more delamination than the stitched bats after the ABI process. The additional delamination in the unstitched control bats resulted in larger increases in BBCOR (performance) that could cause the bat to fail a regulatory body's performance test. In contrast, the stitched configurations exhibited smaller increases in BBCOR. In one stitched bat, the BBCOR value actually decreased after the ABI process. Accordingly, the inventors discovered that stitching according to embodiments of the present technology reduced or even eliminated the increase in BBCOR relative to bats without stitching.
Although ten lines 230 of stitching are illustrated in
The lines 230 of stitching may include threads or fibers of various materials or combinations of materials. In a particular embodiment, the threads or fibers have high strength and low stretching or elongation properties. For example, in some embodiments, the stitching may include threads or fibers of aramid (such as Kevlar®). In other embodiments, other threads or fibers may be used, such as nylon, polyester (such as Mylar®), cotton, cotton/polyester blends, linen, rayon, silk, carbon fibers, wool, glass fiber, or other fibers.
Zig-zag stitching, for example, may offer support and strength over a wider area than straight stitching (for example, a zig-zag stitch may create an approximately one-quarter-inch seam area). Some stitch patterns may be implemented that allow some stretching before the stitch breaks. In some embodiments, a locking stitch may be used, in which the stitch binds itself so that a break in one stitch loop does not cause unraveling of the remaining stitches. The length of individual stitches is affected by speed and ease of manufacturing. For example, a short stitch length may make a seam stronger, but it will take longer to manufacture and there may be more holes in the composite, risking more broken fibers. In representative embodiments, individual stitches have lengths between 5 millimeters and 25 millimeters. Other suitable stitch lengths may be used.
Although
The line 230 of stitches in
For example, as shown in
The lines 230 of stitching (or the line or lines 310 of stitching, or other lines of stitching according to embodiments of the present technology) may be positioned at any suitable locations along the longitudinal axis x of the bat. In particular representative embodiments, the lines 230 of stitching are located in, near, or around a hitting zone of the ball bat. For example,
In a particular representative embodiment of the present technology, the hit line 410 may be located at a distance from the center of percussion 180, such as between 0.5 inches and 1.5 inches from the center of percussion 180 in a direction towards the end cap 150 along the length of the bat 400 or towards the knob 140. In some embodiments, the hit line 410 may be a distance D1 from the end cap 150. The distance D1 may be between four inches and seven inches in some embodiments. In a particular representative embodiment, the distance D1 may be approximately six inches.
A group 420 of lines 230 of stitching (or one or more helical or spiral stitch lines 230 or 310 having one or more coils about the barrel portion 110) may be positioned on either side of the hit line 410 or on both sides of the hit line 410. Each group 420 may have between two and eight lines 230 of stitching, as illustrated in
In some embodiments, lines 230 of stitching may optionally be placed farther from the hit line 410 than described above. For example, one or more stitch lines 230 may be positioned at any location where delamination may occur between composite layers of the bat 400.
Lines of stitching according to embodiments of the present technology may be positioned and spaced apart as described herein, or they may be positioned and spaced apart at other suitable locations and by other suitable distances depending on the acceptable length of delamination between plies in a given bat wall, the strength of the thread, or the overall bat configuration, such as the overall strength or rigidity of a bat. For example, weaker or more flexible bats may require more lines of stitching placed closer together to each other. Stronger or less flexible bats may use fewer stitches or stitches placed farther from the hit line or spaced farther apart.
In another embodiment of the present technology, a method of manufacturing a ball bat includes forming a composite preform by laying up plies (such as the plies 220 described above) in a cylindrical barrel form, followed by stitching or stapling the plies 220 together, followed by curing the assembly. In some embodiments, a sewing apparatus that has a small elongated end capable of reaching into the narrow interior of the bat preform may be used to stitch the plies 220 together. In some embodiments, plies of composite may be stitched or stapled together before forming the composite preform.
Ball bats according to embodiments of the present technology provide several advantages. For example, stitching or stapling resists or prevents sliding or other movement between plies of the composite laminate, which minimizes the elasticity or trampoline effect of a bat as it breaks in through use or abuse. In addition to increasing interlaminar strength, stitching or stapling according to various embodiments increases through-thickness strength or wall-strength of the barrel wall. Although stitching and stapling have been described and illustrated herein, other translaminar elements may be used to pass through the plies to prevent or reduce relative movement between them.
From the foregoing, it will be appreciated that specific embodiments of the disclosed technology have been described for purposes of illustration, but that various modifications may be made without deviating from the technology, and elements of certain embodiments may be interchanged with those of other embodiments, and that some embodiments may omit some elements. For example, although embodiments of the present technology are described as having stitches positioned relative to or centered around a hit line, the technology may be positioned in other locations along a ball bat, such as ball-impact locations where a user experiences minimum bat sensation when hitting the ball, or other suitable locations where impacts are expected or near where impacts may be expected, or areas of a bat that will undergo testing. Stitching or stapling need not be in a straight section of the ball bat. For example, stitching or stapling according to the present technology may be positioned in a tapered section of the bat. In some embodiments involving stitching, stitches need not be locked or fully tightened against the composite plies. For example, there may be a loose end or tuft extending into the interior of the ball bat. In some embodiments, an outer layer, laminate, covering, ply, or coating may be positioned over the translaminar elements (such as the lines of stitching or staples).
Further, while advantages associated with certain embodiments of the disclosed technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology may encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5419553 | Rodgors | May 1995 | A |
5624115 | Baum | Apr 1997 | A |
6152840 | Baum | Nov 2000 | A |
6776735 | Belanger | Aug 2004 | B1 |
8029391 | McNamee et al. | Oct 2011 | B2 |
9295890 | Gans | Mar 2016 | B2 |
20040198539 | Sutherland | Oct 2004 | A1 |
20040221712 | Stewart | Nov 2004 | A1 |
20140179469 | Berggren | Jun 2014 | A1 |
20170252617 | Caron Kardos | Sep 2017 | A1 |
Entry |
---|
Ellis Developments Limited, “Web Page—Through Stitching of Composites”, available at http://www.ellisdev.co.uk/through_stitching.html, exact publication unknown, website visited Jul. 28, 2017, 2 pgs. |
Ellis Developments Limited, “Web Page—Through Stitching Z-Axis Stitching”, available at http://www.ellisdev.co.uk/thezarc.html, exact publication date unknown, webpage visited Jul. 28, 2017, 2 pgs. |
Sickinger, C. et al., “Structural Stitching as a Method to design High-Performance Composites in Future”, Proc. TechTextil Symposium 2001, Messe Frankfurt, Frankfurt am Main, Germany, 10 pgs. |
Number | Date | Country | |
---|---|---|---|
20190030407 A1 | Jan 2019 | US |