Ballasted anaerobic method for treating wastewater

Information

  • Patent Grant
  • 8845901
  • Patent Number
    8,845,901
  • Date Filed
    Monday, December 2, 2013
    10 years ago
  • Date Issued
    Tuesday, September 30, 2014
    10 years ago
Abstract
A ballasted anaerobic system for treating wastewater including at least one anaerobic treatment reactor. A weighting agent impregnation subsystem is configured to mix weighting agent with the biological flocs to form weighted biological flocs to create a weighted anaerobic sludge blanket in the at least one anaerobic treatment reactor. A weighting agent recovery subsystem is configured to recover the weighting agent from excess sludge and reintroduce the weighting agent to the weighting agent impregnation subsystem.
Description
FIELD OF THE INVENTION

This invention relates to a ballasted anaerobic system and method for treating wastewater.


BACKGROUND OF THE INVENTION

One method of treating wastewater, such as wastewater from ethanol plants, breweries, pharmaceutical plants, food processing plants, pulp and paper facilities, and the like, is to use an anaerobic treatment reactor. The anaerobic treatment reactor is typically seeded with a population of microorganisms that ingest contaminants in the influent wastewater to form biological flocs or granules (hereinafter “biological flocs”). Wastewater is typically fed into the bottom of the anaerobic treatment reactor and microorganisms consume the waste therein and from biological flocs. After a sufficient startup period, the biological flocs form an anaerobic sludge blanket near the bottom of the anaerobic treatment reactor.


In operation, wastewater is fed into the bottom of the anaerobic treatment reactor and flows upward through the anaerobic sludge blanket bringing the wastewater in contact with the microorganisms that consume the waste therein. The treated wastewater then flows over the weir of the anaerobic treatment reactor as clean effluent.


Conventional anaerobic treatment reactor systems have a limited difference in the specific gravity between the anaerobic sludge blanket and the influent wastewater. Therefore, if the flow rate of the influent wastewater is too high, the limited specific gravity difference can cause the sludge blanket to become diffuse. The result may be an elevated loss of microorganisms over the weir which can result in compromised treatment efficiency and system capacity.


BRIEF SUMMARY OF THE INVENTION

This invention features a ballasted anaerobic system for treating wastewater including at least one anaerobic treatment reactor. A weighting agent impregnation subsystem is configured to mix weighting agent with the biological flocs to form weighted biological flocs to create a weighted anaerobic sludge blanket in the at least one anaerobic treatment reactor. A weighting agent recovery subsystem is configured to recover the weighting agent from excess sludge and reintroduce the weighting agent to the weighting agent impregnation subsystem.


In one embodiment, the weighted anaerobic sludge blanket may be configured to treat wastewater and provide a treated effluent. The weighting agent impregnation subsystem may include an impregnation tank and at least one mixer. The weighting agent impregnation subsystem may include a storage subsystem for storing virgin weighting agent and dispensing the virgin weighting agent into the impregnation tank. The weighting agent impregnation subsystem may include a venturi mixer/eductor. The weighting agent recovery subsystem may include a separator subsystem for separating the weighting agent from the biological flocs. The separator subsystem may include a shear mill. The separator subsystem may include a centrifugal separator. The separator subsystem may include an ultrasonic separator. The separator subsystem may include a shear mill and a wet drum magnetic separator. The separator subsystem may include a shear mill and a centrifugal separator. The separator subsystem may include an ultrasonic separator and a wet drum magnetic separator. The separator subsystem may include an ultrasonic separator and a centrifugal separator. The shear mill may include a rotor and a stator, wherein the rotor and/or the stator includes slots sized as to optimize separation of weighting agent from the weighted biological flocs. A majority of the weighting agent may have a particle size less than about 100 μm. A majority of the weighting agent may have a particle size less than about 40 μm. A majority of the weighting agent may have a particle size less than about 20 μm. The weighting agent may include magnetite. The system may include a wasting subsystem for wasting excess sludge to control the population of microorganisms. The capacity of the system may be increased by increasing the concentration of microorganisms solids in the anaerobic treatment reactor by reducing the amount of the sludge wasted by the wasting subsystem. The weighted biological flocs may enhance the quality of the treated effluent by reducing suspended solids and associated contaminants therein.


This invention also features a ballasted anaerobic method for treating wastewater, the method including the steps of: a) receiving influent wastewater in at least one biological reactor, b) forming biological flocs in the at least one anaerobic treatment reactor, c) impregnating weighting agent into the biological flocs to form weighted biological flocs to create a weighted anaerobic sludge blanket, and d) recovering weighting agent from the weighted biological flocs to reintroduce the weighting agent to step c).


In one embodiment, the method may include the step of directing the wastewater through the weighted anaerobic sludge blanket to provide a treated effluent. The method may include the step of separating the weighting agent from the weighted biological flocs. The method may include the step of collecting the weighting agent and recycling the weighting agent to step c). The method may further include the step of providing weighting agent in which the majority of the weighting agent has a particle size less than about 100 μm. The method may further include the step of providing weighting agent in which the majority of the weighting agent has having a particle size less than about 40 μm. The method may further include the step of providing weighting agent in which the majority of the weighting agent has having a particle size less than about 20 μm. The method may further include the step of enhancing the quality of the treated effluent by reducing suspended solids and associated contaminants therein.


The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:



FIG. 1 is a schematic side-view of one embodiment of the ballasted anaerobic system for treating wastewater of this invention;



FIG. 2A is a schematic side-view showing in one example of a weighted sludge blanket formed at the bottom of the anaerobic treatment reactor shown in FIG. 1;



FIG. 2B is a schematic side-view of the system for treating wastewater shown in FIGS. 1 and 2A depicting one example of an effluent recycling line and gas collectors;



FIG. 3 is a microscopic photograph showing one example of weighting agent impregnated into biological flocs to form weighted biological flocs in accordance with this invention;



FIG. 4 is a schematic side-view showing another embodiment of the weighting agent impregnation subsystem shown in FIG. 1;



FIG. 5A is a schematic side-view of one embodiment of the separator shown in FIG. 1;



FIG. 5B is a schematic top view showing one example of slots in the rotor and stator of the shear mill shown in FIG. 5A;



FIG. 5C is a three-dimensional view of one embodiment of the shear mill in FIG. 5A;



FIG. 6 is a three-dimensional front-view of another embodiment of the separator shown in FIG. 1; and



FIG. 7 is a three-dimensional front-view of yet another embodiment of the separator shown in FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.


There is shown in FIG. 1 one embodiment of ballasted anaerobic system 10 for treating wastewater of this invention. System 10 includes at least one anaerobic treatment reactor 12, e.g., a bulk volume fermenter (BVF) treatment reactor, an up-flow anaerobic sludge blanket (UASB) treatment reactor, an internal circulation (IC) treatment reactor, an anaerobic contactor, a continuous stirred reactor, or similar type reactor. Anaerobic treatment reactor 12 receives flow of influent wastewater 14 by line 16. Anaerobic treatment reactor 12 is preferably covered as shown at 13 to create an anaerobic environment therein. Influent wastewater 14 is typically high strength wastewater from ethanol plants, breweries, pharmaceutical plants, pulp and paper facilities, or any similar type facilities or plants. Influent wastewater 14 is typically fed into bottom 15 of anaerobic treatment reactor 12 by line 16 and flows in an upward direction, as shown by arrows 17. Anaerobic treatment reactor 12 is preferably seeded with population of microorganisms which promotes growth of biological flocs 23. After a sufficient startup period, sludge blanket 18 forms near bottom 15 of anaerobic treatment reactor 12.


To overcome the problems discussed in the Background section above, system 10 includes weighting agent impregnation subsystem 26 which impregnates biological flocs 23 to form weighted biological flocs 25, FIG. 2A, to create weighted anaerobic sludge blanket 19. Weighting agent impregnation subsystem 26, FIGS. 1 and 2A, in one embodiment, includes impregnation tank 28 and mixer 30 which receives biological flocs from anaerobic sludge blanket 18, FIG. 1, and/or from weighted anaerobic sludge blanket 19, FIG. 2A, by line 32. Impregnation tank 28 also preferably receives virgin weighting agent 33, e.g., from feed hopper 34 by line 36, and/or recycled weighting agent 38 from weighting agent recovery subsystem 74 (discussed below). Mixer 30 mixes the biological flocs with virgin weighting agent 33 and/or with recycled weighting agent 38 in impregnation tank 28 to impregnate the weighting agent into the biological flocs to form weighted biological flocs 25. In one example, mixer 30 utilizes a mixing energy which is sufficient to impregnate the weighting agent into biological flocs to form weighted biological flocs. FIG. 3 shows a microscopic view of one example of weighting agent 33, 38 impregnated into biological flocs 23 to form weighted biological floc 25. The weighted biological flocs are then sent back to anaerobic treatment reactor 12 by line 37 and/or line 37′ connected to line 16 to form weighted anaerobic sludge blanket 19, FIG. 2A.


In operation, influent wastewater 14 is fed into bottom 15 of anaerobic treatment reactor 12 by line 16 and flows upward through weighted anaerobic sludge blanket 19 bringing the wastewater in contact with the microorganisms that consume the waste therein to provide treated effluent 50 which flows over weir 27. In one design, anaerobic treatment reactor 12, FIG. 2B, may include weirs 60 and 62 which treated effluent 50 flows over. Anaerobic treatment reactor 12 may also include one or more gas collectors 64, 66, and 68 coupled to line 70 which remove methane, carbon dioxide, and other gases generated by the anaerobic process of system 10 discussed herein. Treated effluent 50 may be recycled by line 41 to line 16 to maintain a constant upflow velocity in anaerobic treatment reactor 12, e.g., as shown by arrows 17. Recycling treated effluent 50 may also be used to adjust the flow rate of the influent in line 16.


Increasing the density of weighted anaerobic sludge blanket 18, FIG. 1, to form weighted anaerobic sludge blanket 19, FIG. 2A, creates a significant difference between the specific gravities of the influent wastewater 14 and weighted anaerobic sludge blanket 19. The result is system 10 can accommodate higher loading rates (flow rate/reactor size) of influent wastewater while preventing weighted sludge blanket 19 from becoming diffuse. Therefore, system 10 is more efficient and effective than conventional anaerobic treatment reactor systems. The weighted biological flocs in weighted anaerobic sludge blanket 19 also improve the quality of the treated effluent by reducing suspended solids and associated contaminants therein.


In one embodiment, the weighting agent may be magnetite, or any similar type weighting agent or magnetically separable inorganic material known to those skilled in the art which increases the density of the biological flocs. In one example, the majority of the weighting agent particles have a size less than about 100 μm. In other examples, the majority of weighting agent particles has a size less than about 40 μm, or the majority of particle size of the weighting agent may be less than about 20 μm.


Weighting agent recovery subsystem 74 preferably includes separator 78 which recovers the weighting agent from the excess weighted biological flocs in line 76 and reintroduces (recycles) the weighting agent to weighting agent impregnation subsystem 26. Weighting agent recovery subsystem 74 may include recovery subsystem 83, e.g., a wet drum magnetic separator or similar type device, which recovers the excess weighted biological flocs processed by separator 78. Recovery subsystem 83 reintroduces recovered weighting agent 38 to weighting agent impregnation subsystem 26.


System 10 also preferably includes wasting subsystem 85 which wastes the excess sludge in line 76 generated by weighting agent recovery subsystem 74 by line 87 to control the population of microorganisms in anaerobic treatment reactor 12. In one example, the capacity of system 10 may be increased by increasing the concentration of microorganisms in weighted anaerobic sludge blanket 19 by reducing the amount of sludge wasted by wasting subsystem 85.


System 10, FIG. 1, may also utilize weighting agent impregnation subsystem 26′, FIG. 4, where like parts have been given like numbers. In this example, weighting agent impregnation subsystem 26′ includes venturi mixer/eductor 27 with nozzle 31 and funnel 45 which receives virgin weighting agent 33, e.g., from tank 34 by line 36, and/or recycled weighting agent 38 from separator 78. Venturi mixer/eductor 27 preferably receives sludge from anaerobic sludge blanket 18, FIG. 1, and/or from anaerobic sludge blanket 19, FIG. 2A, by line 32.


In operation, the velocity of sludge in line 32 is increased through nozzle 31. Virgin weighting agent 33 and/or recycled weighting agent 38 is dispensed into funnel 45 and then enters nozzle 31 by line 39 and travels downstream to line 37 and/or line 37′ as shown in FIGS. 1 and 2A. The widening of line 37, 37′, FIG. 4, shown at 41 induces intimate mixing and entrainment, as shown at 43. This impregnates the virgin and/or recycled weighting agent into the biological flocs to form weighted biological flocs. The weighted biological flocs are then returned to anaerobic treatment reactor 12 by line 37, and/or line 37′, FIGS. 1 and 2A, to form weighted anaerobic sludge blanket 19, FIG. 2A.


In one design, separator subsystem 78 discussed above may be configured as shear mill 112, FIG. 5A, which shears the sludge in line 76 to separate the weighting agent from the weighted biological flocs. Shear mill 112 ideally includes rotor 80 and stator 82. In operation, the excess sludge in line 76 enters shear mill 112 and flows in the direction of arrows 180 and enters rotor 80 and then stator 82. Shear mill 112 is designed such that there is a close tolerance between rotor 80, FIG. 5B and stator 82, as shown at 93. Rotor 80 is preferably driven at high rotational speeds, e.g., greater than about 1,000 r.p.m. to form a mixture of weighting agent and obliterated flocs in area 181, FIG. 5A, of shear mill 112. The mixture of weighting agent and obliterated flocs exits shear mill 112 by line 79, as shown by arrows 184. FIG. 5C shows in further detail the structure of one embodiment of shear mill 112. Preferably, rotor 80, FIGS. 5A-5C, and/or stator 82 includes slots which function as a centrifugal pump to draw the excess sludge from above and below rotor 80 and stator 82, as shown by paths 182, FIG. 5A, and then hurl the materials off the slot tips at a very high speed to break the weighted biological flocs into the mixture of weighting agent and obliterated flocs. For example, rotor 80, FIG. 5B, may include slots 186, and stator 82 may include slots 188. Slots 186 in rotor 80 and/or slots 188 in stator 82 are preferably optimized to increase shear energy to efficiently separate the weighting agent from the weighted biological flocs. The shear developed by rotor 80 and stator 82 depends on the width of slots 186 and 188, the tolerance between rotor 80 and stator 82, and the rotor tip speed. The result is shear mill 112 provides a shearing effect which effectively and efficiently separates the weighting agent from the weighted biological flocs to facilitate recovery of the weighting agent.


In another design, separator subsystem 78, FIG. 6, where like parts have been given like numbers, may be configured as ultrasonic separator 116. Ultrasonic separator 116 typically includes one or more ultrasonic transducers, e.g., ultrasonic transducer 262, 264, 266, 268, and/or 270, available from Hielscher Ultrasonics GmbH, Stuttgart, Germany, which generates fluctuations of pressure and cavitation in the excess sludge in line 76. This results in microturbulences that produce a shearing effect to create a mixture of weighting agent and obliterated flocs to effectively separate the weighting agent from the weighted biological flocs in the excess sludge. The resulting mixture of weighting agent and obliterated flocs exits ultrasonic separator 116 by line 79.


In yet another design, separator subsystem 78, FIG. 7, where like parts have been given like numbers, may be configured as centrifugal separator 118. Centrifugal separator 114 typically includes cylindrical section 302 located at the top of hydrocyclone 300 and conical base 304 located below section 302. The excess sludge in line 76 is fed tangentially into cylindrical section 302 via port 303. Smaller exit port 306 (underflow or reject port) is located at the bottom of conical section 304 and larger exit port 308 (overflow or accept port) is located at the top of cylindrical section 302.


In operation, the centrifugal force created by the tangential feed of the sludge by port 303 causes the denser weighting agent to be separated from the biological flocs in the excess sludge. The separated weighting agent is expelled against wall 308 of conical section 304 and exits at port 306. This effectively separates the weighting agent from the weighted biological flocs. The recovered weighting agent 38 exits via port 306 and may be deposited to weighting agent impregnation system 26, 26′, FIGS. 1 and 4. The less dense biological flocs remain in the sludge and exit via port 308 through tube 310 extending slightly into the body of the center of centrifugal separator 118.


Although as discussed above, separator subsystem 78 may be configured as a shear mill, an ultrasonic separator, or a centrifugal separator, this is not a necessary limitation of this invention. In other designs, separator subsystem 78 may be configured as a tubular bowl, a chamber bowl, an imperforate basket, a disk stack separator, and the like, as known by those skilled in the art.


In the example above where a separator 78, FIGS. 5A-5C, is configured as shear mill 112 to create the mixture of weighting agent and obliterated biological flocs, a wet drum magnetic separator or centrifugal separator 118, FIG. 7, may be used to recover the weighting agent therefrom.


In the example where separator subsystem 78, FIG. 6, is configured as an ultrasonic separator 116 to create the mixture of weighting agent and obliterated biological flocs, a wet drum magnetic separator or centrifugal separator 118, FIG. 7, may be used to recover the weighting agent therefrom.


The result of recovering and recycling the weighting agent as discussed above with reference to FIGS. 5A-7 significantly reduces the operating costs of wastewater treatment system 10.


Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the following claims.


In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant cannot be expected to describe certain insubstantial substitutes for any claim element amended.

Claims
  • 1. A ballasted anaerobic method for treating wastewater, the method comprising: receiving influent wastewater in at least one anaerobic treatment reactor;forming biological flocs in the at least one anaerobic treatment reactor; andimpregnating weighting agent into the biological flocs to form weighted biological flocs;allowing the weighted biological flocs to settle to create a weighted anaerobic sludge blanket; anddirecting the wastewater through the weighted anaerobic sludge blanket to provide a treated effluent.
  • 2. The method of claim 1 further including the step of recycling the weighting agent.
  • 3. The method of claim 1 further including the step of providing weighting agent in which the majority of the weighting agent has a particle size less than about 100 μm.
  • 4. The method of claim 1 further including the step of providing weighting agent in which the majority of the weighting agent has a particle size less than about 40 μm.
  • 5. The method of claim 1 further including the step of providing weighting agent in which the majority of the weighting agent has a particle size less than about 20 μm.
  • 6. The method of claim 1 further including the step of enhancing the quality of the treated effluent by reducing suspended solids and associated contaminants therein.
  • 7. The method of claim 1, further comprising wasting excess sludge from the at least one anaerobic treatment reactor.
RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/627,766, filed Sep. 26, 2012, now U.S. Pat. No. 8,623,205, issued Jan. 7, 2014, titled “Ballasted Anaerobic System”, which is a continuation of U.S. patent application Ser. No. 12/799,582, filed Apr. 27, 2010, titled “Ballasted Anaerobic System and Method of Treating Wastewater”, which is a continuation-in-part of U.S. patent application Ser. No. 12/584,545, filed Sep. 8, 2009, now U.S. Pat. No. 8,470,172, issued Jun. 25, 2013, titled “System for Enhancing A Wastewater Treatment Process”, which is a continuation-in-part of U.S. patent application Ser. No. 12/008,216, filed Jan. 9, 2008, now U.S. Pat. No. 7,695,623, issued Apr. 13, 2010, titled “System and Method For Enhancing An Activated Sludge Process”, which claims benefit and priority of U.S. Provisional Application Ser. No. 60/879,373, filed Jan. 9, 2007, titled “Process For The Biochemical Treatment Of Wastewater”, and also claims benefit of and priority to U.S. Provisional Application Ser. No. 60/994,553, filed Sep. 20, 2007, titled “Process For Enhanced Biochemical Treatment Of Wastewater”, all of which are incorporated by reference herein.

US Referenced Citations (369)
Number Name Date Kind
438579 Faunce et al. Oct 1890 A
531183 Harris Dec 1894 A
653010 Koyl Jul 1900 A
728062 Wilson May 1903 A
1064807 Yost Jun 1913 A
1310461 Williams Jul 1919 A
1383287 Campbell Jul 1921 A
1401288 Sodeau Dec 1921 A
1948080 Thomas Feb 1934 A
2065123 Downes Dec 1936 A
2129267 Fischer Sep 1938 A
2232294 Urbain et al. Feb 1941 A
2232296 Urbain et al. Feb 1941 A
2268461 Nichols Dec 1941 A
2326575 Stearns Aug 1943 A
2359748 Clemens Oct 1944 A
2391494 Walker Dec 1945 A
2401924 Goetz Jun 1946 A
2564515 Vogel Aug 1951 A
2597561 Blind May 1952 A
2652925 Vermeiren Sep 1953 A
2713028 Jenks Jul 1955 A
2758715 Fowler Aug 1956 A
2825464 Mack Mar 1958 A
2945590 Stearns Jul 1960 A
3066095 Hronas Nov 1962 A
3080264 Zimmie Mar 1963 A
3142638 Blaisdell et al. Jul 1964 A
3228878 Moody Jan 1966 A
3350302 Demeter et al. Oct 1967 A
3575852 Hughes Apr 1971 A
3617561 Fanselow Nov 1971 A
3622461 Wagner et al. Nov 1971 A
3627678 Marston et al. Dec 1971 A
3676337 Kolm Jul 1972 A
3690454 Bekhtle et al. Sep 1972 A
3693795 Robinson et al. Sep 1972 A
3697420 Blaisdell et al. Oct 1972 A
3767351 Blaser Oct 1973 A
3819589 Fauke et al. Jun 1974 A
3856666 Yashima et al. Dec 1974 A
3886064 Kosonen May 1975 A
3887457 Marston et al. Jun 1975 A
3920543 Marston et al. Nov 1975 A
3929632 Buriks et al. Dec 1975 A
3929635 Buriks et al. Dec 1975 A
3950319 Schmidt et al. Apr 1976 A
3951807 Sanderson Apr 1976 A
3959133 Fulton May 1976 A
3983033 de Latour Sep 1976 A
4024040 Phalangas et al. May 1977 A
4025432 Nolan et al. May 1977 A
4033864 Nolan et al. Jul 1977 A
4046681 Marston et al. Sep 1977 A
4066991 Marston et al. Jan 1978 A
4089779 Neal May 1978 A
4110208 Neal Aug 1978 A
4139456 Yabuuchi et al. Feb 1979 A
4142970 von Hagel et al. Mar 1979 A
4151090 Brigante Apr 1979 A
4153559 Sanderson May 1979 A
4167480 Mach Sep 1979 A
4176042 Fahlstrom Nov 1979 A
4190539 Besik Feb 1980 A
4193866 Slusarczuk et al. Mar 1980 A
4204948 Wechsler et al. May 1980 A
4274968 Grutsch et al. Jun 1981 A
4290898 von Hagel et al. Sep 1981 A
4297484 Quinlan Oct 1981 A
4320012 Palm et al. Mar 1982 A
4339347 Quinlan Jul 1982 A
4341657 Quinlan Jul 1982 A
4343730 Becker et al. Aug 1982 A
4357237 Sanderson Nov 1982 A
4358382 Quinlan Nov 1982 A
4359382 Morgan Nov 1982 A
4377483 Yamashita et al. Mar 1983 A
4388195 von Hagel et al. Jun 1983 A
4402833 Bennett et al. Sep 1983 A
4454047 Becker et al. Jun 1984 A
4465597 Herman et al. Aug 1984 A
4482459 Shiver Nov 1984 A
4502958 Sasaki Mar 1985 A
4522643 Quinlan Jun 1985 A
4563286 Johnson et al. Jan 1986 A
4579655 Louboutin et al. Apr 1986 A
4588508 Allenson et al. May 1986 A
4595506 Kneer Jun 1986 A
4626354 Hoffman et al. Dec 1986 A
4654139 Baba et al. Mar 1987 A
4655933 Johnson et al. Apr 1987 A
4686035 Estabrook Aug 1987 A
4689154 Zimberg Aug 1987 A
4699951 Allenson et al. Oct 1987 A
4735725 Reischl et al. Apr 1988 A
4752401 Bodenstein Jun 1988 A
4765900 Schwoyer et al. Aug 1988 A
4765908 Monick et al. Aug 1988 A
4783265 Timmons Nov 1988 A
4795557 Bourbigot et al. Jan 1989 A
4827890 Pociask et al. May 1989 A
4843105 Reischl et al. Jun 1989 A
4849128 Timmons et al. Jul 1989 A
4851123 Mishra Jul 1989 A
4864075 Thompson et al. Sep 1989 A
4872993 Harrison Oct 1989 A
4874508 Fritz Oct 1989 A
4882064 Dixon et al. Nov 1989 A
4921597 Lurie May 1990 A
4921613 Nordberg et al. May 1990 A
4927543 Bablon et al. May 1990 A
4938876 Ohsol Jul 1990 A
4940550 Watson Jul 1990 A
4944278 Woodard Jul 1990 A
4944279 Woodard Jul 1990 A
4956099 Thompson et al. Sep 1990 A
4981593 Priestley et al. Jan 1991 A
5009791 Lin et al. Apr 1991 A
5013451 Thompson et al. May 1991 A
5019274 Thompson et al. May 1991 A
5023012 Buchan et al. Jun 1991 A
5026483 Thompson et al. Jun 1991 A
5055194 Goetz et al. Oct 1991 A
5064531 Wang et al. Nov 1991 A
5069783 Wang et al. Dec 1991 A
5084733 Katoh et al. Jan 1992 A
5089120 Eberhardt Feb 1992 A
5089227 Thompson et al. Feb 1992 A
5089619 Thompson et al. Feb 1992 A
5112494 Yan May 1992 A
5112499 Murray et al. May 1992 A
5149438 Hebert Sep 1992 A
5187326 Shirai Feb 1993 A
5234603 Potts Aug 1993 A
5266200 Reid Nov 1993 A
5298168 Guess Mar 1994 A
5310642 Vargas et al. May 1994 A
5369072 Benjamin et al. Nov 1994 A
5377845 Hamen et al. Jan 1995 A
5383539 Bair et al. Jan 1995 A
5395527 Desjardins Mar 1995 A
5397476 Bradbury et al. Mar 1995 A
5462670 Guess Oct 1995 A
5545330 Ehrlich Aug 1996 A
5560493 Perry Oct 1996 A
5593590 Steyskal Jan 1997 A
5595666 Kochen et al. Jan 1997 A
5596392 Danzuka Jan 1997 A
5597479 Johnson Jan 1997 A
5616241 Khudenko Apr 1997 A
5616250 Johnson et al. Apr 1997 A
5637221 Coyne Jun 1997 A
5693461 Bagchi et al. Dec 1997 A
5702809 Tixier et al. Dec 1997 A
5730864 Delsalle et al. Mar 1998 A
5731134 Honan et al. Mar 1998 A
5770091 Binot et al. Jun 1998 A
5779908 Anderson et al. Jul 1998 A
5800717 Ramsay et al. Sep 1998 A
5805965 Tsuda et al. Sep 1998 A
5840195 Delsalle et al. Nov 1998 A
5856072 Leone et al. Jan 1999 A
5893355 Glover et al. Apr 1999 A
5925290 Hills Jul 1999 A
5976375 Dorica et al. Nov 1999 A
5976771 Kosugi et al. Nov 1999 A
6010631 Delsalle et al. Jan 2000 A
6030761 Taguchi et al. Feb 2000 A
6093318 Saho et al. Jul 2000 A
6099738 Wechsler et al. Aug 2000 A
6149014 Mankosa et al. Nov 2000 A
6151467 Yamaguchi Nov 2000 A
6160976 Karakama et al. Dec 2000 A
6185393 Karakama et al. Feb 2001 B1
6210587 Vion Apr 2001 B1
6210588 Vion Apr 2001 B1
6221253 Fukase et al. Apr 2001 B1
6221262 MacDonald et al. Apr 2001 B1
6228269 Cort May 2001 B1
6228565 Ohzeki et al. May 2001 B1
6251576 Taguchi et al. Jun 2001 B1
6277285 Vion Aug 2001 B1
6290849 Rykaer et al. Sep 2001 B1
6379549 LePoder et al. Apr 2002 B1
6383370 Keever et al. May 2002 B1
6386781 Gueret May 2002 B1
6406624 DeVos Jun 2002 B1
6423485 Yamada et al. Jul 2002 B1
6432303 Chesner et al. Aug 2002 B1
6447686 Choi et al. Sep 2002 B1
6472132 Yamada et al. Oct 2002 B1
6485652 Le Poder et al. Nov 2002 B1
6517714 Streat Feb 2003 B2
6576145 Conaway et al. Jun 2003 B2
6613232 Chesner et al. Sep 2003 B2
6645386 Moreau et al. Nov 2003 B1
6689277 Streat Feb 2004 B2
6692173 Gueret Feb 2004 B2
6706467 Howe et al. Mar 2004 B2
6740245 Johnson May 2004 B2
6759018 Arno et al. Jul 2004 B1
6783679 Rozich Aug 2004 B1
6811885 Andriessen et al. Nov 2004 B1
6824692 Binot et al. Nov 2004 B2
6832691 Miles et al. Dec 2004 B2
6875351 Arnaud Apr 2005 B2
6896815 Cort May 2005 B2
6902678 Tipton Jun 2005 B2
6919031 Blumenschein et al. Jul 2005 B2
6923901 Leffler et al. Aug 2005 B2
6960294 Arnaud Nov 2005 B2
6966993 Binot Nov 2005 B2
6968138 Akutsu Nov 2005 B2
7001525 Binot et al. Feb 2006 B2
7083715 Binot Aug 2006 B2
7153431 Daugherty Dec 2006 B2
7160448 Johnson Jan 2007 B2
7210581 Robinson et al. May 2007 B2
7244362 Binot Jul 2007 B2
7255793 Cort Aug 2007 B2
7276165 Morgoun Oct 2007 B2
7309435 Rozich Dec 2007 B2
7311841 Binot et al. Dec 2007 B2
7323108 Garbett et al. Jan 2008 B1
7407582 Sun Aug 2008 B2
7407593 Frederick, Jr. et al. Aug 2008 B2
7438817 Nagghappan et al. Oct 2008 B2
7449105 Hastings Nov 2008 B2
7476324 Ciampi et al. Jan 2009 B2
7494592 Deskins Feb 2009 B2
7563366 Sun Jul 2009 B2
7601261 Palacios Donaque Oct 2009 B2
7608190 Banerjee et al. Oct 2009 B1
7625490 Cort Dec 2009 B2
7648637 Sauvignet et al. Jan 2010 B1
7648638 Essemiani et al. Jan 2010 B2
7651620 Vion Jan 2010 B2
7678278 Binot et al. Mar 2010 B2
7686079 Gamache et al. Mar 2010 B2
7686960 Cort Mar 2010 B2
7691261 Deskins Apr 2010 B2
7691269 Cort Apr 2010 B2
7695623 Woodard et al. Apr 2010 B2
7695630 de Guevara Apr 2010 B2
7704390 Leffler et al. Apr 2010 B2
7704399 Condit Apr 2010 B2
7722843 Srinivasachar May 2010 B1
7729778 Eggers et al. Jun 2010 B2
7820025 Ciampi et al. Oct 2010 B2
7820053 Cort Oct 2010 B2
7820054 Hastings et al. Oct 2010 B2
7828976 Banerjee et al. Nov 2010 B2
8012582 Luo et al. Sep 2011 B2
8470172 Woodard et al. Jun 2013 B2
8506800 Woodard et al. Aug 2013 B2
8540877 Woodard Sep 2013 B2
20010030160 Wechsler et al. Oct 2001 A1
20020003115 Conaway et al. Jan 2002 A1
20020017483 Chesner et al. Feb 2002 A1
20020030019 Keever et al. Mar 2002 A1
20020054783 Gueret May 2002 A1
20020088758 Blumenschein et al. Jul 2002 A1
20020148780 Tiemeyer Oct 2002 A1
20020158025 Streat Oct 2002 A1
20020170816 Leffler et al. Nov 2002 A1
20020185452 Johnson Dec 2002 A1
20020190004 Wechsler et al. Dec 2002 A1
20030082084 Cort May 2003 A1
20030089667 Binot et al. May 2003 A1
20030132160 Khudenko Jul 2003 A1
20030150817 Keever et al. Aug 2003 A1
20030222027 Streat Dec 2003 A1
20030224301 Howe et al. Dec 2003 A1
20040055959 Wechsler et al. Mar 2004 A1
20040055961 Binot Mar 2004 A1
20040060876 Tipton Apr 2004 A1
20040129642 Binot Jul 2004 A1
20040144730 Binot et al. Jul 2004 A1
20040149653 Johnson et al. Aug 2004 A1
20040206680 Johnson Oct 2004 A1
20040213721 Arno et al. Oct 2004 A1
20050005471 Pan Jan 2005 A1
20050035030 Oder et al. Feb 2005 A1
20050045534 Kin et al. Mar 2005 A1
20050051488 Nagghappan et al. Mar 2005 A1
20050101719 Ishihara May 2005 A1
20050103719 Binot et al. May 2005 A1
20050131266 Carman et al. Jun 2005 A1
20050173354 Binot et al. Aug 2005 A1
20050194311 Rozich Sep 2005 A1
20050218056 Binot Oct 2005 A1
20050230299 Saho et al. Oct 2005 A1
20050258103 Cort Nov 2005 A1
20050271575 Ciampi et al. Dec 2005 A1
20050277712 Daly Dec 2005 A1
20050282144 Wechsler et al. Dec 2005 A1
20060006114 Deskins Jan 2006 A1
20060018273 Yamada et al. Jan 2006 A1
20060108273 Perri et al. May 2006 A1
20060108283 Johnson et al. May 2006 A1
20060138047 Morgoun Jun 2006 A1
20060175252 Upendrakumar et al. Aug 2006 A1
20060186056 Ivan Aug 2006 A1
20060213832 Hudson et al. Sep 2006 A1
20060254770 Hou Nov 2006 A1
20060270888 Carman et al. Nov 2006 A1
20060289357 Wechsler et al. Dec 2006 A1
20070039894 Cort Feb 2007 A1
20070062883 Frederick et al. Mar 2007 A1
20070108132 de Guevara May 2007 A1
20070114184 Essemiani et al. May 2007 A1
20070119776 Isaka et al. May 2007 A1
20070138093 Bossler et al. Jun 2007 A1
20070163955 Sun Jul 2007 A1
20080019780 Hastings Jan 2008 A1
20080073267 Cort Mar 2008 A1
20080073268 Cort Mar 2008 A1
20080073270 Smith Mar 2008 A1
20080073271 Cort Mar 2008 A1
20080073278 Cort Mar 2008 A1
20080073279 Cort Mar 2008 A1
20080073280 Cort Mar 2008 A1
20080073281 Cort Mar 2008 A1
20080073282 Cort Mar 2008 A1
20080073283 Cort Mar 2008 A1
20080073284 Cort Mar 2008 A1
20080078721 Binot et al. Apr 2008 A1
20080135491 Cort Jun 2008 A1
20080156709 Johnson Jul 2008 A1
20080164183 Marston et al. Jul 2008 A1
20080164184 Marston et al. Jul 2008 A1
20080203015 Marston et al. Aug 2008 A1
20080210613 Wechsler et al. Sep 2008 A1
20080217244 Gaid Sep 2008 A1
20080257810 Sun Oct 2008 A1
20080272065 Johnson Nov 2008 A1
20080290030 Nagghappan et al. Nov 2008 A1
20080296228 Sauvignet et al. Dec 2008 A1
20080314820 Prulhiere et al. Dec 2008 A1
20080314830 Banerjee et al. Dec 2008 A1
20090047076 Hastings Feb 2009 A1
20090050570 Sauvignet Feb 2009 A1
20090065404 Paspek, Jr. et al. Mar 2009 A1
20090084730 Mabille et al. Apr 2009 A1
20090098262 Mabille et al. Apr 2009 A1
20090127180 Deskins May 2009 A1
20090178979 Hastings et al. Jul 2009 A1
20090206040 Berg et al. Aug 2009 A1
20090218281 Sauvignet et al. Sep 2009 A1
20090261037 Clifford, III et al. Oct 2009 A1
20090272693 Mabille et al. Nov 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090301948 Essemiani et al. Dec 2009 A1
20090308815 Sauvignet et al. Dec 2009 A1
20100038081 Gamache et al. Feb 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100072142 Lean et al. Mar 2010 A1
20100096335 Sauvignet et al. Apr 2010 A1
20100101309 Klyamkin et al. Apr 2010 A1
20100102006 Quevillon Apr 2010 A1
20100155327 Woodard et al. Jun 2010 A1
20100213123 Marston et al. Aug 2010 A1
20100219372 Hook et al. Sep 2010 A1
20100251571 Woodard Oct 2010 A1
20100274209 Roe et al. Oct 2010 A1
20110036771 Woodard Feb 2011 A1
20110147304 Sauvignet et al. Jun 2011 A1
20120067824 Berg et al. Mar 2012 A1
20130020255 Woodard Jan 2013 A1
Foreign Referenced Citations (52)
Number Date Country
1686862 Oct 2005 CN
101186410 May 2008 CN
101244884 Aug 2008 CN
101309870 Nov 2008 CN
19600647 Jul 1997 DE
12594 Jun 1980 EP
0087223 Aug 1983 EP
0139572 May 1985 EP
266098 May 1988 EP
392321 Oct 1990 EP
392322 Oct 1990 EP
1244601 Oct 2002 EP
1785400 May 2007 EP
2165980 Mar 2010 EP
1411792 Sep 1965 FR
2378550 Aug 1978 FR
2719235 Nov 1995 FR
07-299495 Nov 1995 JP
08-257583 Oct 1996 JP
11-169866 Jun 1999 JP
2000-233198 Aug 2000 JP
2001-170404 Jun 2001 JP
2003-010874 Jan 2003 JP
1136839 Jan 1985 SU
9312041 Jun 1993 WO
9735654 Oct 1997 WO
9735655 Oct 1997 WO
9803433 Jan 1998 WO
9919261 Apr 1999 WO
9931016 Jun 1999 WO
0114260 Mar 2001 WO
0128931 Apr 2001 WO
0140121 Jun 2001 WO
0200556 Jan 2002 WO
0242223 May 2002 WO
2005077835 Aug 2005 WO
2005087381 Sep 2005 WO
2006086384 Aug 2006 WO
2006102362 Sep 2006 WO
2007059141 May 2007 WO
2007098298 Aug 2007 WO
2008022192 Feb 2008 WO
2008039711 Apr 2008 WO
2008039936 Apr 2008 WO
2008085196 Jul 2008 WO
2008085197 Jul 2008 WO
2008086009 Jul 2008 WO
2008086010 Jul 2008 WO
2009083346 Jul 2009 WO
2010027895 Mar 2010 WO
2010081903 Jul 2010 WO
2010086249 Aug 2010 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 13/946,204, filed Jul. 19, 2013.
U.S. Appl. No. 13/907,423, filed May 31, 2013.
U.S. Appl. No. 14/019,483, Sep. 5, 2013.
Buchanan et al., “Aerobic Treatment of Wastewater and Aerobic Treatment Units,” University Curriculum Development for Decentralized Wastewater Management Aerobic Treatment of Wastewater and Aerobic Treatment Units Buchanan and Seabloom, p. i-v and 1-22, Nov. 2004, [Retrieved on Mar. 9, 2011].
Catlow et al. “Ballasted Biological Treatment Process Removes Nutrients and Doubles Plant Capacity”. WEFTEC Conference (Oct. 2008).
http://www.envirosim.com/includes/weftec08.htm, downloaded Dec. 16, 2012.
Kolm et al., “High Gradient Magnetic Separation,” Scientific American, Nov. 1975, vol. 233, No. 5, 10 pages (unnumbered).
Lubenow et al. “Maximizing Nutrient Removal in an Existing SBR with a Full-Scale BioMag Demonstration”. WEFTEC Conference. Date Unknown.
Moody et al. “Beyond Desktop Evaluation: Key Design Criteria for Mixing and Settling of Magnetite-Impregnated Mixed Liquor”. WEFTEC Conference 2011.
Raskin et al., “Quantification of Methanogenic Groups in Anaerobic Biological Reactors by Oligonucleotide Probe Hybridization,” Applied and Environmental Microbiology, Apr. 1994, vol. 60, No. 4, p. 1241-1248.
Sakai et al., “A Sewage Treatment Process Using Highly Condensed Activated Sludge with an Apparatus for Magnetic Separation,” 1994, Journal of Fermentation and Bioengineering, vol. 78, No. 1, pp. 120-122.
Sakai et al., “Magnetic Forced Sedimentation of Flocs in Activated Sludge Supplemented with Ferromagnetic Powder of Iron Oxide,” 1991, Journal of Fermentation and Bioengineering, vol. 71, No. 3, pp. 208-210.
Sakai et al., “Recovery and Reuse of Ferromagnetic Powder Supplemented in Activated Sludge for Magnetic Separation,” Dept. of Applied Chemistry, Faculty of Engineering, Utsunomiya University, Japan, Submitted: Jun. 28, 1991; Accepted: Oct. 22, 1991, pp. 1-11. Japanese language original (pp. 52-56), and translated English language copy (pp. 1-11).
Sakai et al., “Sewage Treatment under Conditions of Balancing Microbial Growth and Cell Decay with a High Concentration of Activated Sludge Supplemented with Ferromagnetic Powder,” 1992, Journal of Fermentation and Bioengineering, vol. 74, No. 6, pp. 413-315.
Sakai et al., “Simultaneous Removal of Organic and Nitrogen Compounds in Intermittently Aerated Activated Sludge Process Using Magnetic Separation,” 1997, Technical Note Wat. Res., vol. 31, No. 8, pp. 2113-2116.
Tozer, “Study of Five Phosphorus Removal Processes,” The Georgia Operator, vol. 45, No. (Winter 2008).
www.ingentaconnect.com/content/wef/wefproc/2009/00002009/00000004/art0020, downloaded Dec. 16, 2012.
Related Publications (1)
Number Date Country
20140102977 A1 Apr 2014 US
Provisional Applications (2)
Number Date Country
60994553 Sep 2007 US
60879373 Jan 2007 US
Divisions (1)
Number Date Country
Parent 13627766 Sep 2012 US
Child 14094447 US
Continuations (1)
Number Date Country
Parent 12799582 Apr 2010 US
Child 13627766 US
Continuation in Parts (2)
Number Date Country
Parent 12584545 Sep 2009 US
Child 12799582 US
Parent 12008216 Jan 2008 US
Child 12584545 US