Ball dropping assembly

Information

  • Patent Grant
  • 6715541
  • Patent Number
    6,715,541
  • Date Filed
    Thursday, February 21, 2002
    23 years ago
  • Date Issued
    Tuesday, April 6, 2004
    21 years ago
Abstract
A ball dropping assembly for dropping an object such as a spherical ball into a wellbore. The assembly comprises a seat for retaining a ball before it is released, a ball retaining lever, and a shaft for turning the lever. In one embodiment, the assembly is attached to a side bore in fluid communication with a main bore in a cementing head. The ball-retaining lever has at least one finger which is rotated between a ball-retained position and a ball-released position. In the ball-retained position, the first finger is disposed in the entrance from the side bore to the main bore, thereby preventing the ball from entering the main bore of the cementing head. When the ball is ready for release, the lever is rotated in the direction of the main bore, thereby causing the second finger to urge the ball into the bore of the cementing head, and causing the first finger to protrude into the main bore. When a plug is released into the bore from the cementing head, the plug will trip the first finger, causing the ball-retaining lever to rotate back towards the ball-retained position. Thus, the ball dropping assembly also serves as a plug release indicator.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to an apparatus for dropping a ball into a wellbore. More particularly, the invention relates to an apparatus for dropping a ball that may also be used as an indicator that a plug has been released into a string of drill pipe.




2. Description of the Related Art




In the drilling of oil and gas wells, a wellbore is formed using a drill bit that is urged downwardly at a lower end of a drill string. After drilling a predetermined depth, the drill string and bit are removed and the wellbore is lined with a string of casing. An annular area is thus formed between the string of casing and the formation. A cementing operation is then conducted in order to fill the annular area with cement. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.




It is common to employ more than one string of casing in a wellbore. In this respect, a first string of casing is set in the wellbore when the well is drilled to a first designated depth. The first string of casing is hung from the surface, and then cement is circulated into the annulus behind the casing. The well is then drilled to a second designated depth, and a second string of casing, or liner, is run into the well. The second string is set at a depth such that the upper portion of the second string of casing overlaps the lower portion of the first string of casing. The second liner string is then fixed or “hung” off of the existing casing. Afterwards, the second casing string is also cemented. This process is typically repeated with additional liner strings until the well has been drilled to total depth. In this manner, wells are typically formed with two or more strings of casing of an ever-decreasing diameter.




In the process of forming a wellbore, it is sometimes desirable to utilize various plugs. Plugs typically define an elongated elastomeric body used to separate fluids pumped into a wellbore. Plugs are commonly used, for example, during the cementing operations for a liner.




The process of cementing a liner into a wellbore typically involves the use of liner wiper plugs and drill-pipe darts. A liner wiper plug is typically located inside the top of a liner, and is lowered into the wellbore with the liner at the bottom of a working string. The liner wiper plug has radial wipers to contact and wipe the inside of the liner as the plug travels down the liner. The liner wiper plug has a cylindrical bore through it to allow passage of fluids.




After a sufficient volume of circulating fluid or cement has been placed into the wellbore, a drill pipe dart or pump-down plug, is deployed. Using drilling mud, cement, or other displacement fluid, the dart is pumped into the working string. As the dart travels downhole, it seats against the liner wiper plug, closing off the internal bore through the liner wiper plug. Hydraulic pressure above the dart forces the dart and the wiper plug to dislodge from the bottom of the working string and to be pumped down the liner together. This forces the circulating fluid or cement that is ahead of the wiper plug and dart to travel down the liner and out into the liner annulus.




The cementing operation described above utilizes a cementing head apparatus at the top of the wellbore for injecting cement and other fluids downhole and for releasing the plugs. The cementing head typically includes a dart releasing apparatus, referred to sometimes as a plug-dropping container. Darts used during a cementing operation are held at the surface by the plug-dropping container. The plug-dropping container is incorporated into the cementing head above the wellbore. The typical cementing head also includes some mechanism which allows cement or other fluid to be diverted around the dart until plug-release is desired. Fluid is directed to bypass the dart in some manner within the container until it is ready for release, at which time the fluid is directed to flow behind the plug and force it downhole.




The cementing head often includes a plug release indicator, which informs the operator at the surface that a plug has been released. Generally, the release indicator is located below the plug-dropping container and must be reset after each plug is released. In one arrangement, the plug release indicator has a finger that protrudes into the bore of the cementing head. The finger may be “tripped” by a passing plug in the bore to give a positive indication that a plug has been released. The release indicator has an indicator flag located outside of the cementing head that is visible to an operator to indicate release of a plug downhole through the drill pipe.




Plug release indicators are designed to prevent accidental tripping by fluid flow in the bore. Many release indicators use spring washers to resist fluid forces and to maintain the finger in the bore until the released plug trips the finger. However, the setting of the spring washer must be balanced between resisting fluid flow and indicating plug release. If the setting of the spring is too tight, the force required to trip the indicator may be high enough to impede the downward travel of the plug. If the spring setting is too loose, it may be prematurely tripped.




Another common component of a cementing head or other fluid circulation system is a ball dropping assembly for dropping a ball into the pipe string. The ball may be dropped for many purposes. For instance, the ball may be dropped onto a seat located in the wellbore to close off the wellbore. Sealing off the wellbore allows pressure to build up in the wellbore to actuate a downhole tool such as a packer, a liner hanger, a running tool, or a valve. The ball may also be dropped to shear a pin to operate a downhole tool. Balls are also sometimes used in cementing operations to divert the flow of cement during staged cementing operations. Balls are also used to convert float equipment.




Many ball-dropping assemblies use a retaining device to keep the ball out of the flow stream until release. The retaining device generally includes a plunger that uses linear movement to push the ball into the flow stream at the time of release. These designs tend to extend out from the main body of the cement head, and require numerous manual turns of a wheel to release the ball.




In the assembly of a cementing head, the plug release indicator is typically disposed below the ball dropping assembly in order to verify that a released plug has cleared all possible obstructions in the cementing head. One drawback of this design is that the plug release indicator must be retracted before a ball is released. Additionally, stacking the ball dropping assembly over the plug release indicator increases the length and size of the head member. Furthermore, two different actuators are required to separately actuate a plug release indicator and a ball dropping mechanism.




Therefore, a need exists for a ball dropping assembly that can both drop a ball into the wellbore and indicate that a plug has been released. There is a further need for an apparatus for dropping a ball and for indicating plug release that is more compact, efficient, and inexpensive than using two separate devices for performing these functions. Still further, there is a need for a ball dropping assembly which allows a ball to be dropped into a wellbore without separately retracting a plug release indicator. There is also a need for a combined dart release indicator and ball-dropping apparatus which will reduce the actuator power and control system requirements for remotely controlled operations.




SUMMARY OF THE INVENTION




The present invention provides a ball dropping assembly for use in wellbore operations. The novel assembly provides a means for both dropping a ball and for indicating that a plug has been released from a cementing head or other plug-dropping apparatus into a wellbore. The assembly of the present invention first comprises a seat for retaining a ball before it is released. The apparatus further comprises a lever for retaining the ball in the seat. The ball-retaining lever has a first finger and a second finger that together form a L-shaped lever whereby the ball is maintained between the two fingers. The ball dropping assembly also comprises a shaft for turning the lever. The shaft also serves as a pin about which the lever pivots from a ball-retained position to a ball released position.




The assembly is located in a side bore adjacent to the main bore in the cementing head. In the ball retained position, the first finger is disposed in the entrance from the side bore to the main bore, thereby preventing the ball from entering the main bore of the cementing head and dropping into the wellbore. Relative to the first finger, the second finger is disposed within the side bore and over the ball. When the ball is ready for release, the lever is rotated in the direction of the main bore, thereby causing the first finger to protrude into the main bore, and simultaneously causing the second finger to urge the ball to unseat and to enter the main bore. This rotation also moves the first finger into position to indicate plug release. When a plug is released into the bore, it will travel down the main bore and trip the first finger causing the ball retaining lever to rotate back into the ball retained position. Rotation of the lever causes the shaft to rotate external to the cement head, providing visual confirmation to the operator of plug release downhole.




In another aspect of the present invention, the shaft extends perpendicularly through a housing of the cementing head. Sealingly extending the shaft through both sides of the housing provides a pressure-balanced ball dropping assembly that can be actuated with a small amount of torque. Each end of the shaft has an actuating lever for rotating the shaft. The actuating levers are located outside the cementing head and held in position by a detent in the outer wall of the body of the cementing head. The actuating levers also serve as confirmation means for plug release.











BRIEF DESCRIPTION OF THE DRAWINGS




So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.





FIG. 1

is a sectional view of a ball dropping assembly of the present invention in a ball-retained position. The ball dropping assembly is shown disposed in a side bore of a cementing head.





FIG. 2

is a sectional view of a ball dropping assembly of the present invention, but in a ball released position.





FIG. 3

is a cut-away view of a cementing head showing an aspect of an actuating lever according to the present invention.





FIG. 4

is a cross-sectional view of a portion of a cementing head. Visible in the cementing head is one embodiment of a ball releasing assembly of the present invention, in its ball-released position. Also visible is a plug being released from the cementing head above the ball dropping assembly.





FIG. 5

is a cross-sectional view of the cementing head of FIG.


4


. In this view, the plug has traveled through the main bore of the cementing head, and into the wellbore. The plug has also forced the lever of the ball-releasing assembly to return to its ball-retained position.





FIG. 6

is a top, cross-sectional view of a ball dropping assembly of the present invention, releasing a ball. Visible is the retaining lever rotating into the main bore of the cementing head.





FIGS. 7A-7C

present an alternate arrangement for indicating ball retention and dart release in a cementing head. In

FIG. 7A

, the first finger member


41


and the second finger member


42


are arranged to retain the ball


5


. In

FIG. 7B

, the first finger member


41


and the second finger member


42


are rotated to release the ball


5


into the wellbore. In

FIG. 7C

, the first finger member


41


and the second finger member


42


are rotated back when the dart is released downhole.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

is a partial sectional view of a cementing head


105


showing one embodiment of the ball dropping assembly


50


of the present invention. The ball dropping assembly


50


is shown in a ball-retained position, with a ball


5


disposed therein. The ball dropping assembly


50


is disposed in a side bore


4


that is adjacent to a main bore


6


of the cementing head


105


.




The ball dropping assembly


50


first comprises a seat


30


for holding the ball


5


. The seat


30


defines a base on which the ball


5


sits while the assembly


50


is in the ball-retained position. The ball dropping assembly


50


also comprises a retaining lever


40


. The retaining lever


40


retains the ball


5


within the seat


30


until the ball


5


is ready for release into the main bore


6


. In the ball-retained position shown in

FIG. 1

, the retaining lever


40


acts to prevent the ball


5


from exiting the seat


30


.




The retaining lever


40


is disposed within the side bore


4


. The retaining lever


40


has a first finger member


41


and a second finger member


42


that meet to define an L-shape. Each finger


41


,


42


may define a single elongated member as shown in FIG.


1


. However, the term finger also defines any other protrusion for retaining and urging a ball


5


. Examples include, but are not limited to a plate, or a fork having tines (not shown).




The retaining lever


40


is positioned in

FIG. 1

such that the first finger


41


is disposed between the main bore


6


and the ball


5


so as to retain the ball within the seat


30


. The first finger


41


preferably has a flat outer surface that is flush with the main bore


6


so that it does not interfere with any fluid or object that may be traveling down the main bore


6


. In the ball-retained position, the ball


5


is initially maintained between the fingers


41


,


42


. In this regard, finger


42


is oriented inside of the side bore


4


. The outer surface of the second finger


42


can be flat or straight. Preferably, the second finger


42


is curved where a spherical ball


5


is used as the dropped object. It should be appreciated that the two fingers


41


,


42


do not have to form a perfect “L”; the angle formed by the two fingers


41


,


42


may be less than or greater than 90 degrees. In addition, objects other than a spherical ball may be employed as the dropped object.




A shaft


45


is connected to the retaining lever


40


for rotating the retaining lever


40


between a retained position (

FIG. 1

) and a released position (FIG.


2


). A cap


55


optionally is disposed at an outer end of the side bore


4


to prevent fluid leakage. The cap


55


has one or more seals


58


disposed around a diameter of the cap


55


to facilitate fluid retention. A retaining sleeve


60


is disposed at the exterior of the cementing head


105


to enclose the ball dropping assembly


50


. The use of the cap


55


and retaining sleeve


60


permits the reloading of the ball dropping assembly


55


after a first ball


5


has been dropped. However, it is understood that the ball dropping assembly


50


may be reloaded from the bottom such that a removable cap


55


and retaining sleeve


60


are not needed. In this way, no disassembly of the ball dropping assembly is needed.





FIG. 2

depicts the ball dropping assembly of the present invention in its ball-released state. In this view, the retaining lever


40


is rotated such that the first finger


41


enters the main bore


6


and is in the path of any object moving from the cementing head


105


into the wellbore. Preferably, the retaining lever


40


is rotated 90 degrees so that the first finger


41


is perpendicular to the main bore


6


. As shown, a portion of the second finger


42


is disposed in the main bore


6


to insure that the ball is fully released into the main bore


6


. However, it is not necessary that any portion of the second finger


42


enter the main bore


6


once the retaining lever


40


is rotated to the released position, so long as the ball


5


is released.




The retaining lever


40


pivots about shaft


45


. Rotation of the shaft


45


rotates the retaining lever


40


between the ball-retained position and the ball-released position. It is preferred that the shaft


45


extend through the body


3


of the cementing head


105


on both sides of the main bore


6


. One advantage of having the shaft


45


extend through the body


3


on both sides is that the shaft


45


will be pressure balanced and will not require significant torque to rotate. In addition, and as will be shown, extending the shaft through both sides of the cementing head


105


provides visual confirmation of ball release from either side of the cementing head


105


.





FIG. 3

presents the ball releasing assembly


50


in a cross-sectional view. As illustrated in

FIG. 3

, an actuation lever


70


is connected to at least one end of shaft


45


for turning the shaft


45


. Preferably, the actuation lever


70


is disposed on the outer surface of the cementing head


105


so that it may also function as a plug release indicator. A pin


75


is partially disposed in an end of the actuation lever


70


opposite the shaft


45


connection. The outer surface of the cementing head


105


has two detentes


82


,


84


for mating with the pin


75


. The pin


75


has a biasing mechanism (not shown) that forces the pin


75


into the outer surface of the cementing head


105


. When the pin


75


is positioned over one of the detentes


82


,


84


, the biasing mechanism forces the pin


75


to mate with the détente


82


,


84


. Once the pin


75


mates with the détente


82


,


84


, the actuation lever


70


and the retaining lever


40


is held in position until additional force is supplied to force the pin


75


out of the détente


82


or


84


.




In operation, the ball dropping assembly


50


is initially in the ball-retained position, with a ball


5


disposed therein. The retaining lever


40


is held in position by the pin


75


mating with a first détente


82


. The first finger


41


is disposed entirely within the side bore


4


, thereby allowing fluids or objects to travel down the main bore


6


unimpeded by the ball dropping assembly


50


. The second finger


42


(visible in

FIG. 2

) is disposed adjacent the ball


5


and within the side bore


4


.




When the ball


5


is ready for release, the actuation lever


70


is rotated. The pin


75


is forced out of the first détente


82


, allowing the actuation lever


70


to be rotated such that the pin


75


engages the second détente


84


. Rotating the actuation lever


70


causes the retaining lever


40


to move from its ball-retained position to its ball-released position. As the actuating lever


70


is rotated, the first finger


41


enters the main bore


6


until it reaches a position essentially perpendicular to the main bore


6


. The second finger


42


simultaneously rotates toward the main bore


6


approximately 90 degrees and urges the ball


5


into the main bore


6


for release into the wellbore (not shown). When the pin


75


on the actuation lever


70


is above the second détente


84


, the pin


75


mates with the second détente


84


to hold the actuation lever


70


and the retaining lever


40


in the ball-released position.




In the ball-released position, the retaining lever


40


may function as the plug-release indicator. The process by which plug-release is indicated is shown by

FIGS. 4 and 5

.




As noted,

FIG. 2

presents a cross-sectional view of a portion of a cementing head


105


. Visible in the cementing head


105


is one embodiment of a ball releasing assembly


50


of the present invention. The ball releasing assembly


50


is in its ball-released position. The ball


5


is being released into the main bore


6


, whereupon it will fall into the wellbore (not shown).





FIG. 4

presents a cross-sectional view of the cementing head portion


105


of FIG.


2


. The ball releasing assembly


50


remains in its ball-released position. In this respect, the ball


5


has already been released into the main bore


6


and into the wellbore below. Thus, the ball is no longer visible within the cementing head


105


in the drawing of FIG.


4


. Finger


41


of lever


40


is essentially perpendicular to the main bore


6


of the plug container


105


. At this stage, drilling fluid may be introduced into the wellbore (not shown in

FIG. 4

) to clear debris from the annular space. The second détente


84


supplies sufficient resistance against fluid forces to maintain the first finger


41


in the main bore


6


.




After the ball


5


is released, a dart


8


is released from the cementing head


105


. The dart


8


is visible in FIG.


4


. In order to release dart


8


, a plug-dropping container is employed within the cementing head


105


. The plug-dropping container primarily defines a canister


30


for retaining a plug


8


until release into the wellbore is desired. The canister portion


30


of a plug-dropping container is partially shown in

FIG. 4

, with a dart


8


disposed therein. The canister


30


is a tubular shaped member disposed co-axially within a tubular housing


10


. The canister


30


has a channel


35


as its bore. The channel


35


is aligned with the bore


6


of the cementing head


105


. Preferably, the inner diameter of the canister channel


35


is configured to match the inner diameter of the bore


6


.




In operation, the dart


8


is disposed in the canister channel


35


when the cementing head


105


is in a plug-retained position. When released, the dart


8


travels downward out of the canister


30


and through a bottom opening


15


. The bottom opening


15


is in fluid communication with main bore


6


.




The typical plug-dropping apparatus includes some means for retaining the dart


8


until plug-release is desired. The typical plug-dropping apparatus also includes some means for diverting fluid around the dart


8


pending plug-release. These features are not shown in FIG.


4


. However, it is understood that the ball-dropping assembly


50


of the present invention will work with any plug-dropping apparatus of any type, so long as the ball-dropping assembly


50


is positioned below the plug-dropping container. Therefore, details concerning any particular plug-dropping container are not needed.




After the dart


8


is released from a position above the ball dropping assembly


50


, the dart


8


travels down the main bore


6


and contacts the first finger


41


.

FIG. 5

demonstrates the dart


8


further travelling downward into the wellbore. The force from the downward travelling dart


8


releases the pin


75


from the second détente


84


and rotates the retaining lever


40


back toward the ball-retained position. When the pin


75


is moved from the second détente


84


, it indicates that the dart


8


was released. Thus, visual confirmation of dart-release is provided to the operator at the surface. Cement or other circulating fluid may subsequently be pumped into the wellbore behind the dart


8


.




It may be desirable to release a second dart into the wellbore. Before releasing a new dart, the retaining lever


40


is rotated from its ball-retained position back to its ball-released position. As noted, the retaining lever


40


rotates about pivoting shaft


45


so that it is in position to indicate whether the second dart has been released. In the ball-released position, the first finger


41


of the retaining lever


40


is again disposed in the main bore


6


, and the pin


75


is disposed in the second détente


84


. Once the second dart is released and contacts the first finger


41


, the retaining lever


40


rotates back toward the ball-retained position. The rotation also moves the pin


75


from the second détente


84


toward the first détente


82


, thereby indicating that second dart has been released.




The dart


8


in

FIGS. 4 and 5

is presented as a drill pipe dart. However, it is understood that the ball-dropping assembly


50


of the present invention has utility with any type of plug, such as a cement wiper plug (not shown).





FIG. 6

depicts the ball releasing assembly


50


of the present invention from a top, cross-sectional view. Present in this view is the elongated shaft


45


. The shaft


45


extends perpendicular to the retaining lever


40


. Preferably, and as shown in the embodiment of

FIG. 6

, the shaft extends from the lever


40


on both sides of the main bore


6


. Extending the shaft


45


sealingly through the main bore


6


on both sides provides a pressure-balanced ball-dropping assembly that can be actuated with a small amount of torque.




In the preferred embodiment, each end of the shaft


45


has an actuating lever


70


for rotating the shaft


45


. The actuating levers


70


are located outside the cementing head


105


and are held in position by the detents


82


,


84


(shown in

FIG. 3

) in the outer wall of the cementing head


150


. It is understood that other arrangements for a combined ball-dropping and dart-release-indicating assembly are within the scope of the present invention. For example, the ball-retained position of the lever


70


may be different from the dart-released position of the lever


70


. Such an arrangement is shown in

FIGS. 7A-7C

. In

FIG. 7A

, a first finger member


41


and a second finger member


42


are arranged to retain the ball


5


directly. In such an arrangement, the first finger member


41


serves as the seat


30


as well. In

FIG. 7B

, the first finger member


41


and the second finger member


42


are rotated to release the ball


5


into the wellbore. Then, as shown in

FIG. 7C

, the first finger member


41


and the second finger member


42


are rotated back when the dart (not shown) is released downhole.




Therefore, the present invention provides a ball dropping assembly that can effectively and efficiently combine the ball dropping function with the plug-release indicating function into a single apparatus. It is understood, though, that the ball-dropping assembly may be used without the plug-release indicating function. Further, the ball-dropping assembly may be utilized though either manual, power or remote activation.




It is noted that the plug container apparatus shown in

FIGS. 4-5

is merely an example, and that the present invention is useful in connection with other procedures and equipment requiring a ball-releasing function. It is also within the scope of the present invention to use the ball-dropping assembly disclosed herein for dropping items other than balls.




While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.



Claims
  • 1. An assembly for dropping an object from the surface into a wellbore, comprising:a seat for receiving the object at the surface; a retaining lever for temporarily retaining the object in the seat at the surface; and a shaft through the lever about which the lever pivots between an object-retained position to an object-released position.
  • 2. The assembly of claim 1, wherein:the retaining lever has a first finger member and a second finger member; and the object is retained between the first and second finger members when the lever is rotated to its object-retained position.
  • 3. The assembly of claim 2, wherein the first finger member is at least partially disposed in the bore when the lever is in its object-released position.
  • 4. The assembly of claim 3, wherein the lever is rotated from its object-released position towards its object-retained position when a plug is released into the wellbore and travels downward across the first finger member.
  • 5. The assembly of claim 4, further comprising a cap to prevent fluid leakage from the wellbore.
  • 6. The assembly of claim 3, wherein:the object is a spherical ball; and the first finger member and the second finger member each define an elongated member which meet at an end to form an essentially 90 degree angle.
  • 7. The assembly of claim 6, wherein the assembly is disposed in a side bore that is adjacent to a main bore of a cementing head.
  • 8. The assembly of claim 7, wherein a ball may be loaded into the seat without disassembly of the assembly.
  • 9. The assembly of claim 8, wherein a ball may be loaded into the seat from the bottom of the cementing head.
  • 10. The assembly of claim 1, wherein the shaft extends through a body of a cementing head so as to provide a substantially pressure-balanced configuration.
  • 11. The assembly of claim 10, further comprising at least one actuation lever disposed on an end of the shaft for rotating the shaft, and for providing visual confirmation that the shaft has rotated.
  • 12. The assembly of claim 11, further comprising:a pin at least partially disposed within the at least one actuation lever; and one or more détentes in the body for mating with the pin.
  • 13. The assembly of claim 12, wherein:the retaining lever has a first finger member and a second finger member; the object is retained between the first and second finger members when the lever is rotated to its object-retained position; and the object is a spherical ball.
  • 14. The assembly of claim 13, wherein the retaining lever is rotated about the shaft between the ball-retained position and the ball-released position.
  • 15. The assembly of claim 14, wherein rotating the retaining lever between its object-retained position and its object-released position includes moving the one or more actuation levers between the first détente and the second détente.
  • 16. The assembly of claim 15, wherein the assembly is disposed in a side bore that is adjacent to a main bore of a cementing head.
  • 17. The assembly of claim 16, wherein a ball may be loaded into the seat without disassembly of the assembly.
  • 18. The assembly of claim 17, wherein a ball may be loaded into the seat from the bottom of the cementing head.
  • 19. The assembly of claim 15, wherein the retaining lever is rotated manually from the ball-retained position towards the ball-released position.
  • 20. The assembly of claim 15, wherein rotation of the retaining lever is power driven.
  • 21. The assembly of claim 15, wherein rotation of the retaining lever is accomplished remotely.
  • 22. A cementing head, comprising:a main bore for receiving a plug; a side bore in fluid communication with the main bore; a seat disposed in the side bore for releasably retaining a spherical ball; a retaining lever; and a shaft through the retaining lever about which the retaining lever pivots between a ball-retained position and a ball-released position.
  • 23. The cementing system of claim 22, whereinthe retaining lever includes a first finger member and a second finger member; the spherical ball is contained between the first finger member and the second finger member when the retaining lever is in its ball-retained position; and the first finger member protrudes into the main bore when the retaining lever is in its ball-released position.
  • 24. The cementing system of claim 23, wherein the shaft extends through each side of a bore in the cementing head.
  • 25. The cementing head of claim 24, wherein the retaining lever is rotated manually from the ball-retained position towards the ball-released position.
  • 26. The cementing head of claim 24, wherein rotation of the retaining lever is power-driven.
  • 27. The cementing head of claim 24, wherein rotation of the retaining lever is accomplished remotely.
  • 28. The cementing head of claim 24, further comprising at least one actuation lever disposed on an end of the shaft for turning the retaining lever, and for providing visual confirmation that the shaft has been rotated.
  • 29. The assembly of claim 24, wherein a ball may be loaded into the seat without disassembly of the assembly.
  • 30. The assembly of claim 29, wherein a ball may be loaded into the seat from the bottom of the cementing head.
  • 31. The cementing head of claim 28, further comprising:a pin at least partially disposed within the at least one actuation lever; and one or more detentes disposed on an outer surface of the body for receiving the pin.
  • 32. The cementing head of claim 31, wherein moving the pin from a first détente to a second détente rotates the retaining lever from its ball-retained position to its ball-released position.
  • 33. The cementing head of claim 32, further comprising a cap to prevent fluids from leaking from the side bore.
  • 34. The cementing head of claim 32, wherein the retaining lever is rotated from its ball-released position towards its ball-retained position when a plug is released from the cementing head downhole and travels past the first finger, such that rotation provides confirmation of plug-release.
  • 35. The cementing head of claim 34, wherein the retaining lever is rotated manually from the ball-retained position towards the ball-released position.
  • 36. The cementing head of claim 35, wherein rotation of the retaining lever is power-driven.
  • 37. The cementing head of claim 34, wherein rotation of the retaining lever is accomplished remotely.
  • 38. An assembly for dropping a ball into a wellbore, the assembly being disposed in a side bore that is adjacent to a main bore of a cementing head, the assembly comprising:a seat for the ball; and a retaining/releasing mechanism for retaining the ball in the seat and for releasing the ball into the main bore; wherein the ball is loaded into the seat from the main bore of the cementing head and without disassembly of the assembly.
  • 39. The assembly of claim 38, wherein the retaining/releasing mechanism is a lever.
  • 40. The assembly of claim 38, further comprising a shaft through the lever about which the lever pivots between a ball-retained position to a ball-released position.
  • 41. The assembly of claim 40, wherein:the retaining lever has a first finger member and a second finger member; and the ball is retained between the first and second finger members when the lever is rotated to its ball-retained position.
  • 42. The assembly of claim 41, wherein the first finger member is at least partially disposed in the bore when the lever is in its ball-released position.
  • 43. The assembly of claim 42, wherein the lever is rotated from its object-released position towards its object-retained position when a plug is released into the wellbore and travels downward across the first finger member.
  • 44. The assembly of claim 43, wherein the first finger member and the second finger member each define an elongated member which meet at an end to form an essentially 90 degree angle.
  • 45. The assembly of claim 44, wherein the shaft extends through a body of a cementing head so as to provide a substantially pressure-balanced configuration.
  • 46. The assembly of claim 45, wherein one of the first and second finger members also serves as the seat.
US Referenced Citations (22)
Number Name Date Kind
2630179 Brown Mar 1953 A
3086587 Zandmer et al. Apr 1963 A
3444928 Pitts May 1969 A
3971436 Lee Jul 1976 A
4164980 Duke Aug 1979 A
4427065 Watson Jan 1984 A
4491177 Baugh Jan 1985 A
4674573 Bode Jun 1987 A
4782894 LaFleur Nov 1988 A
4917184 Freeman et al. Apr 1990 A
5236035 Brisco et al. Aug 1993 A
5443122 Brisco Aug 1995 A
5553667 Budde et al. Sep 1996 A
5758726 Streich et al. Jun 1998 A
5833002 Holcombe Nov 1998 A
5890537 Lavaure et al. Apr 1999 A
5950724 Giebeler Sep 1999 A
5960881 Allamon et al. Oct 1999 A
6182752 Smith, Jr. et al. Feb 2001 B1
6206095 Baugh Mar 2001 B1
6220360 Connell et al. Apr 2001 B1
6311711 Skoglund Nov 2001 B1
Foreign Referenced Citations (1)
Number Date Country
0 969 183 Jan 2000 EP
Non-Patent Literature Citations (6)
Entry
USSN 10/616, 643, Filed Jul. 10, 2003, Pedersen, et al., “Plug-Dropping Container For Releasing A Plug Into A Wellbore.”
PCT International Search Report, International Application No. PCT/GB03/00307, dated May 21, 2003.
USSN 10/066,460, Filed Jan. 31, 2002, Pederson, et al. “Plug-Dropping Container For Releasing A Plug Into A Wellbore.”
Liner Hangers, Bestline Liner Systems, Inc., 2000/2001 General Catalog, Bakersfield, CA, E-mail: bestlinelinersystems.com, 3 Pages.
Cementing Manifold & Wiper Plugs, Applied Technologies, Inc. (ATI), 1 Page.
Liner Hangers, Open Hole Completion Systems, Baker Oil Tools, 6 Pages.