Ball type CVT including a direct drive mode

Information

  • Patent Grant
  • 9638296
  • Patent Number
    9,638,296
  • Date Filed
    Thursday, September 5, 2013
    11 years ago
  • Date Issued
    Tuesday, May 2, 2017
    7 years ago
Abstract
Variable transmissions and drivelines using such transmissions having a direct drive mode, a reverse mode, and a continuously variable mode of operation using a continuously variable variator in combination with a gearbox having a one or two speed forward gear, a reverse gear, and a direct drive clutch. The direct drive clutch transfers power from the input shaft directly to the gearbox by running the variator in a unitary (1) speed ratio configuration, or by bypassing the variator altogether by using a set of clutches that disconnect the variator from the input shaft. Additional gears may be provided in the gearbox.
Description
BACKGROUND OF THE INVENTION

A vehicle having a driveline including a continuously variable transmission allows an operator of the vehicle or a control system of the vehicle to vary a drive ratio in a stepless manner, permitting a power source of the vehicle to operate at its most efficient rotational speed.


SUMMARY OF THE INVENTION

Provided herein are variable transmissions having a direct drive mode, a reverse mode, and a continuously variable mode of operation using a continuously variable variator in combination with a gearbox having a one or two speed forward gear, a reverse gear, and a direct drive clutch that is configured to transfer power from the input shaft directly to the gearbox by running the variator in a speed ratio of one in a first configuration, or by bypassing the variator altogether by using a set of clutches that disconnect the variator from the input shaft.


Thus, provide herein is a vehicle transmission comprising an input shaft having a first direct drive clutch first member formed thereon; an output shaft; a variator comprising a first ring assembly drivingly engaged with the input shaft, a second ring assembly drivingly engaged with the output shaft, a direct drive clutch comprising the first direct drive clutch member and a second direct drive clutch member formed on the output shaft drivingly engaged with the second ring assembly; and a gearbox drivingly engaged with the second ring assembly and with the second direct drive clutch member through the output shaft, the gearbox comprising a first gear and a reverse gear; and wherein the vehicle transmission comprises a reverse mode, a direct drive mode, and a continuously variable mode.


In some embodiments, the gearbox comprises a second gear, third gear, or more than one gear, more than two gears, more than three gears, or even more gears. The gearbox, thus allows for a forward and reverse mode of operation.


In some embodiments, the gearbox is drivingly linked to a differential of a vehicle output. In some embodiments, the gearbox is drivingly linked to a differential of a vehicle output using a countershaft. In some embodiments, the countershaft comprises first countershaft gear, a reverse countershaft gear, and a pinion gear, and wherein the pinion gear is drivingly engaged with a vehicle output through the crown gear of the differential. In some embodiments, the first countershaft gear is selectively drivingly engaged with the first gear of the gearbox.


In some embodiments, the reverse countershaft gear is selectively drivingly engaged with the reverse gear of the gearbox. In some embodiments, the reverse gear comprises a reverse gear idler between the reverse gear and the reverse countershaft gear. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the output shaft. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the first countershaft gear.


In some embodiments, the gearbox comprises a second gear, and the countershaft comprises a second countershaft gear. In some embodiments, the second countershaft gear is selectively drivingly engaged with the second gear of the gearbox. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the output shaft, and the second gear is disengaged from the output shaft. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the first countershaft gear, and the second gear is disengaged from the second countershaft gear. While the gearbox described has particular elements, one of skill in the art would recognize that any number or type of gears may be used in the gearbox, so long as the resulting gearbox results in a forward and reverse mode for the transmission. Thus, the gearbox elements noted herein is for illustration, while alternative components are contemplated herein.


In some embodiments, disengaging the direct drive clutch results in continuously variable mode operation of the vehicle transmission. In some embodiments, in continuously variable mode power is transferred through the first ring assembly, one or more balls of the carrier assembly, the second ring assembly, the gearbox and to the vehicle output. In some embodiments, the gearbox increases the overall ratio spread and provides a reverse mode using the reverse gear.


In some embodiments, wherein engaging the direct drive clutch results in direct drive mode. In some embodiments, in direct drive mode power is transferred through directly from the input shaft to the gearbox. In some embodiments, in direct drive mode the variator is free to turn. In some embodiments, in direct drive mode a speed ratio of the variator is set to 1 by keeping the ball axles horizontal.


In some embodiments, the vehicle transmission further comprises a first variator clutch on the first ring assembly and a second variator clutch on the second ring assembly. In some embodiments, disengaging the first variator clutch and the second variator clutch disconnect the first ring assembly and the second ring assembly respectively from the input shaft and the output shaft. In some embodiments, a continuously variable mode exists when the first variator clutch and second variator clutch are engaged and the direct drive clutch is disengaged. In some embodiments, a direct drive mode exists when the first variator clutch and second variator clutch are disengaged and the direct drive clutch is engaged. In some embodiments, a direct drive mode exists when the variator stands still.


Provided herein is a vehicle driveline comprising an engine, a variable transmission of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein, and a vehicle output. In some embodiments, the vehicle output comprises a wheel differential and one or more wheels of a vehicle. In some embodiments, the vehicle output comprises a wheel differential and a drive axle. In some embodiments, the dampener is disposed between the engine and the variable transmission. In some embodiments, the dampener comprises at least one torsional spring.


In some embodiments, the vehicle driveline comprises a clutch for starting the starting function. In some embodiments the dampener is coupled with a clutch for the starting function.


Provided herein is method comprising providing a variable transmission of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method comprising providing a vehicle driveline of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a cutaway view of a currently known and used ball type continuously variable transmission (CVT);



FIG. 2 is a magnified cutaway view of a ball and ring of the CVT of FIG. 1;



FIG. 3 depicts an embodiment of a typical vehicle driveline including a CVT.



FIG. 4 depicts an embodiment of a variable transmission in a vehicle driveline.



FIG. 5 depicts an embodiment of a variable transmission in a vehicle driveline.



FIG. 6 depicts an embodiment of a ball-type of variator.





DETAILED DESCRIPTION OF THE INVENTION

Automatic and manual transmissions are commonly used on automobile vehicles. Those transmissions become more and more complicated since the engine speed has to be adjusted to limit the consumption and the emissions of cars. This finer control of the engine speed in usual transmissions can only be done by adding gears and increasing the overall complexity and cost. 6-speed manual transmissions then become frequent as are 8 or 9 speed automatic transmissions.


Besides these transmissions are developed Continuously Variable Transmissions or CVTs. Those CVTs are of many types: belts with variable pulleys, toroidal, conical, at least. The principle of a CVT is that it enables the engine to run at its most efficient rotation speed by changing steplessly the transmission ratio in function of the speed of the car. If needed for example when accelerating, the CVT can also shift to a ratio providing more power. A CVT can change the ratio from the minimum to the maximum ratio without any interruption of the power transmission, at the opposite of usual transmissions which require an interruption of the power transmission by disengaging to shift of ratio.


As described herein, in a vehicle, a variable transmission is replaced by a conventional transmission and a clutch in a vehicle driveline. As a non-limiting example, the variable transmission that employ a ball type Continuously Variable Transmission (CVT, which is also known as CVP for continuously variable planetary, herein) and may replace a conventional transmission in a vehicle, such as a front wheel drive automobile.


Basic concepts of a ball type Continuously Variable Transmissions are described in U.S.20040616399 and AU2011224083A1, incorporated herein by reference in their entirety. Additional variable transmission details are described in U.S. application Ser. No. 13/743,951 filed Jan. 17, 2013, and/or PCT/US2013/026037 filed Feb. 14, 2013, incorporated herein by reference in their entirety. Such a CVT, adapted herein as described throughout this specification, comprises of a certain number of balls 997 (for example, 3-15 balls), depending on the application, two discs 995, 996 with a conical surface contact with the balls 997, as input and output, and an idler 999 as shown on FIG. 1. The balls are mounted on axes 998, themselves hold in a cage or carrier allowing changing the ratio by tilting the ball's axes. An idler 999 sits below the balls in the cage. Other types of ball CVTs also exist, such as the one produced by Milner but are slightly different.


The working principle of such a CVT of FIG. 1 is shown on FIG. 2. The CVP itself works with a fraction fluid. The lubricant between the ball and the conical rings acts as a solid at high pressure, transferring the power from the input ring, through the balls, to the output ring. By tilting the ball's axis using the ball axle shaft 54 (shown in additional detail in FIG. 6), the ratio can be changed between input and output of the variator. When the axis is horizontal the ratio is one, when the axis is tilted the distance between the axis and the contact point change, modifying the overall ratio. When the axis is horizontal the ratio is one (1:1), when the axis is tilted the distance between the axis and the contact point change, modifying the overall ratio (input radius>output radius=underdrive; input radius<output radius=overdrive). All the balls' axes are tilted at the same time with a mechanism included in the cage.


In a car, the CVT 1000 is used to replace traditional transmission and is located between the engine 2 (such as an internal combustion engine or other type of engine) and the differential 32 as shown on FIG. 3. A torsional dampener (alternatively called a damper) 4 may be introduced between the engine and the CVT 1000 to avoid transferring torque peaks and vibrations that could damage the CVT. In some configurations this dampener 4 can be coupled with a clutch for the starting function. In some embodiments, the torsional dampener comprises a torsional spring 6. In some embodiments, the vehicle driveline comprises a clutch for starting the starting function. In some embodiments the dampener is coupled with a clutch for the starting function.


The variable transmission is located between an engine 2 and a vehicle output 34. The vehicle output 34 may include a differential 32 and a drive axle or a differential crown gear (for example, as shown in FIGS. 4 and 5), however, it is understood that other vehicle outputs may be used. The vehicle output may comprise bearings 36a, 36b, 36c, 36d and wheels 38a, 38b of the vehicle. A torsional dampener 4 may also be included, the torsional dampener 4 disposed between the engine 2 and the variable transmission 1000 to reduce vibration and torque peaks. A clutch (not shown) can be added to provide the starting function.



FIG. 4 depicts an embodiment of the transmission composed of a dampener 4 between the ICE 2 and the variable transmission 1000. The variable transmission of FIG. 4 also includes the variator 100, a clutch 102, and a two-speed gearbox 104. The gearbox 104 for may include a reverse mode, in addition to the two-speed functionality. This gearbox 104 may be an automatic gearbox known in the art for automotive or other applications.


The variator 100 of FIG. 4 is also depicted in FIG. 6. FIG. 5 is a variation of FIG. 4, and thus the description of FIG. 6 also applies to FIG. 5, except for the addition of first variator clutch 42 on first assembly 8, and the addition of second variator clutch 44 and second assembly 10 in FIG. 5. Thus, FIG. 6 depicts the variator 100 comprising a first ring assembly 8, a second ring assembly 10, and a carrier assembly disposed therebetween. The carrier assembly includes a plurality of variator balls 62a, 62b having tiltable axle shafts 54a, 54b as described herein. In some embodiments, the first ring assembly 8 is rotatably disposed in a housing; the first ring assembly 8 comprises a first variator ball engagement surface 50 that is in driving engagement with a plurality of variator balls 62a, 62b of the carrier assembly. The first ring assembly 8 may be drivingly engaged with input shaft 40.


As shown in FIG. 6, first variator ball engagement surface 50 is formed in a distal end of the first ring assembly 8. In some embodiments, the first variator ball engagement surface 50 is a conical surface or a concave or convex toroidal surface in contact with or slightly spaced apart from each of the variator balls 62a, 62b. In some embodiments, the first variator ball engagement surface 50 is in driving engagement with each of the variator balls 62a, 62b of the carrier assembly through one of a boundary layer type friction and an elastohydrodynamic film.


The carrier assembly of FIG. 6 is rotatably disposed in the housing and is drivingly engaged with the first ring assembly. The carrier assembly comprises an annular arrangement of the plurality of tiltable variator balls 62a, 62b each having tiltable ball axle shafts 54a, 54b. A cage of the carrier assembly may be configured to be prevented from rotating relative to the housing by a grounding device linked to said ground 52. In some embodiments, each of the ball axle shafts 54a, 54b is adjusted using a cam style tilting mechanism. In some embodiments, each of the ball axle shafts 54a, 54b is adjusted using a split carrier axle skewing mechanism (not shown).


As depicted in FIG. 6, at least, the second ring assembly 10 is rotatably disposed in the housing. The second ring assembly 10 comprises and a second variator ball engagement surface 58 that is in driving engagement with variator balls 62a, 62b of the carrier assembly. In some embodiments, the second variator ball engagement surface 58 is formed in a distal end of the second ring assembly. In some embodiments, the second variator ball engagement surface 58 is a conical surface or a concave or convex toroidal surface in contact with or slightly spaced apart from each of the variator balls 62a, 62b. In some embodiments, the second variator ball engagement surface 58 is in driving engagement with each of the variator balls 62a, 62b of the carrier assembly through one of a boundary layer type friction and an elastohydrodynamic film.


Provided herein are variable transmissions having a direct drive mode, a reverse mode, and a continuously variable mode of operation using a continuously variable variator in combination with a gearbox having a one or two speed forward gear, a reverse gear, and a direct drive clutch that is configured to transfer power from the input shaft directly to the gearbox by running the variator in a speed ratio of one, or by bypassing the variator altogether by using a set of clutches that disconnect the variator from the input shaft.


Thus, provide herein is a vehicle transmission comprising an input shaft having a first direct drive shaft first member formed thereon; an output shaft; a variator comprising a first ring assembly drivingly engaged with the input shaft, a second ring assembly drivingly engages with the output shaft, and a carrier assembly, a direct drive clutch comprising the first direct drive clutch member and a second direct drive clutch member formed on the output shaft drivingly engaged with the second ring assembly; and a gearbox drivingly engaged with the second ring assembly and with the second direct drive clutch member through the output shaft, the gearbox comprising a first gear and a reverse gear; and wherein the vehicle transmission comprises a reverse mode, a direct drive mode, and a continuously variable mode.


In some embodiments, the gearbox comprises a second gear.


In some embodiments, the gearbox is drivingly linked to a differential of a vehicle output. In some embodiments, the gearbox is drivingly linked to a differential of a vehicle output using a countershaft. In some embodiments, the countershaft comprises first countershaft gear, a reverse countershaft gear, and a pinion gear, and wherein the pinion gear is drivingly engaged with a vehicle output through the crown wheel of the differential. In some embodiments, the first countershaft gear is selectively drivingly engaged with the first gear of the gearbox.


In some embodiments, the reverse countershaft gear is selectively drivingly engaged with the reverse gear of the gearbox. In some embodiments, the reverse gear comprises a reverse gear idler between the reverse gear and the reverse countershaft gear. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the output shaft. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the first countershaft gear.


In some embodiments, the gearbox comprises a second gear, and the countershaft comprises a second countershaft gear. In some embodiments, the second countershaft gear is selectively drivingly engaged with the second gear of the gearbox. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the output shaft, and the second gear is disengaged from the output shaft. In some embodiments, a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the first countershaft gear, and the second gear is disengaged from the second countershaft gear.


In some embodiments, disengaging the direct drive clutch results in continuously variable mode operation of the vehicle transmission. In some embodiments, in continuously variable mode power is transferred through the first ring assembly, one or more balls of the carrier assembly, the second ring assembly, the gearbox and to the vehicle output. In some embodiments, the gearbox increases the overall ratio spread and provides a reverse mode using the reverse gear.


In some embodiments, wherein engaging the direct drive clutch results in direct drive mode. In some embodiments, in direct drive mode power is transferred through directly from the input shaft to the gearbox. In some embodiments, in direct drive mode the variator is free to turn. In some embodiments, in direct drive mode a speed ratio of the variator is set to 1 by keeping the ball axles horizontal.


In some embodiments, the vehicle transmission further comprises a first variator clutch on the first ring assembly and a second variator clutch on the second ring assembly. In some embodiments, disengaging the first variator clutch and the second variator clutch disconnect the first ring assembly and the second ring assembly respectively from the input shaft and the output shaft. In some embodiments, a continuously variable mode exists when the first variator clutch and second variator clutch are engaged and the direct drive clutch is disengaged. In some embodiments, a direct drive mode exists when the first variator clutch and second variator clutch are disengaged and the direct drive clutch is engaged. In some embodiments, a direct drive mode exists when the variator stands still.


Provided herein is a vehicle driveline comprising an engine, a variable transmission of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein, and a vehicle output. In some embodiments, the vehicle output comprises a wheel differential and one or more wheels of a vehicle. In some embodiments, the vehicle output comprises a wheel differential and a drive axle. In some embodiments, the dampener is disposed between the engine and the variable transmission. In some embodiments, the dampener comprises at least one torsional spring. In some embodiments, the vehicle driveline comprises a clutch for starting the starting function. In some embodiments the dampener is coupled with a clutch for the starting function.


Provided herein is a method comprising providing a variable transmission of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method comprising providing a vehicle driveline of any of configuration described herein or obvious to one of skill in the art upon reading the disclosure herein.


In FIG. 4, the engine 2 is connected to the first ring assembly 8 of the variator 100 through the dampener 4 and the input shaft 40. The input shaft 40 also links to the direct drive clutch 102 comprising a first direct drive clutch member 12 and a second direct drive clutch member 14. The first direct drive clutch member 12 may be formed at an end of the input shaft 40. A second ring assembly 10 of the variator 100 is drivingly engaged with the second direct drive clutch member 14 of the direct drive clutch 102 and is drivingly engaged with to the gearbox 104. The gearbox 104 is drivingly linked to the differential 32 and the vehicle output 34 of the vehicle using a countershaft 28. The countershaft 28 has fixed upon it a first countershaft gear 106, second countershaft gear 108, a reverse countershaft gear 110, and a pinion gear 112. It is anticipated that the first countershaft gear 106, second countershaft gear 108, a reverse countershaft gear 110, and a pinion gear 112 are of varying diameters, as shown in FIG. 4, or 5, for example, or may be in any combination of diameters, that are the same or different, depending on the needs of the CVP.


The first countershaft gear 106 is drivingly engaged with a first gear 20. The second countershaft gear 108 is drivingly engaged with a second gear 22. The reverse countershaft gear 110 is drivingly engaged with a reverse gear 24 through a reverse gear idler 26. A reverse mode may be enabled when a reverse clutch 16 is engaged with the output shaft 18 and the first gear 20 and the second gear 22 are disengaged from the output shaft 18. Alternatively, a reverse mode may enabled when a reverse clutch 16 is engaged with the output shaft 18 and the first gear 20 is disengaged from the first countershaft gear 106, and the second gear 22 is disengaged from the second countershaft gear 108. The crown ring 112 is drivingly engaged with the differential 32 through a differential crown wheel 30.


The central part of the variable transmission in the embodiment of FIG. 4 includes a variator 100. A ball ramp on each side of the variator provides the clamping force necessary to transfer the torque. Ball ramps 48, indicated in FIGS. 4, 5, and 6 by a circle between a pair of vertical lines, making up a first thrust ring on the first ring assembly and a second thrust ring on the second ring assembly are disposed between components of the variable transmission as shown to generate an amount of axial force necessary for proper operation of the variable transmission (i.e. transfer of torque); however, it is understood that the amount of axial force necessary for proper operation may be generated by a clamping mechanism (not shown) or as a load applied during assembling of the variable transmission. Thus, as depicted in FIG. 4, a ball ramp on each side of the variator 100 provides the clamping force necessary to transfer the torque in this embodiment.


This configuration can be used in two different modes: continuously variable mode and direct drive (DD). In continuously variable mode, the direct drive clutch 102 is not engaged and the power is transferred through the first ring assembly 8, the variator 100, the second ring assembly 10, the gearbox 104 and finally goes to the vehicle output 34. The gearbox 104 is added to increase the overall ratio spread and to provide a reverse mode using the reverse gear of 24 and reverse gear idler 26 drivingly engaged with reverse countershaft gear 110 on countershaft 28. As previously noted, countershaft 28 is drivingly engaged with differential crown wheel 30 which drives the vehicle output 34.


The direct drive mode is applied by engaging the direct drive clutch 102. By doing this, the power will directly go the gearbox 104. In this mode, the variator 100 is free to turn, and its speed ratio must be set to 1 (wherein the first ring assembly 8 and the second ring assembly 10 turn together) by keeping the ball axles horizontal.


To avoid having power losses in the transmission when in the direct drive mode, two clutches (labeled as first variator clutch 42 and second variator clutch 44 in FIG. 5) may be added to disconnect the first ring assembly 8 and the second ring assembly 10 from the input shaft 40 and output shaft 18. FIG. 5 shows this variant of the concept.


In the embodiment of FIG. 5, a continuously variable mode exists when the first variator clutch 42 and second variator clutch 44 are engaged and the direct drive clutch 102 is disengaged. In direct drive mode, using the embodiment of FIG. 5, the first variator clutch 42 and second variator clutch 44 are disengaged, thus, the variator 100 stands still and avoids losses due to the friction in the variator 100.


Embodiments of the variable transmission described herein or that would be obvious to one of skill in the art upon reading the disclosure herein are contemplated for use in a variety of vehicle drivelines. For non-limiting example, the variable transmissions disclosed herein may be used in bicycles, mopeds, scooters, motorcycles, automobiles, electric automobiles, trucks, sport utility vehicles (SUV's), lawn mowers, tractors, harvesters, agricultural machinery, all terrain vehicles (ATV's), jet ski's, personal watercraft vehicles, airplanes, trains, helicopters, buses, forklifts, golf carts, motorships, steam powered ships, submarines, space craft, or other vehicles that employ a transmission.


While the figures and description herein are directed to ball-type variators (CVTs), alternate embodiments are contemplated another version of a variator (CVT), such as a Variable-diameter pulley (VDP) or Reeves drive, a toroidal or roller-based CVT (Extroid CVT), a Magnetic CVT or mCVT, Ratcheting CVT, Hydrostatic CVTs, Naudic Incremental CVT (iCVT), Cone CVTs, Radial roller CVT, Planetary CVT, or any other version CVT.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A vehicle transmission comprising: an input shaft having a first direct drive shaft first member formed thereon;an output shaft;a variator comprising a first ring assembly drivingly engaged with the input shaft, a second ring assembly drivingly engaged with the output shaft, and a carrier assembly, wherein the carrier assembly comprises an annular arrangement of a plurality of tiltable variator balls each having a tiltable ball axle shaft;a direct drive clutch comprising a first direct drive clutch member and a second direct drive clutch member formed on the output shaft drivingly engaged with the second ring assembly; anda gearbox drivingly engaged with the second ring assembly and with the second direct drive clutch member through the output shaft, the gearbox comprising a first gear and a reverse gear;wherein the vehicle transmission comprises a reverse mode, a direct drive mode, and a continuously variable mode.
  • 2. The vehicle transmission of claim 1, wherein the gearbox comprises a second gear.
  • 3. The vehicle transmission of claim 1, wherein the gearbox is drivingly linked to a differential of a vehicle output.
  • 4. The vehicle transmission of claim 1, wherein the gearbox is drivingly linked to a differential of a vehicle output using a countershaft.
  • 5. The vehicle transmission of claim 4, wherein the countershaft comprises a first countershaft gear, a reverse countershaft gear, and a pinion gear, and wherein a crown ring is drivingly engaged with a vehicle output.
  • 6. The vehicle transmission of claim 5 wherein the first countershaft gear is selectively drivingly engaged with the first gear of the gearbox.
  • 7. The vehicle transmission of claim 5 wherein the reverse countershaft gear is selectively drivingly engaged with the reverse gear of the gearbox.
  • 8. The vehicle transmission of claim 5 wherein the reverse gear comprises a reverse gear idler between the reverse gear and the reverse countershaft gear.
  • 9. The vehicle transmission of claim 5, wherein a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the output shaft.
  • 10. The vehicle transmission of claim 5, wherein a reverse mode is enabled when a reverse clutch is engaged with the output shaft and the first gear is disengaged from the first countershaft gear.
  • 11. The vehicle transmission of claim 5, wherein the gearbox comprises a second gear, and the countershaft comprises a second countershaft gear.
  • 12. The vehicle transmission of claim 11, wherein the second countershaft gear is selectively drivingly engaged with the second gear of the gearbox.
  • 13. The vehicle transmission of claim 11, wherein a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the output shaft, and the second gear is disengaged from the output shaft.
  • 14. The vehicle transmission of claim 11, wherein a reverse mode is enabled when a reverse clutch is engaged with the output shaft, the first gear is disengaged from the first countershaft gear, and the second gear is disengaged from the second countershaft gear.
  • 15. The vehicle transmission of claim 1, wherein disengaging the direct drive clutch results in continuously variable mode operation of the vehicle transmission.
  • 16. The vehicle transmission of claim 15, wherein in continuously variable mode power is transferred through the first ring assembly, one or more balls of the carrier assembly, the second ring assembly, the gearbox and to the vehicle output.
  • 17. The vehicle transmission of claim 15, wherein in direct drive mode power is transferred through directly from the input shaft to the gearbox.
  • 18. The vehicle transmission of claim 15, wherein in direct drive mode the variator is free to turn.
  • 19. The vehicle transmission of claim 1, wherein the gearbox increases the overall ratio spread and provides a reverse mode using the reverse gear.
  • 20. The vehicle transmission of claim 1, wherein engaging the direct drive clutch results in direct drive mode.
CROSS-REFERENCE

This application is filed pursuant to 35 U.S.C. §371 as a United States National Phase Application of International Application No. PCT/US2013/058309, filed Sep. 5, 2013, which application claims the benefit of U.S. Provisional Application No. 61/697,925, filed Sep. 7, 2012, and U.S. Provisional Application No. 61/780,456, filed Mar. 13, 2013, which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/058309 9/5/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/039708 3/13/2014 WO A
US Referenced Citations (259)
Number Name Date Kind
1063244 Ludwig Jun 1913 A
1215969 Thomas Feb 1917 A
1526140 Gruver Feb 1925 A
2019006 Ferrarl Oct 1935 A
2060884 Madle Nov 1936 A
2148759 Grand Feb 1939 A
2405201 Franck Aug 1946 A
2660897 Neidhart et al. Dec 1953 A
2729118 Emslie Jan 1956 A
2931235 Hayward Apr 1960 A
3203278 General Aug 1965 A
3376633 Wesley Apr 1968 A
3407687 Hayashi Oct 1968 A
3470720 Phillip et al. Oct 1969 A
3505718 Carl Apr 1970 A
3583060 Maurice Jun 1971 A
3688600 Allan Sep 1972 A
3765270 Lemieux Oct 1973 A
3774280 Eklund et al. Nov 1973 A
3831245 Amos Aug 1974 A
3894559 DePuy Jul 1975 A
4046988 Okuda et al. Sep 1977 A
4187709 Legate et al. Feb 1980 A
4226140 Gaasenbeek Oct 1980 A
4333358 Grattapaglia Jun 1982 A
4344336 Carriere Aug 1982 A
4360090 Wonn Nov 1982 A
4368572 Kanazawa et al. Jan 1983 A
4464952 Stubbs Aug 1984 A
4693134 Kraus Sep 1987 A
4731044 Mott Mar 1988 A
4756211 Fellows Jul 1988 A
4784017 Johnshoy Nov 1988 A
4856371 Kemper Aug 1989 A
4856374 Kreuzer Aug 1989 A
4950208 Tomlinson Aug 1990 A
4963122 Ryan Oct 1990 A
4963124 Takahashi et al. Oct 1990 A
5109962 Sato May 1992 A
5168778 Todd et al. Dec 1992 A
5217412 Indlekofer et al. Jun 1993 A
5230670 Hibi Jul 1993 A
5238460 Esaki et al. Aug 1993 A
5318486 Lutz Jun 1994 A
5390759 Gollner Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5520588 Hall, III May 1996 A
5527231 Seidel et al. Jun 1996 A
5577423 Mimura Nov 1996 A
5599251 Beim et al. Feb 1997 A
5659956 Braginsky et al. Aug 1997 A
5683322 Meyerle Nov 1997 A
5726353 Matsuda et al. Mar 1998 A
5730678 Larkin Mar 1998 A
5766105 Fellows et al. Jun 1998 A
5776028 Matsuda et al. Jul 1998 A
5800303 Benford Sep 1998 A
5860888 Lee Jan 1999 A
5915801 Taga et al. Jun 1999 A
5961415 Justice et al. Oct 1999 A
5971883 Klemen Oct 1999 A
5996226 Gibbs Dec 1999 A
6009365 Takahara et al. Dec 1999 A
6036616 McCarrick et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6053839 Baldwin et al. Apr 2000 A
6059685 Hoge et al. May 2000 A
6071208 Koivunen Jun 2000 A
6080080 Bolz et al. Jun 2000 A
6083135 Baldwin et al. Jul 2000 A
6086504 Illerhaus Jul 2000 A
6089287 Welsh et al. Jul 2000 A
6095942 Yamaguchi et al. Aug 2000 A
6155951 Kuhn et al. Dec 2000 A
6217474 Ross et al. Apr 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6273838 Park Aug 2001 B1
6342026 Takagi et al. Jan 2002 B1
6358178 Wittkopp Mar 2002 B1
6371880 Kam Apr 2002 B1
6481258 Belinky Nov 2002 B1
6554735 Kanazawa Apr 2003 B2
6558285 Sieber May 2003 B1
6585619 Henzler Jul 2003 B2
6609994 Muramoto Aug 2003 B2
6632157 Gierling et al. Oct 2003 B1
6641497 Deschamps et al. Nov 2003 B2
6645106 Goo et al. Nov 2003 B2
6689012 Miller et al. Feb 2004 B2
6705964 Nagai et al. Mar 2004 B2
6719659 Geiberger et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6726590 Henzler et al. Apr 2004 B2
6733412 Kumagai et al. May 2004 B2
6752696 Murai et al. Jun 2004 B2
6793603 Teraoka et al. Sep 2004 B2
6849020 Sumi Feb 2005 B2
6866606 Ooyama Mar 2005 B2
6949045 Wafzig et al. Sep 2005 B2
6979275 Hiraku et al. Dec 2005 B2
6986725 Morscheck Jan 2006 B2
7033298 Usoro et al. Apr 2006 B2
7074154 Miller Jul 2006 B2
7086981 Ali et al. Aug 2006 B2
7104917 Klemen et al. Sep 2006 B2
7128681 Sugino et al. Oct 2006 B2
7160220 Shinojima et al. Jan 2007 B2
7186199 Baxter, Jr. Mar 2007 B1
7217214 Morscheck et al. May 2007 B2
7234543 Schaaf Jun 2007 B2
7288044 Gumpoltsberger Oct 2007 B2
7311634 Shim et al. Dec 2007 B2
7335126 Tsuchiya et al. Feb 2008 B2
7347801 Guenter et al. Mar 2008 B2
7396309 Heitz et al. Jul 2008 B2
7431677 Miller et al. Oct 2008 B2
7470210 Miller et al. Dec 2008 B2
7473202 Morscheck et al. Jan 2009 B2
7485069 Jang et al. Feb 2009 B2
7497798 Kim Mar 2009 B2
7588514 McKenzie et al. Sep 2009 B2
7637838 Gumpoltsberger Dec 2009 B2
7672770 Inoue et al. Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7717815 Tenberge May 2010 B2
7727107 Miller Jun 2010 B2
7780566 Seo Aug 2010 B2
7874153 Behm Jan 2011 B2
7878935 Lahr Feb 2011 B2
7951035 Platt May 2011 B2
7980972 Starkey et al. Jul 2011 B1
8029401 Johnson Oct 2011 B2
8052569 Tabata et al. Nov 2011 B2
8062175 Krueger et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8142323 Tsuchiya et al. Mar 2012 B2
8226518 Parraga Jul 2012 B2
8257216 Hoffman Sep 2012 B2
8257217 Hoffman Sep 2012 B2
8287414 Weber et al. Oct 2012 B2
8313404 Carter et al. Nov 2012 B2
8376903 Pohl et al. Feb 2013 B2
8382636 Shiina et al. Feb 2013 B2
8447480 Usukura May 2013 B2
8469856 Thomassy Jun 2013 B2
8545368 Davis et al. Oct 2013 B1
8594867 Heap et al. Nov 2013 B2
8622871 Hoff Jan 2014 B2
8639419 Roli et al. Jan 2014 B2
8668614 Sherrill et al. Mar 2014 B2
8678975 Koike Mar 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8926468 Versteyhe et al. Jan 2015 B2
8986150 Versteyhe et al. Mar 2015 B2
9114799 Tsukamoto et al. Aug 2015 B2
9156463 Legner et al. Oct 2015 B2
20020004438 Toukura et al. Jan 2002 A1
20020094911 Haka Jul 2002 A1
20020169048 Henzler et al. Nov 2002 A1
20030060318 Sumi Mar 2003 A1
20030181280 Elser et al. Sep 2003 A1
20030200783 Shai Oct 2003 A1
20030213125 Chiuchang Nov 2003 A1
20030216121 Yarkosky Nov 2003 A1
20030228952 Joe et al. Dec 2003 A1
20040058769 Larkin Mar 2004 A1
20040061639 Voigtlaender et al. Apr 2004 A1
20040166984 Inoue Aug 2004 A1
20040167391 Solar et al. Aug 2004 A1
20040171452 Miller et al. Sep 2004 A1
20050102082 Joe et al. May 2005 A1
20050137046 Miller et al. Jun 2005 A1
20050153810 Miller et al. Jul 2005 A1
20060094515 Szuba et al. May 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060276294 Coffey et al. Dec 2006 A1
20070021259 Tenberge Jan 2007 A1
20070032327 Raghavan et al. Feb 2007 A1
20070042856 Greenwood Feb 2007 A1
20070072732 Klemen Mar 2007 A1
20070096556 Kokubo et al. May 2007 A1
20070270270 Miller et al. Nov 2007 A1
20070275808 Iwanaka et al. Nov 2007 A1
20080039273 Smithson et al. Feb 2008 A1
20080103002 Holmes May 2008 A1
20080121487 Miller et al. May 2008 A1
20080185201 Bishop Aug 2008 A1
20090017959 Triller Jan 2009 A1
20090048054 Tsuchiya et al. Feb 2009 A1
20090062064 Kamada et al. Mar 2009 A1
20090132135 Quinn, Jr. et al. May 2009 A1
20090221391 Bazyn et al. Sep 2009 A1
20090221393 Kassler Sep 2009 A1
20090280949 Lohr Nov 2009 A1
20090286651 Tanaka et al. Nov 2009 A1
20090312137 Rohs et al. Dec 2009 A1
20100056322 Thomassy Mar 2010 A1
20100093476 Carter et al. Apr 2010 A1
20100093479 Carter et al. Apr 2010 A1
20100106386 Krasznai et al. Apr 2010 A1
20100113211 Schneider et al. May 2010 A1
20100137094 Pohl Jun 2010 A1
20100141193 Rotondo et al. Jun 2010 A1
20100173743 Nichols Jul 2010 A1
20100244755 Kinugasa et al. Sep 2010 A1
20100267510 Nichols et al. Oct 2010 A1
20100282020 Greenwood et al. Nov 2010 A1
20100304915 Lahr Dec 2010 A1
20100310815 Mendonca et al. Dec 2010 A1
20110015021 Maguire et al. Jan 2011 A1
20110034284 Pohl et al. Feb 2011 A1
20110152031 Schoolcraft Jun 2011 A1
20110165982 Hoffman et al. Jul 2011 A1
20110165985 Hoffman et al. Jul 2011 A1
20110165986 Hoffman et al. Jul 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110300954 Szuba et al. Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120024991 Pilch et al. Feb 2012 A1
20120035016 Miller et al. Feb 2012 A1
20120040794 Schoolcraft Feb 2012 A1
20120122624 Hawkins, Jr. et al. May 2012 A1
20120142477 Winter Jun 2012 A1
20120165154 Wittkopp et al. Jun 2012 A1
20120231925 Shiina et al. Sep 2012 A1
20120244990 Ogawa et al. Sep 2012 A1
20120309579 Miller et al. Dec 2012 A1
20130130859 Lundberg et al. May 2013 A1
20130133965 Books May 2013 A1
20130184115 Urabe et al. Jul 2013 A1
20130190131 Versteyhe et al. Jul 2013 A1
20130226416 Seipold et al. Aug 2013 A1
20130303325 Carey et al. Nov 2013 A1
20130304344 Abe Nov 2013 A1
20130338888 Long et al. Dec 2013 A1
20140194242 Cooper Jul 2014 A1
20140194243 Versteyhe et al. Jul 2014 A1
20140223901 Versteyhe et al. Aug 2014 A1
20140274536 Versteyhe et al. Sep 2014 A1
20140274540 Schoolcraft Sep 2014 A1
20140274552 Frink et al. Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20150024899 Phillips Jan 2015 A1
20150051801 Quinn, Jr. et al. Feb 2015 A1
20150204429 Versteyhe et al. Jul 2015 A1
20150204430 Versteyhe et al. Jul 2015 A1
20150226294 Ziech et al. Aug 2015 A1
20150226298 Versteyhe et al. Aug 2015 A1
20150226299 Cooper et al. Aug 2015 A1
20150252881 Versteyhe Sep 2015 A1
20160033021 Cooper et al. Feb 2016 A1
20160047448 Versteyhe et al. Feb 2016 A1
20160109001 Schoolcraft Apr 2016 A1
20160123438 Ziech et al. May 2016 A1
20160131235 Phillips May 2016 A1
20160185353 Honma et al. Jun 2016 A1
20160281828 Haka Sep 2016 A1
20160290458 Taskiran et al. Oct 2016 A1
Foreign Referenced Citations (61)
Number Date Country
2011224083 Oct 2011 AU
101392825 Mar 2009 CN
101617146 Dec 2009 CN
202165536 Mar 2012 CN
1237380 Mar 1967 DE
3245045 Jun 1984 DE
102005010751 Sep 2006 DE
0156936 Oct 1985 EP
0210053 Jan 1987 EP
1061288 Dec 2000 EP
2113056 Jul 2012 EP
796188 Mar 1936 FR
1030702 Jun 1953 FR
1472282 Mar 1967 FR
2185076 Dec 1973 FR
2280451 Feb 1976 FR
2918433 Jan 2009 FR
1127825 Sep 1968 GB
2196892 May 1988 GB
2248895 Apr 1992 GB
H09119506 May 1997 JP
2008180214 Aug 2008 JP
2009058085 Mar 2009 JP
2011153583 Aug 2011 JP
WO-2006002457 Jan 2006 WO
WO-2006041718 Apr 2006 WO
WO-2007046722 Apr 2007 WO
WO-2007051827 May 2007 WO
WO-2008103543 Aug 2008 WO
WO-2011011991 Feb 2011 WO
WO-2012008884 Jan 2012 WO
WO-2012177187 Dec 2012 WO
WO-2013109723 Jul 2013 WO
WO-2013123117 Aug 2013 WO
WO-2014039438 Mar 2014 WO
WO-2014039439 Mar 2014 WO
WO-2014039440 Mar 2014 WO
WO-2014039447 Mar 2014 WO
WO-2014039448 Mar 2014 WO
WO-2014039708 Mar 2014 WO
WO-2014039713 Mar 2014 WO
WO-2014039846 Mar 2014 WO
WO-2014039900 Mar 2014 WO
WO-2014039901 Mar 2014 WO
WO-2014078583 May 2014 WO
WO-2014124291 Aug 2014 WO
WO-2014151889 Sep 2014 WO
WO-2014159755 Oct 2014 WO
WO-2014159756 Oct 2014 WO
WO-2014165259 Oct 2014 WO
WO-2014179717 Nov 2014 WO
WO-2014179719 Nov 2014 WO
WO-2014186732 Nov 2014 WO
WO-2014197711 Dec 2014 WO
WO-2015059601 Apr 2015 WO
WO-2015073883 May 2015 WO
WO-2015073887 May 2015 WO
WO-2015073948 May 2015 WO
WO-2015195759 Dec 2015 WO
WO-2015200769 Dec 2015 WO
WO-2016094254 Jun 2016 WO
Non-Patent Literature Citations (94)
Entry
Co-pending U.S. Appl. No. 14/925,813, filed Oct. 28, 2015.
PCT/US2014/025001 International Preliminary Report on Patent ability dated Sep. 24, 2015.
PCT/US2014/025004 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/025005 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/026619 International Preliminary Report on Patentability dated Sep. 24, 2015.
PCT/US2014/036621 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/036623 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/038439 International Preliminary Report on Patentability dated Nov. 26, 2015.
PCT/US2014/065796 International Preliminary Report on Patentability dated Nov. 6, 2015.
PCT/US2014/065909 Written Opinion dated Dec. 11, 2015.
PCT/US2015/37916 International Search Report and Written Opinion dated Sep. 29, 2015.
U.S. Appl. No. 14/175,584 Office Action dated Dec. 3, 2015.
U.S. Appl. No. 14/210,130 Office Action dated Nov. 20, 2015.
U.S. Appl. No. 14/426,139 Office Action dated Oct. 6, 2015.
U.S. Appl. No. 14/542,336 Office Action dated Nov. 25, 2015.
PCT/US2014/041124 International Preliminary Report on Patentability dated Dec. 17, 2015.
PCT/US2015/36170 International Search Report and Written Opinion dated Dec. 17, 2015.
PCT/US2015/64087 International Search Report and Written Opinion dated Feb. 11, 2016.
U.S. Appl. No. 13/743,951 Office Action dated Jan. 21, 2016.
Co-pending U.S. Appl. No. 15/067,427, filed Mar. 11, 2016.
Co-pending U.S. Appl. No. 15/067,752, filed Mar. 11, 2016.
U.S. Appl. No. 14/210,130 Office Action dated Jun. 7, 2016.
U.S. Appl. No. 14/378,750 Office Action dated Apr. 8, 2016.
U.S. Appl. No. 14/425,600 Office Action dated May 16, 2016.
PCT/US2014/065792 International Preliminary Report on Patentability dated Jun. 2, 2016.
PCT/US2014/065909 Written Opinion dated Jun. 6, 2016.
PCT/US2016/027496 International Search Report and Written Opinion dated Jul. 8, 2016.
U.S. Appl. No. 14/425,598 Office Action dated Jun. 14, 2016.
U.S. Appl. No. 14/425,842 Office Action dated Jul. 1, 2016.
U.S. Appl. No. 15/067,752 Office Action dated Jun. 30, 2016.
Co-pending U.S. Appl. No. 15/209,487, filed Jul. 13, 2016.
Co-pending U.S. Appl. No. 15/215,179, filed Jul. 20, 2016.
PCT/US2016/29853 International Search Report and Written Opinion dated Aug. 8, 2016.
U.S. Appl. No. 14/334,538 Office Action dated Jul. 29, 2016.
Co-pending U.S. Appl. No. 15/260,472, filed Sep. 9, 2016.
Co-pending U.S. Appl. No. 15/265,163, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/265,226, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/272,774, filed Sep. 22, 2016.
Co-pending U.S. Appl. No. 15/284,940, filed Oct. 4, 2016.
PCT/US2016/030930 International Search Report and Written Opinion dated Sep. 23, 2016.
PCT/US2016/038064 International Search Report and Written Opinion dated Sep. 7, 2016.
U.S. Appl. No. 14/425,600 Office Action dated Sep. 23, 2016.
U.S. Appl. No. 62/158,847, filed May 8, 2015.
PCT/US2013/021890 International Preliminary Report on Patentability dated Jul. 31, 2014.
PCT/US2013/057837 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057839 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057866 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/070177 International Preliminary Report on Patentability dated May 28, 2015.
PCT/US2014/015352 International Search Report and Written Opinion dated May 27, 2014.
U.S. Appl. No. 13/743,951 Office Action dated Aug. 19, 2015.
U.S. Appl. No. 14/175,584 Office Action dated Apr. 2, 2015.
U.S. Appl. No. 60/616,399, filed Oct. 5, 2004.
Co-pending U.S. Appl. No. 14/542,336, filed Nov. 14, 2014.
Co-pending U.S. Appl. No. 14/546,603, filed Nov. 18, 2014.
Co-pending U.S. Appl. No. 14/622,038, filed Feb. 13, 2015.
Fallbrook Technologies. ‘NuVinci® Technology’, Feb. 26, 2013; [retrieved on Jun. 5, 2014]. Retrieved from internet: <URL: https://web.archive.org/web/20130226233109/http://www.fallbrooktech.com/nuvinci-technology.
Moore et al. A Three Revolute Cobot Using CVTs in Parallel, Proceedings of IMECE, 1999, 6 pgs.
PCT/US2013/021890 International Search Report dated Apr. 10, 2013.
PCT/US2013/026037 International Preliminary Report on Patentability dated Aug. 28, 2014.
PCT/US2013/026037 International Search Report dated Jul. 15, 2013.
PCT/US2013/057837 International Search Report and Written Opinion dated Mar. 31, 2014.
PCT/US2013/057838 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057866 International Search Report dated Feb. 11, 2014.
PCT/US2013/057868 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058309 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058309 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058318 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058318 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058545 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058545 International Search Report and Written Opinion dated Feb. 19, 2014.
PCT/US2013/058615 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058616 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058616 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/070177 International Search Report and Written Opinion dated Apr. 14, 2014.
PCT/US2013/57838 International Search Report and Written Opinion dated Jan. 17, 2014.
PCT/US2013/57839 International Search Report and Written Opinion dated Feb. 6, 2014.
PCT/US2013/57868 International Search Report and Written Opinion dated Apr. 9, 2014.
PCT/US2013/58615 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2014/036621 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/036623 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/038439 International Search Report and Written Opinion dated Sep. 30, 2014.
PCT/US2014/041124 International Search Report and Written Opinion dated Oct. 15, 2014.
PCT/US2014/065909 International Search Report and Written Opinion dated Feb. 19, 2015.
PCT/US2014/25001 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/25004 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/25005 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/26619 International Search Report and Written Opinion dated Sep. 9, 2014.
PCT/US2014/65792 International Search Report and Written Opinion dated Apr. 9, 2015.
PCT/US2014/65796 International Search Report and Written Opinion dated Apr. 9, 2015.
U.S. Appl. No. 13/743,951 Office Action dated Mar. 18, 2015.
U.S. Appl. No. 61/819,414, filed May 3, 2013.
U.S. Appl. No. 14/017,054 Office Action dated Aug. 27, 2014.
U.S. Appl. No. 14/017,054 Office Action dated Dec. 12, 2014.
Wong. The Temple of VTEC Asia Special Focus on the Multimatic Transmission. Temple of VTEC Asia. 2000.
Related Publications (1)
Number Date Country
20150354676 A1 Dec 2015 US
Provisional Applications (2)
Number Date Country
61697925 Sep 2012 US
61780456 Mar 2013 US