This application claims the priority benefit of Italian Application for Patent, Serial No. BS2002A000046, entitled “Ball Valve With Flow-Rate Gauge Incorporated Directly In The Ball,” filed on May 3, 2002, which is hereby incorporated by reference.
Not Applicable
The present invention is related to ball valves, and more particularly to a ball valve which incorporates a flow-rate detector system that provides for the reading of flow-rate information on a device outside the ball valve.
The use of ball valves is well known in many industries. What has not been known is how to accurately obtain readings of the flow-rate of a fluid passing through an on-off valve and in particular an on-off valve such as a ball valve. To determine accurate flow-rate information, instruments outside an on-off valve have been implemented, however, such implementations require complex connections which connections restrict the utility of the valve. Additionally, such prior art solutions for the reacting of flow-rate information present the inconvenience that the reading of the flow-rate information for each single valve is entrusted to a dedicated means of measurement. The dedicated means of measurement used with an on-off valve is dependent on the fluid which passes through the valve, specifically with regard to the type of fluid passing through the valve, and the quantity of fluid passing through the valve.
Other methods for the reading flow-rate inside an on-off valve have been proposed, such as for example the solution anticipated in the European Patent, Serial No. EP 0671578. In such a situation, however, an alteration of the actual flow-rate occurs as a result of the physical structure of the flow-rate measurement equipment. Consequently, the flow-rate reading itself is oftentimes inaccurate.
Therefore, there remains a need in the art for an improvement of the ability of an on-off valve, such as a ball valve, to obtain an accurate reading of flow-rate.
The present invention describes a ball valve with a flow-rate gauge incorporated therein. The ball portion of the ball valve includes a calibrated borehole which constitutes a constriction to the passage of the fluid therethrough. The valve also includes two positionable pressure ports placed before and after the ball respectively, to provide measurements indicative of the flow-rate of the fluid that passes through the ball valve.
For a more complete understanding of the present invention, and for further details and advantages thereof, reference is now made to the following Detailed Description of the Embodiments taken in conjunction with the following drawing figures, in which:
In the description which follows, like parts are marked throughout the specification and drawings with the same numerals. The drawing figures are not necessarily drawn to scale and certain portions of the disclosed invention may be shown in exaggerated or in generalized form in the interest of clarity and conciseness.
Referring now to
It is anticipated that the ball valve 1 will have a centrally located ball 4 within a housing 12, operated by means of an pin 7; and a restriction plate 8, machined inside the ball 4. The restriction plate 8 is formed by boring the ball 4 so as to achieve a partition 11 therein. The partition 11 delimits the restriction 8. The boring operation produces a flow path through the ball 4 which is parallel to the axis of the valve. The borehole 8 is exactly calibrated so as to obtain a flow constriction calibrated to the passage of the fluid that runs through the valve. This calibration of the borehole 8 makes it possible to predetermine an assigned differential value of the pressure between the beginning and the end of the flow constriction, which differential value of pressure is calibrated with respect to the direction of flow of the fluid.
Additionally, before and after the ball 4, there are two positionable pressure ports, 9 and 10. The two positionable pressure ports 9 and 10 are lodged on to the two outer flanged ends 2 and 3. These positionable pressure ports 9 and 10 allow for the measuring of the pressure at the beginning and the end of the calibrated restriction plate 8 with respect to the flow of the fluid and therefore allow for the measurement of the flow-rate by determining the difference in pressure caused by pressure measuring transducers located in pressure ports 9 and 10. If the fluid is a gas, the two pressure ports 9 and 10 are positioned above the ball 4. If the fluid is a liquid, the two pressure ports 9 and 10 are positioned below the ball 4. The two positionable pressure ports 9 and 10, combined with the symmetry of the tie-rods 6 of the valve, can be axially positioned, depending on the flow parameters of the fluid and the type of fluid for which the measurement of the flow-rate must be taken. In the same way, by removal of the outer flanged ends 2 and 3, the ball 4 can be replaced. Therefore, depending on the thermodynamic and fluid-dynamic characteristics of the fluid, a ball 4 with a properly calibrated borehole 8 for the fluid to be measured may be inserted into the housing 12 of the ball valve 1.
In an alternate embodiment, the ball valve 1 can be equipped with connections for various different types of transducers to enable reading and transmitting of relevant measured flow-rate information. In another alternate embodiment, an actuator can be connected to the pin 7 of the ball valve 1 for remote activation depending on the measured flow-rate information and, therefore, for closing or opening in accordance with predetermined fluid-flow requirements.
Other embodiments of the disclosed invention will be apparent to those skilled in the art after considering this specification or practicing the disclosed invention. The specification and examples above are exemplary only, with the true scope of the invention being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
BS2002A0046 | May 2002 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
3209779 | McGowen, Jr. | Oct 1965 | A |
3591129 | Hulsey | Jul 1971 | A |
3826281 | Clark | Jul 1974 | A |
4402485 | Fagerlund | Sep 1983 | A |
4610273 | Bey | Sep 1986 | A |
5205533 | Berchem | Apr 1993 | A |
5209258 | Sharp et al. | May 1993 | A |
5533549 | Sherman | Jul 1996 | A |
5551467 | Booth et al. | Sep 1996 | A |
5593135 | Lester et al. | Jan 1997 | A |
5937890 | Marandi | Aug 1999 | A |
6161350 | Espinosa | Dec 2000 | A |
6491056 | Gibb | Dec 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20030205095 A1 | Nov 2003 | US |