The invention relates to a ball return system and more specifically to a ball return lift system with related safety and mechanical features.
Ball return systems are machines used in a bowling environment for returning a bowling ball to a bowler. Common to each of the known devices is some means by which the bowling ball enters a lifting device, is lifted to a desired level, and then is ejected from the device to a ball rail system to a waiting bowler.
In an aspect of a ball lift assembly, comprising any combination of: a first sensor that detects a ball entering the ball lift assembly and turns on the ball lift assembly when the ball enters; a second sensor that detects a ball exiting the ball lift assembly and turns off the ball lift assembly soon after the ball exits; a third sensor that detects an object, e.g., hand, entering into the ball lift assembly from an exit side thereof, the third sensor turns off the ball lift assembly when the object enters from the exit side thereof; a control unit that controls the turning on and off of the ball lift assembly based on the first, second and/or third sensor, the control unit further comprises logic that turns off the ball lift assembly when a ball does not exit therefrom within a predetermined amount of time; a hood that is removable, the hood: mates with a rail system mounted to a surface; and is structured such that there is clear space between an exit of the hood system and one or more moving parts, e.g., wheel, of the ball lift assembly; a stationary/fixed blocking bracket that has a profile complimentary to an upper wheel, thereby preventing objects, e.g., hand, from being drawn into a lifting mechanism; and a removable wear strip provided on a ball rail, the removable wear strip: comprises projections which mate with holes on the ball rail system; and has a profile which matches to the ball rail.
In another aspect of the invention, a ball lift assembly comprises: a housing having an entrance and an exit; a motor which drives a ball lift system to lift a ball from the entrance to the exit; an electronic control unit; and a plurality of sensors providing signals to the electronic control unit, comprising: at least a first sensor positioned adjacent to the entrance and which detects a ball entering the lift system through the entrance; and a second sensor positioned adjacent to the exits and which detects the ball exiting the lift system through the exit. The first sensor provides a first signal to the electronic control unit when the first sensor detects the ball entering the lift system through the entrance. The second sensor provides a second signal to the electronic control unit when the second sensor detects the ball exiting the lift system through the exit. The electronic control unit will turn on the motor to drive the ball lift system upon receiving the first signal. The electronic control unit will turn off the motor of the ball lift system upon receiving the second signal, while also waiting for a predetermined time to make sure the ball exits the lift.
In another aspect of the invention, a removable hood assembly includes: a hood having a first mechanism; a rail system having a second mechanism which mates with the first mechanism such that the hood can be slid in and out with respect to the rails system; and a latch to attach the hood to the rail system.
The present invention is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.
The invention relates to a ball return system and more specifically to a ball lift assembly with related safety and mechanical features and components. The ball return system is a compact, safe, stylish and sophisticated solution to existing systems. The ball return system provides the following features, in addition to those provided in the accompanying figures and described further herein.
Ergonomic Design
The ergonomic design of the ball return system has many advantages. For example, from a safety standpoint, the design of the system will keep the customer's hands away from any moving parts. More specifically and as described in greater detail herein, the design of the hood component and related mechanisms is unique in the way it prevents the bowler or other person from reaching in deep into the area where the ball exits from the ball lift rails and onto the track of the ball rack. That is, the safety aspect of the invention is inherent to the shape of the exit portion of the hood unit; that is, the hood has an overhang which prevents insertion of a hand into the mechanisms. Also in addition there is a unique fixed/stationary blocking bracket that prevents a person's hand from being hurt when the unit is in a maintenance mode, which protects the mechanic/authorized technician.
Opto-Electronic Sensing Technology
The Opto-Electronic Sensing Technology improves energy efficiency and safety. By implementing the sensor technology of the present invention, the motor will run only when the ball arrives; otherwise the motor will stop if hands or objects are inserted into the hood unit or near other mechanisms which are being monitored by the sensors. In embodiments, the sensor technology includes at least two sensors: 1) a sensor which detects the ball entering the lift and which is positioned under the lane or other entry point of the ball lift assembly. This is what starts the lift and allows the motor to save power by turning on only when needed; and 2) another sensor that provides an output if any object enters the hand intrusion area and allows the motor and hence the risk to be eliminated. Another sensor may be used to also detect when the ball has exited the system in order to turn off the motor, or determine that a jam may exist in the lift assembly if a ball has not exited within a predetermined time period. Logic is designed to handle the various operational modes of operation as further described herein.
Compact Design:
The compact design of the system provides for minimal congestion and more space on the approach of the bowling lane. In embodiments, the compact design includes the design of the ball rack which is unique in that it is designed to hold 12 balls but also designed to be narrower than other known systems (which typically accommodate side by side balls and hence is wider than at least two balls and a related rail system). This helps the bowler get maximum room in the bowler approach area beside the ball return. The design of the ball rack also enhances the smart path return and makes the transition from the ball lift to the ball return tray as well as the tray downward to the ball rack side rail very gentle to minimize wear to all areas. The tubular rails of the design also incorporate a unique wear strip that is designed to be replaceable and the design of a urethane rivet for optimum balance of ease of assembly and fit during use. Also the attachment of the lift and the ball return to each other is unique and minimizes the vibration.
Ball Lift Enhancements:
The ball lift enhancements include a ball track which is an extension of the ball lift track where the flat track design has been adapted to a different height which is slightly higher than the profile and significantly slower than any other ball lift; that is, in embodiments, the height may be substantially the same as the lift mechanism. This also minimizes the harshness, vibration and the speed of ball exiting the unit. Moreover, the ball lift mechanism provides many additional advantages, including: 1) a chain drive which does not need tensioning, and which is used to run 2 V-wheels which are connected by a cross-over belt; and 2) a quick access hood system for easy maintenance. As to this latter feature, a track system associated with the hood allows ease of installation by permitting the hood to slide in and out. The hood can be fastened by a latch design as described further herein.
Still referring to
The ball lift assembly 100 further includes one or more brackets 15. The one or more brackets 15 can be attached, e.g., bolted, screwed, etc., to the frame members 8a, 8b.
The ball lift assembly 100 further includes a plurality of sensors 16. In embodiments, the sensors can be opto-electronic sensors, such as motion detectors. By breaking a light or other sensing technology known to those of skill in the art, the sensors 16 can detect when a ball is arriving/entering into the ball lift assembly 100, and particularly when the ball is about to contact the bottom wheel 12 or be lifted onto the bottom guide rail 6. Once detected, the sensor 12 will activate the ball lift assembly 100, e.g., motor 18, in order for the ball to be lifted onto the bottom guide rails 6 and/or wheel combination. As shown and described more specifically with reference to
As shown in
Still referring to
In embodiments, the ball rack 202 is designed to hold 12 balls but is also designed to be narrower (e.g., about 20 inches) than other known lifts to help the bowler get maximum room in the bowler approach area beside the ball return system. The ball rail system 200 further includes an end stop plate 206 and a plurality of brackets 208. A ball rack connector bracket 210 extends from one of the brackets, in order to connect to the ball lift assembly 100 as shown in
The wear strip includes a profile 225, e.g., concave, which will match to that of the ball rail system 200 and more specifically the tubular structure of the ball rack 202. This configuration ensures that the wear strip fits snugly onto the tubular structure of the ball rack 202; although other profiles are also contemplated by the present invention. The wear strip 220 further includes a protrusion or rivet 230 protruding from the wear strip 220. The protrusion 230 mates with the holes 204 of the ball rack 202, allowing the wear strip 220 to be easily removed and replaced.
As shown, the end or bulbous portion 230a of the protrusion 23Q is connected to the wear strip 220 by a narrower neck portion 230b. The bulbous portion 230a of the protrusion 230 is slightly larger than a diameter of the holes 204 of the ball rack 202. During the assembly process, the bulbous portion 230a of the protrusion 230 will deform as it enters the holes 204 and will then return to its original shape in order to securely hold the wear strip 220 to the ball rack 202.
In more specific embodiments, as the sensor 16′ detects the ball entering the ball lift assembly 100, a timer can be activated. The timer can then be deactivated when the ball is detected leaving the ball lift assembly 100 by the sensor 16′. That is, once the ball is detected exiting the ball lift assembly 100, a “ball stuck in lift” error flag in the electronic control unit can be turned OFF, placing the motor in a ready waiting mode for the next ball. The motor will turn on when another ball is detected.
In additional embodiments, if the ball does not exit the ball lift assembly 100 within a predetermined time period, the electronic control unit will assume that the ball is stuck or that there was a malfunction of the ball lift assembly 100. If this is the case, the motor will be shut down so that a maintenance person can attend to the malfunction or jammed ball. More specifically, in the event that the ball does not exit the ball lift assembly 100 within a predetermined period of time (e.g., the amount of time in which the ball should have traversed the system), the “ball stuck in lift” flag can be turned ON, and the motor will be shut off. An alarm can then sound, alerting the maintenance worker to attend to the ball lift assembly 100. Thus, the motor can run for a predetermined time period, and shut off when the sensor detects the exiting ball or if the predetermined time period has passed (in which the ball should have exited the system).
In further embodiments, an additional sensor 16′″ can also detect when an object, e.g., hand, etc., is placed under the hood 300, e.g., entering the ball lift assembly 100. Once an object is detected, the motor is turned off and the wheels will stop rotating. This will prevent injury from a moving part.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Number | Date | Country | |
---|---|---|---|
61931142 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14605196 | Jan 2015 | US |
Child | 15671658 | US |