1. Field of the Invention
This invention relates to internal combustion engine valvetrain components and, more particularly, to valve rotators.
2. Discussion of the Related Art
Valve rotators are commonly used in some internal combustion engines to provide positive valve rotation during each cycle of an opening phase of engine valve actuation. It is known and appreciated that even slight rotation of a valve during use can increase engine service intervals and extend valvetrain use life by, e.g., minimizing burning and guttering type wear of valves, reducing thermal differentials across each individual valve, reducing carbon buildup on the valves, promoting valve stem lubrication, and/or other benefits.
Known valve rotators are typically classified as being either garter type valve rotators or bearing ball rotators which are commonly referred to as ball type valve rotators. Both garter and ball type valve rotators can be installed in place of a valve spring retainer on the top of a valve spring, or as an additional valvetrain component installed under a valve spring. In either case, whether used as a supplemental valvetrain component, or a replacement component, the valve rotators function by, e.g., utilizing energy associated with valve spring compressive forces and converting such energy into rotational movement of a rotator body within a rotator housing and correspondingly rotating the valve itself.
Garter type valve rotators can be configured as relatively lightweight and relatively inexpensive components. Garter type valve rotators include a garter spring defined by a helically wound spring member that is bent into an annular arrangement, giving it a circular perimeter shape. In this configuration, as the valve spring is compressed and loaded, a spring disk within the garter type valve rotator deflects. The spring disk deflection is transmitted through the garter spring, folding its coils down and forward, correspondingly shifting or rotating the rotator body and thus also the valve attached to it. When the valve spring unloads, the garter spring also unloads, restoring it to its default configuration. This cycle of garter spring loading and unloading, and pushing the valve into rotation, is repeated during subsequent valve actuation(s). In other words, this completes a cycle of valve rotation that is repeated with every opening and closing of the valve.
However, due to size constraints, garter springs of garter type valve rotators are made from relatively small diameter spring material. Correspondingly, the garter springs can have a relatively short use life due to, e.g., exposure to various fatigue forces, loading and unloading at a high rate of recurrence or frequency, temperature cycling between periods of use and non-use, and/or other factors or stresses endured during use.
In light of the above mentioned durability and reliability concerns associated with the garter springs of garter rotators, ball rotators are often preferred for certain implementations, such as for use in relatively larger engines. Ball rotators typically include a circularly shaped housing with multiple sloped pockets formed thereinto. Bearing balls, along with helical compression springs that bias them, are provided in the sloped pockets of the housing in a manner that biases the bearing balls toward shallow ends of the sloped pockets. The bearing balls and springs are further confined by a spring disk resting on a stepped flange of the rotator body, such that the spring disk and pockets, in combination, totally encapsulate the bearing balls and springs. During use, as the valve spring is compressed and loaded, the spring disk deflects, transferring force from the valve spring into bearing balls of the rotator. Since the balls rest on the top of sloped surfaces of the pockets embedded in the flange of the rotator body, rolling motion of the bearing balls occurs which rotates the rotator body and thus also the valve attached to it.
For example, U.S. Pat. No. 2,397,502 discloses a known ball type valve rotator. The ball type rotator is placed on the top of the valve spring, replacing the valve spring holder, and includes a rotator body and housing, multiple bearing balls and cooperating helical springs, a spring disk. The rotator body has a tapered central section, an annular outer flange segment, and a stepped flange as a medial segment transitioning therebetween. The tapered central section connects to the valve, the stepped medial segment serves as a resting place for the spring disk, and the outer flange segment has multiple pockets formed thereinto. The pockets confine bearing balls and helical springs therein, and the bottom walls of the pockets are sloped. The bearing balls and springs are arranged so that the bearing balls bias toward shallow ends of the pockets. A circularly shaped housing encapsulates the bearing balls, springs, and spring disk, and it has a flange that serves as a seat for the valve spring. In this configuration, an inner edge of the spring disk rests on the stepped medial segment of the rotator body, whereas an outside edge of the spring disk rests on a bottom surface of the housing flange, whereby the spring disk carries the load of the compressed valve spring. Accordingly, the spring disk deflects proportionally to the magnitude of the valve spring force.
In other words, during engine operation, as the valve opens, the valve spring is being increasingly compressed, increasing the force applied to the spring disk which further deflects the spring disk and correspondingly decreases an effective height of the pockets containing the bearing balls. At this point, the spring disk rests mostly on the bearing balls, whereby the inner portion of the spring disk lifts away from and is no longer supported by the stepped medial segment of the rotator body. This transmits forces of the valve spring into the bearing balls that are confined in the pockets. Since the rotator body is no longer held by frictional forces defined between the stepped medial segment of the rotator body and the spring disk, the bearing balls are free to roll down into the deeper ends of the pockets, forcing the rotator body to shift circularly.
Namely, since the rotator housing and the spring disk stay attached to the valve spring, the rolling motion of the bearing balls is translated into a rotation of the rotator body and the valve attached to it. As the valve closes, the valve spring decompresses which lessens the force on the spring disk, making it return to its previous shape. Such relaxation of the spring disk increases the effective height of the pockets. As the effective height of each pocket increases, the bearing balls are pushed by the helical springs, back into the shallow ends of the pockets. This completes a cycle of valve rotation that is repeated with every opening and closing of the valve.
As with typical ball type valve rotators, those disclosed in U.S. Pat. No. 2,397,502 include a cast, machined, and hardened steel rotator body. This component is labor or process intensive to make, and is correspondingly relatively expensive. Furthermore, installing the multiple bearing balls, multiple springs, spring disk, and housing requires crimping a top rim of the housing over a top edge of the rotator body, and/or retaining the rotator housing and body with a wire retainer inserted in a grove within the rotator body. This is a labor or process intensive operation that yet further increases the end price of the total assemblage.
U.S. Pat. No. 6,588,391 discloses another known ball type rotator that functions similar to that seen in U.S. Pat. No. 2,397,502, but includes a rotator body that is made by joining two components instead of a single cast and machined component. A first component that is used to make the rotator body is stamped from sheet metal, has a deep drawn conical inner segment, and pockets are drawn from material at an outer flange portion. While forming such first components, during the drawing or pressing procedure, one end of the pocket is formed by shearing which leaves a gap or opening at the respective end. The second component that is used to make the rotator body is a holding ring that is used to retain and guide the bearing balls and their actuating springs, since the pockets formed into the first component are not sufficiently deep to house them. The first and second components are hardened and joined to each other by hump or bulge welding, forming a single unitary rotator body.
These components can be difficult to manufacture and assemble. Deep drawing the conical inner segment can be difficult to accomplish while maintaining suitably consistent material thickness required for structural integrity. It is noted that like other valvetrain components, valve rotators must meet stringent dimensional and structural requirements since they are subjected to high local stresses and fatigue forces of repeatedly valve opening and closing cycles. In addition, although the openings at the pocket ends can intake lubrication, they can also intake non-desired debris or other materials or substances. The corners or ends of the shear line, from which the pocket end openings are defined, can further tear, potentially compromising the structural integrity of the rotator body. It is further noted that the hardening and hump or bulge welding can be labor or procedurally intensive, increasing the end price of the valve rotator.
In typical prior art ball type valve rotators, the pockets that hold the bearing balls and springs have bottom walls that are rigid or inflexible, regardless of whether the pockets are formed by machining a casting, formed by drawing sheet material in a punch-pressing or other operation, or other configurations. It is further noted that in the dynamically changing high stress and load environment in which valve rotators operate, the forces that are applied to the valve rotators are rarely evenly distributed about the rotator body and/or housing. In other words, during use, valve rotator bodies and/or housings are subjected to highly localized applications of the input forces. The bearing ball(s) nearest such localized application of force therefore bears relatively more stress of the input force and carry more or even a majority of the load, as compared to the other bearing balls. This can create point loading between such bearing balls and the spring disk with sufficiently great force to create pitting in, or wear grooves into, the spring disk which can shortening its use life.
It could prove desirable to provide a valve rotator that overcomes the abovementioned drawbacks of the prior art. For example, it could prove desirable to provide a ball type valve rotator that is relatively inexpensive and/or simple to produce. It could prove desirable to provide a ball type valve rotator that reduces occurrences of spring disk pitting or grooving when the ball type valve rotator is subjected to input forces that are non-uniformly applied across surfaces of the valve rotator. It could further prove desirable to provide a ball type valve rotator that can accommodate non-uniformly applied forces by balancing a distribution of them between the multiple bearing balls.
In accordance with a first aspect of the present invention, an improved ball type valve rotator is provided that includes a main body segment having a bottom wall with an upper surface, and a body cap that overlies the main body segment. A ball cages assembly is housed between the main body segment and the body cap. The ball cages assembly includes multiple ramps with lower surfaces that are spaced from the bottom wall upper surface of the main body segment. This allows the multiple ramps to deflect toward the bottom wall upper surface of the main body segment. The multiple ramps can deflect independently of each other, so that different distances can be defined between the different ramps and the bottom wall upper surface of the main body segment. In so doing, the ball cage assembly can accommodate non-uniform applications of force into the valve rotator.
In some embodiments, the ramps can be deflected independently of each other, such that non-uniform forces that are axially directed into the housing assembly deflect differing ramps to differing extents, respectively, balancing a distribution of the non-uniform forces between the multiple bearing balls.
The ball cage assembly can include a flange and the ramps can extend upwardly from the flange. The flange can be annular and the ramps can be provided outside or inside of the flange. For example, the ramps are provided outside of an outer perimeter of the flange, or inside of an inner perimeter of the flange. In some implementations, projections are provided which extend between and connect the ramps to the outer perimeter of the flange. In other embodiments, the projections extend between and connect the ramps to the inner perimeter of the flange.
In some embodiments, the ball cage assembly includes front walls extending upwardly from the ramps. For embodiments of the ball cage assembly that are stamped out of a single piece of material, and/or others, a distance between a leading edge of a first projection and a trailing edge of a second adjacent projection corresponds to a summation of (i) a length of a ramp extending between the first and second projections, and (ii) a height of a front wall extending from the ramp.
In some implementations, the valve rotator can also have side walls that extend upwardly from the projections that connect the ramps to the flange. The side walls can be arranged generally perpendicularly to the ramps, and/or otherwise.
In some implementations, each of the ramps includes an apex that connects first and second sloping segments of the ramp which slope in opposing directions.
In another family of embodiments, the multiple ramps can deflect during instances of axial compressive loading of the valve rotator in a manner that ensures that the ramps maintain angles of inclination, while deflecting, such that the bearing balls roll down the respective ramps during such instances of axial compressive loading of the valve rotator. Stated another way, the ramps are configured to accommodate non-uniform axial force applications to the valve rotator, which squeezes the main body segment and body cap together and lessens the space therebetween, by selectively deflecting. The ramps can deflect independently of each other, whereby non-uniform forces that are axially directed into the housing assembly deflect differing ramps to differing extents. Doing so facilitates balancing a distribution of the non-uniform forces between the multiple bearing balls, mitigating instances of overloading one or less than all of the bearing balls.
Various alternative embodiments and modifications to the invention will be made apparent to one of ordinary skill in the art by the following detailed description taken together with the drawings.
The drawings illustrate a preferred and exemplary embodiment of the invention.
In the drawings:
The present invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments described in detail in the following description.
Turning now to the drawings,
Still referring to
Spring disk 25 and ball cage assembly 30 and its various components such as, e.g., multiple bearing balls 40 that are held in multiple ball cages 50, are housed in a void space between the main body segment 10 and body cap 20. When in a resting or unloaded state, spring disk 25 sits upon the ball cage assembly 30, parallel to the bottom wall 12 of the main body segment 10, and extends radially between corresponding portions of the main body segment 10 and body cap 20. The main body segment 10 and body cap 20 cooperate with the spring disk 25 and ball cage assembly 30 to utilize energy associated with valve spring compressive forces, converting such energy into rotational movement of the valve.
Referring yet further to
Referring now to
Referring now to
Referring again to
Still referring to
Referring yet further to
Referring still to
Still referring to
Referring now to
Still referring to
Sidewall 52 can extend upwardly from a lateral side of the ramp 60, e.g., on the side that is distal base flange 45. The sidewall 52 can be a generally planar tab that stands upright and is preferably configured to at least partially locate or position body cap 20 and/or an inner or outer ring 17 and 18 with respect to the remainder of valve rotator 5. In some implementations, sidewalls 52 include an outwardly extending portion that projects perpendicularly from its top edge, parallel to the bottom wall 12 (
Referring now to
Still referring to
Referring again to
Referring yet further to
In other words, regardless of their particular orientation with respect to the flange 45, the multiple ramps 60 are configured to be resilient or elastically bend or deflect independently of each other. Doing so enhances equalization and/or other distribution of forces that are inputted into valve rotator 5, ensuring that all of the multiple bearing balls 40 will at least partially share input forces or loads, regardless of where such input force is applied to the surface(s) of valve rotator 5. In other words, ramps 60 are configured to collectively or otherwise accommodate non-uniform applications of force into the valve rotator 5 by, e.g., equalizing and/or otherwise distributing non-uniform loads through the valve rotator 5 in a relatively more uniform manner than how they are inputted.
Still referring to
Referring now to
Referring again to
In this regard and by way of such configuration(s), the ramps 60 that are located nearer to input forces of relatively greater magnitude will deflect relatively more. Correspondingly, ramps 60 that are located further from input forces (or nearer input forces of lesser magnitude) will deflect relatively less. Since the ramps 60 deflect to varying degrees in a manner that corresponds to variations in input force magnitude, non-uniform forces that are inputted into the ball cage assembly 30 can be spread out or distributed through the ball cage assembly 30, entering the main body segment 10 in a more uniform manner.
In addition to the load-distributing effects of the ramps 60, it is noted that the deflectable characteristics of the ramps can provide a cushioning effect to the inputted forces. This allows for the likelihood of shock-loading type or otherwise harsh engagement of the valve rotator 5. In other words, the cushioning effect that is associated with deflecting the ramps 60 allows the complete assemblage of valve rotator 5 to ease into its turning or rotating engagement of the respective valve.
In light of the above, to use the valve rotator 5, it is first installed onto a valve of an internal combustion engine, as either a supplemental or replacement valvetrain component, either above or below a valve spring based on the intended end use configuration. During operation of the internal combustion engine, as the valve opens and the valve spring is being increasingly compressed, it correspondingly imposes an increasing force on the valve rotator 5. Upon so doing, the spring disk 25 is being increasingly deflected, reducing an effective height of the ball cages 50. This in turn transfers the force into the bearing balls 40, making them roll towards the deeper ends of the ramps 60 within each individual cage 50, thus causing rotation of the main body segment 10 with respect to the body cap 20. If any one(s) of the bearing balls 40 is subjected to a greater force at this time, then the corresponding ramp 60 supporting that bearing ball 40 deflects downwardly further than the others, whereby the remaining bearing balls 40 assume relatively more of the total imputed load which distributes or equalizes such non-uniform force application throughout the ball cage assembly 30 and into the main body segment 10. Then, as the valve closes, the spring disk 25 returns to the previous less deflected state, increasing the heights of the cages 50. This allows the springs 54 to push or bias the bearing balls 40 back up the ramp 60, toward and ultimately against the front wall 56.
Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the present invention is not limited thereto. It will be manifest that various additions, modifications, and rearrangements of the features of the present invention may be made without deviating from the spirit and scope of the underlying inventive concept. Moreover, the individual components need not be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape and assembled in virtually any configuration. Furthermore, all the disclosed features of each disclosed embodiment can be combined with, or substituted for, the disclosed features of every other disclosed embodiment except where such features are mutually exclusive.
It is also noted that in general, term used herein correspond to orientations and positions in the FIGS. as illustrated, which may or may not correspond to end use applications. For example, structures described as overlying certain other structures in this description may in fact by underlying the same structures in an end use application, or otherwise.
It is intended that the appended claims cover all such additions, modifications, and rearrangements, whereby various alternatives are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/125,863, filed on Apr. 30, 2008, the entirety of which is expressly incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2855913 | Geer | Oct 1958 | A |
3890943 | Schonlau et al. | Jun 1975 | A |
3892210 | Kuhn et al. | Jul 1975 | A |
4075987 | Tauschek et al. | Feb 1978 | A |
4094280 | Updike | Jun 1978 | A |
4141325 | Shalaty | Feb 1979 | A |
4154424 | Cherrie | May 1979 | A |
4227493 | Updike | Oct 1980 | A |
4425882 | Updike et al. | Jan 1984 | A |
4538558 | Updike et al. | Sep 1985 | A |
4597408 | Canter | Jul 1986 | A |
5727507 | Johansson | Mar 1998 | A |
6588391 | Gebauer et al. | Jul 2003 | B2 |
6662770 | Engesser | Dec 2003 | B2 |
Number | Date | Country |
---|---|---|
11-324619 | Nov 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20090272344 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
61125863 | Apr 2008 | US |