1. Field of the Invention
This invention relates generally to a ball bearing that supports components in rotation, particularly in applications where axial thrust loads are present.
2. Description of the Prior Art
To improve power density, there is a need to maximize ball fill and contact load capacity over that in regular single row deep groove ball bearings (DGBBs) using the standard Conrad design and method of assembly. Holding split bearing race segments together for both shipping and assembly present a problem.
Greater radial load capacity using additional balls can be achieved having a slot in one or both of the bearing races. This allows more radial capacity than the Conrad design but it severely reduces axial capacity, which is inappropriate for applications in which thrust loads can force the balls out of the slot.
An alternative is to use split-ring ball bearings, where one of the races is split in the middle to allow for more balls to be assembled in it. Unfortunately, handling and assembly suffer as the two halves of the split race are not retained together until installation. This also allows for more opportunity for mechanical damage and contamination until the whole open assembly is closed.
A bearing includes a first race including first and second segments, forming aligned pairs of first surfaces, spaced angularly about an axis; a second race including second surfaces, each second surface aligned with one of the pairs of first surfaces; balls, each ball contacting the surfaces of the first and second races; and a cage connecting each ball, engaging the first and second segments with a force that holds the segments in mutual contact.
Either the inner or outer race is formed in one piece; the other race is formed in two segments.
Contact between the ball and whole race can be at one central point, or at two points as with a Gothic arch bearing.
The ball may contact one or both of the segmented races when the segmented races are asymmetric.
The scope of applicability of the preferred embodiment will become apparent from the following detailed description, claims and drawings. It should be understood, that the description and specific examples, although indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications to the described embodiments and examples will become apparent to those skilled in the art.
The invention will be more readily understood by reference to the following description, taken with the accompanying drawings, in which:
The gap 30 between the races 16, 18 is retained by press-forming the legs 23, 24 of the tabs 21, 22 such that the legs 23, 24 bear with a running clearance to the outer faces 26, 28 when the bearing 10 is in its assembled condition. The legs 23 and 24 are to have running clearance to the race surfaces, so as to retain the assembly in the uninstalled state, but minimize sliding friction in operation. A shaft/bore fastener may be used to close and/or preload the gap 30, as with other bearings. The external shaft/bore fastener or some external device or preload would produce the axial force.
A spherical ball 32 enclosed by the races 14, 16, 18, contacts at least a portion of the concave spherical inner surfaces 34, 36, 38 of races 14, 16, 18.
In the bearing configuration shown in
The gap 30 between the races 16, 18 is closed by press-forming the legs 23, 24 of the tabs 21, 22 such that the legs bear with a running clearance to the outer lateral faces of ribs 40, 44 when the bearing 10 is in its assembled condition, thereby providing lateral continuity between races 16, 18.
In the bearing configuration shown in
The gap 30 between the races 16, 18 is retained by press-forming the legs 23, 24 of the tabs 21, 22 such that the legs bear with a running clearance relative to the outer lateral faces of shoulder 50, 52 when the bearing 10 is in its assembled condition, thereby providing lateral continuity between races 16, 18.
In the bearing configuration shown in
Due to the asymmetric race profiles of surfaces 36, 38, pairs of bearings can be arranged such that greater radial and axial load capacity in one axial direction can be achieved in one member of the pair and greater radial and axial load capacity in the opposite axial direction can be achieved in the other member of the pair, thereby providing reactions bi-directional axial thrust loads at the bearing pair.
In each of the configurations, the one piece race, such as race 14, may be either the inner race or the outer race, and the other race may comprise two parts, such as the race portions 16, 18.
In accordance with the provisions of the patent statutes, the preferred embodiment has been described. However, it should be noted that the alternate embodiments can be practiced otherwise than as specifically illustrated and described.