Ballistic aerosol marking apparatus

Information

  • Patent Grant
  • 6969160
  • Patent Number
    6,969,160
  • Date Filed
    Monday, July 28, 2003
    21 years ago
  • Date Issued
    Tuesday, November 29, 2005
    19 years ago
Abstract
A toner gating apparatus for supplying toner through an aperture to a gas channel having a propellant stream. The toner gating apparatus has a traveling wave grid having electrodes. A first gating electrode is located proximate a first side of the aperture. A second gating electrode is located proximate a second side of the aperture. A third gating electrode is located in the gas channel. A first voltage source having a first phase is connected to both the first gating electrode and a first electrode of the travelling wave grid. A second voltage source having a second phase is connected to both the second gating electrode and a second electrode of the travelling wave grid. A third voltage source having a third phase is connected to both the third gating electrode and a third electrode of the travelling wave grid.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention is related to U.S. patent application Ser. Nos. 09/163,893, 09/164,124, 09/163,808, 09/163,765, 09/163,839 now U.S. Pat. No. 6,290,342, Ser. Nos. 09/163,954, 09/163,924, 09/163,904 now U.S. Pat. No. 6,116,718, Ser. Nos. 09/163,799, 09/163,664 now U.S. Pat. No. 6,265,050, Ser. Nos. 09/163,518, 09/164,104, 09/163,825, issued U.S. Pat. No. 5,717,986, and U.S. Pat. Nos. 5,422,698, 5,893,015, 5,968,674, and 5,853,906, each of the above being incorporated herein by reference.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a ballistic aerosol marking apparatus and, more particularly to a gating method and apparatus for ballistic aerosol marking.


2. Background of the Invention


Ballistic Aerosol Marking (BAM) systems are known to eject particulate marking materials for marking a substrate. For example, U.S. Pat. No. 6,340,216 and U.S. Pat. No. 6,416,157, which are hereby incorporated by reference in their entirety, disclose a single-pass, full-color printer which deposits marking materials such as ink or toner. High speed printing either directly onto paper or a substrate or indirectly through an intermediate medium can be achieved using Ballistic Aerosol Marking (BAM) systems. An array or multiplicity of channels are provided in a print head through which a propellant stream is directed. Marking material or multiple marking materials may be introduced into the channel and the propellant stream to be mixed and deposited on the substrate. When using particulate or solid based marking material, the material must be metered through an aperture into the channel from a reservoir. An example of moving and metering the marking material is also disclosed in U.S. Pat. No. 6,290,342 which is hereby incorporated by reference in its entirety. A plurality of electrodes are provided with an electrostatic travelling wave to sequentially attract particles to transport them to a desired location. At higher resolutions, only very low agglomeration, or powdery toner can be metered through the smaller apertures. When using such smaller apertures and low agglomeration toner, problems encountered include clogging and surface adhesion of the marking material to the walls of the channel, aperture or metering device. Additional problems are encountered in precisely metering the material to be deposited in order to effectively mix colors or achieve proper gray scale on deposition of the marking material. Accordingly, there is a desire to provide a Ballistic Aerosol Marking (BAM) system capable of precisely metering marking material without clogging or surface adhesion issues.


SUMMARY OF THE INVENTION

In accordance with one embodiment of the present invention, a ballistic aerosol marking print head for depositing marking material is provided having a gas channel coupled to a propellant source. A reservoir is provided in communication with the gas channel through an aperture. A first gating electrode is located proximate a first side of the aperture. A second gating electrode is located proximate a second side of the aperture. A third gating electrode is located in the gas channel. A first voltage source having a first phase is connected to the first gating electrode. A second voltage source having a second phase in phase separation from the first phase is connected to the second gating electrode. A third voltage source having a third phase in phase separation from the first phase and the second phase is connected to the third gating electrode. The first phase, second phase and third phase are sequenced so that marking material is metered from the reservoir into a propellant stream in the gas channel.


In accordance with another embodiment of the present invention, a toner gating apparatus is provided for supplying toner through an aperture to a gas channel having a propellant stream. The toner gating apparatus has a traveling wave grid having electrodes. A first gating electrode is located proximate a first side of the aperture. A second gating electrode is located proximate a second side of the aperture. The gating may be implemented in two modes: continuous and on-demand. A third gating electrode is located in the gas channel. A first voltage source having a first phase is connected to both the first gating electrode and a first electrode of the travelling wave grid. A second voltage source having a second phase is connected to both the second gating electrode and a second electrode of the travelling wave grid. In continuous mode, a third voltage source having a third phase is connected to both the third gating electrode and a third electrode of the travelling wave grid. In on-demand mode, the voltage source for the third gating electrode is connected to the data line for print-on-demand capability.


In accordance with a method of the present invention, a method of metering toner through an aperture into a propellant stream has a first step of providing a traveling wave grid having electrodes. Steps of locating a first gating electrode proximate a first side of the aperture, locating a second gating electrode proximate a second side of the aperture and locating a third gating electrode where the propellant stream is located between the second and third gating electrodes are then provided. Steps of connecting a first voltage source having a first phase to both the first gating electrode and a first electrode of the travelling wave grid, connecting a second voltage source having a second phase lagging the first phase to both the second gating electrode and a second electrode of the travelling wave grid and connecting a third voltage source having a third phase lagging the second phase to both the third gating electrode and a third electrode of the travelling wave grid are then provided.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and other features of the present invention are explained in the following description, taken in connection with the accompanying drawings, wherein:



FIG. 1 is a side schematic section view of a Ballistic Aerosol Marking (BAM) system incorporating features of the present invention;



FIG. 2 is a side schematic section view of a gating device and electrode grid of the Ballistic Aerosol Marking (BAM) system in FIG. 1;



FIG. 3 is a sample waveform such as may be used with the electrode grid in FIG. 2;



FIG. 4A is a potential comparison graph of the gating device; and



FIG. 4B is a Axial E-Field comparison graph of the gating device.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, there is shown a side schematic section view of a Ballistic Aerosol Marking (BAM) system incorporating features of the present invention. Although the present invention will be described with reference to the embodiments shown in the drawings, it should be understood that the present invention can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape or type of elements or materials could be used.


Ballistic aerosol marking device 10 may form a part of a printer, for example of the type commonly attached to a computer network, personal computer or the like, part of a facsimile machine, part of a document duplicator, part of a labeling apparatus, or part of any other of a wide variety of marking devices. The materials to be deposited may be 4 colored toners, for example cyan (C), magenta (M), yellow (Y), and black (K), which may be deposited either mixed or unmixed, successively, or otherwise. In alternate embodiments, more or less toners, colors or marking materials may be provided. BAM Device 10 has a body 14 within which is formed a plurality of cavities 16, 18, 20, 22 for receiving materials to be deposited. Also formed in body 14 may be a propellant cavity 24 for propellant 36. A fitting 26 may be provided for connecting propellant cavity 24 to a propellant source 28 such as a compressor, a propellant reservoir, or the like. Body 14 may be integrally formed as part of or connected to a print head 30. Print head 30 has one or more ejectors having channels 46 (only one channel is shown in FIG. 1 for example purposes) through which the propellant 36 is fed. Marking material is caused to flow out from cavities 16, 18, 20, 22 and is transported and metered into the ejector into a stream of propellant flowing through channel 46. The marking material and propellant are directed in the direction of arrow A toward a substrate 50, for example paper, supported by a platen 52.


Referring now to FIG. 2, there is shown a side schematic section view of Print Head 30 of Ballistic Aerosol Marking (BAM) direct marking process having an electrode grid 58. Print head 30 has one or more channels 46 to which a propellant 36 is fed. FIG. 2 shows an exemplary channel 46 and a gating device metering marking material into the channel. The marking material 68 may be transported from a marking material reservoir, such as cavities 16, 18, 20, 22 (not shown, see FIG. 1) by an electrode grid 58 under the control of controller 62 via a four phase circuit to drive the travelling wave 80. In alternate embodiments, transporting methods other than electrode grid 58 may be employed or more or less phases may be provided. The marking material 68 is metered and introduced into channel 46 through aperture 66. The marking material 68, which may be fluidized toner is metered through a two phase or three phase gating device by electrostatic forces which will be described in more detail below. For 300 dpi resolution, aperture 66 may have a diameter 74 of approximately 50 um to conform to a channel width 72 of approximately 84 um. In alternate embodiments, any suitable aperture size and channel width may be used. For this scale, low agglomeration or “powdery” 6 um toner can be used. In the embodiment shown, and depending upon the effectiveness of the gating system, gated toner can make the effective aperture size approximately 25–30 um down from 50 um due to surface adhesion. This is explained in that only 8 toner particles can fit diagonally across the aperture 66 and two layers may be attached or otherwise adhered to the aperture walls by van der Waals adhesion or through toner-toner co-hesion. The aperture 66 may be fabricated from Au coated 2 mil Kapton film with a laser drilled 50 um hole. In alternate embodiments, other suitable materials may be used. The centerline of aperture 66 is shown approximately 90 degrees from the channel flow path. In alternate embodiments, other angles may be employed and other sizes or shapes may be used. In alternate embodiments, more apertures, and transporting devices may interface with channel 46, such as in the instance where multiple colors or marking materials are introduced into channel 46. Channel 46 may be formed as a Laval type expansion nozzle incorporating a venturi structure or otherwise having an exit end 68 and a propellant supply end 70.


For high speed printing, it is desirable that marking material 68 or toner be reliably and continuously supplied to gating aperture 66. Factors that influence successful gating include lightly agglomerated or loosely packed toner, continuously replenished supply of toner, and for any gating rate, the toner density at the aperture inlet be controllable. In the embodiment shown, a 3 phase electrode configuration is provided having a first gating electrode 84 on a first (reservoir, grid or supply) side of aperture 66. A second gating electrode 86 is provided on a second or channel side of aperture 66. A third gating electrode 88 is provided in gas channel 46 and opposing aperture 66. The marking material or toner 68 is transported from a marking material reservoir, such as cavities 16, 18, 20, 22 (not shown, see FIG. 1) by electrode grid 58 under the control of controller 62 via a four phase circuit to drive the travelling wave 80. Electrode grid 58 has electrodes 90A, 90B, 90C, 90D which may form a repeating pattern as shown. In alternate embodiments more or less electrodes or more or less repeating patterns may be provided. Phased voltages, or voltage sources which may be in the range of 25–500 volts with frequencies of hundreds of hertz through thousands of hertz or otherwise are applied to electrodes 90A, 90B, 90C, 90D that form a travelling wave of either a d.c. phase or a.c. phase. In alternate embodiments, different voltage levels and frequencies may be used. In the embodiment shown, continuous gating is established by selectively connecting gating electrode 84 to electrode 90A, and gating electrode 86 to electrode 90B and gating electrode 88 to electrode 90C. The connection configuration between the gating electrodes and electrodes of the grid shown in FIG. 2 is representative, and any suitable configuration may be used. As seen in FIG. 2, the controller 62 may be connected by any suitable communication means 63 to gating electrode 88 in order to allow operation of the electrode in an on-demand gating mode. In on-demand gating, the third electrode is connected to the data line. In this embodiment, the data line 65 (corresponding to the data embodying the image to be printed with a given channel 46 of print head 30) is connected to controller 62. The controller then generates a suitable signal according to the data line, that is communicated via means 63 to switch the electrode 88 on/off. In alternate embodiments, the controller may be connected for on demand operation to any of the electrodes as desired. The controller 62 selects whether the electrode is operated in one of the continuous or on-demand modes as desired. The three phase, three electrode gating electrode configuration maximizes toner gating effectiveness where the third gating electrode 88 is located on the gas channel floor opposing the aperture 66. Where a two phase configuration is provided such as where gating electrodes on the reservoir side and channel side are provided without a third gating electrode, a stagnation point may occur during pulse switching intervals where some forward and backward sloshing of toner may occur. With a three phase configuration as shown in FIG. 2, such as having gating electrodes 84, 86 and a third phase connected to gating electrode 88, the stagnation zone is minimized or all together prevented from forming. Additionally, because the space between gating electrode 86 and gating electrode 88 is the gas channel 46, there is no surface for toner adhesion and, as a result, less tendency for the effective aperture to decrease. Gating electrode 88 also presents a projection field during the active interval that ensures that toner will move into channel 46 to be entrained for printing.


Referring now to FIG. 3 there is shown a sample waveform produced by the four phase circuit with two cycles in the voltage patterns in the travelling wave of FIG. 2. Line V1 represents the voltage applied to electrodes 90A and 84, Line V2 represents the voltage applied to electrodes 90B and 86, V3 represents the voltage applied to electrodes 90C and 88 and V4 represents the voltage applied to electrode 90D. In the embodiment shown, these voltages are phased approximately by 90 degrees. In alternate embodiments, such as where electrode 90D with V4 is not provided; the voltages may be phased by approximately 120 degrees. In alternate embodiments, such as where electrodes 88, 90C and 90D with V3 and V4 are not provided, the voltages may be phased by approximately 180 degrees. In alternate embodiments more or less electrode configurations, phases or duties may be provided. In the embodiment shown, the voltage sources are phased direct current sources, however in alternate embodiments the voltage sources may be different, for example phased alternating current sources.


Referring now to FIG. 4A there is shown a potential comparison graph for corresponding two and three phase gating structures. The graph represents the potential distribution along the aperture axis 94. The horizontal axis represents distance from the gas channel floor in um. The vertical axis represents the potential along the aperture axis 94 in Volts. Data shown is for a channel height of approximately 65 um (similar to channel 46 in FIG. 2), aperture thickness of 50 um (of a representative aperture similar to aperture 66) and electrode voltage of 400 volts. The dashed line P1 represents a two phase configuration whereas the solid line P2 represents a three phase configuration. The roof of the channel is represented by 100A and the top of the gating aperture is represented by 100B. Referring now to FIG. 4B there is shown an axial E-field comparison graph comparing the axial E-field for two and three phase gating structures. The graph represents the axial E-field along the aperture axis similar to axis 94 (see FIG. 2). The horizontal axis represents distance from the gas channel floor in um. The vertical axis represents the axial E-field along the aperture axis similar to axis 94 in V/um. Data shown is for a channel height of approximately 65 um, aperture thickness of 50 um and electrode voltage of 400 volts. The dashed line E1 represents a two phase configuration whereas the solid line E2 represents a three phase configuration. The roof of the channel is represented by 100A and the top of the gating aperture is represented by 100B. The three phase case shows approximately four times the field strength at the channel floor resulting in much higher coulomb forces pulling toner directly from the aperture into the gas channel.


It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Such alternatives or modifications could be combining different expansion funnels with different columns or no columns as an example. Such alternatives or modifications could be mounting the expansion funnel further within the expansion chamber or product container as a further example. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.

Claims
  • 1. A ballistic aerosol marking print head for depositing marking material, the print head comprising: a gas channel coupled to a propellant source;a reservoir in communication with the gas channel through an aperture;a first gating electrode located proximate a first side of the aperture;a second gating electrode located proximate a second side of the aperture;a third gating electrode located in the gas channel;a first voltage source having a first phase connected to the first gating electrode;a second voltage source having a second phase in phase separation from the first phase, the second voltage source connected to the second gating electrode; anda third voltage source having a third phase in phase separation from the second phase, the third voltage source connected to the third gating electrode;wherein the first phase, second phase and third phase are sequenced to energize the first gating electrode, the second gating electrode and the third gating electrode in consecutive series, so that marking material is metered from the reservoir into a propellant stream in the gas channel.
  • 2. The ballistic aerosol marking print head of claim 1 wherein at least one of the first gating electrode, the second gating electrode or third gating electrode is connected to a corresponding one of the first voltage source, second voltage source or third voltage source so that the at least one of the first gating electrode, the second gating electrode or third gating electrode is selectably operable in one of a continuous mode and an on-demand mode.
  • 3. The ballistic aerosol marking print head of claim 1 wherein the third gating electrode is controlled by a data line for selectively operating the third gating electrode.
  • 4. The ballistic aerosol marking print head of claim 1 wherein the aperture has a diameter less than 65 micrometers.
  • 5. The ballistic aerosol marking print head of claim 1 wherein the gas channel comprises a nozzle and wherein the third gating electrode is opposing the aperture.
  • 6. The ballistic aerosol marking print head of claim 1 wherein the third phase lags the second phase by approximately 90 degrees and the second phase lags the first phase by approximately 90 degrees.
  • 7. The ballistic aerosol marking print head of claim 1 wherein the first, second and third voltage sources are alternating current sources or phased direct current sources having the same frequency.
  • 8. The ballistic aerosol marking print head of claim 1 further comprising: a traveling wave grid having first, second and third electrodes located within the reservoir;the first electrode connected to the first voltage source;the second electrode connected to the second voltage source; andthe third electrode connected to the third voltage source.
  • 9. The ballistic aerosol marking print head of claim 8 wherein the traveling wave grid further comprises a fourth electrode connected to a fourth voltage source having a fourth phase, the fourth phase lagging the third phase by approximately 90 degrees.
  • 10. The ballistic aerosol marking print head of claim 1 wherein the distance from the second gating electrode to the third gating electrode is less than 100 micrometers.
  • 11. The ballistic aerosol marking print head of claim 5 wherein the aperture has a centerline substantially perpendicular to the direction of flow of the propellant stream.
  • 12. The ballistic aerosol marking print head of claim 5 wherein the marking material comprises low agglomeration toner having a particle size of 6 micrometers.
  • 13. A toner gating apparatus for supplying toner through an aperture to a gas channel having a propellant stream, the toner gating apparatus comprising: a traveling wave grid having electrodes;a first gating electrode located proximate a first side of the aperture;a second gating electrode located proximate a second side of the aperture;a third gating electrode located in the gas channel;a first voltage source having a first phase and being connected to both the first gating electrode and a first electrode of the travelling wave grid;a second voltage source having a second phase and being connected to both the second gating electrode and a second electrode of the travelling wave grid; anda third voltage source having a third phase and being connected to both the third gating electrode and a third electrode of the travelling wave grid.
  • 14. The toner gating apparatus of claim 13 wherein at least one of the first gating electrode, the second gating electrode or third gating electrode is connected to a corresponding one of the first voltage source, second voltage source or third voltage source so that the at least one of the first gating electrode, the second gating electrode or third gating electrode is selectably operable in one of a continuous mode or an on-demand mode.
  • 15. The toner gating apparatus of claim 13 wherein the third gating electrode is connected to a data line for selectively operating the third gating electrode.
  • 16. The toner gating apparatus of claim 13 further comprising a fourth electrode of the travelling wave grid connected to a fourth voltage source having a fourth phase, the fourth phase lagging the third phase by approximately 90 degrees.
  • 17. The toner gating apparatus of claim 13 wherein the third phase lags the second phase by approximately 90 degrees and the second phase lags the first phase by approximately 90 degrees.
  • 18. The toner gating apparatus of claim 16 wherein the third phase lags the second phase by approximately 90 degrees and the second phase lags the first phase by approximately 90 degrees.
  • 19. The toner gating apparatus of claim 13 wherein the first, second and third voltage sources are alternating current sources or phased direct current sources having the same frequency.
  • 20. The toner gating apparatus of claim 13 wherein the toner comprises low agglomeration toner having a particle size of 6 micrometers.
  • 21. The toner gating apparatus of claim 13 wherein the distance from the second gating electrode to the first gating electrode is less than 100 micrometers and wherein the distance from the second gating electrode to the third gating electrode is less than 100 micrometers.
  • 22. An image transfer apparatus having a toner gating apparatus according to claim 13.
  • 23. A method of metering toner through an aperture into a propellant stream, the method comprising the steps of: providing a traveling wave grid having electrodes;locating a first gating electrode proximate a first side of the aperture;locating a second gating electrode proximate a second side of the aperture;locating a third gating electrode where the propellant stream is located between the second and third gating electrodes;connecting a first voltage source having a first phase to both the first gating electrode and a first electrode of the travelling wave grid;connecting a second voltage source having a second phase lagging the first phase to both the second gating electrode and a second electrode of the travelling wave grid; andconnecting a third voltage source having a third phase lagging the second phase to both the third gating electrode and a third electrode of the travelling wave grid.
  • 24. The method of metering toner through an aperture into a propellant stream of claim 23 further comprising the step of connecting a fourth voltage source having a fourth phase lagging the third phase by approximately 90 degrees to a fourth travelling wave electrode.
US Referenced Citations (116)
Number Name Date Kind
2573143 Jacob Oct 1951 A
2577894 Jacob Dec 1951 A
3152858 Wadey Oct 1964 A
3572591 Brown Mar 1971 A
3977323 Pressman et al. Aug 1976 A
3997113 Pennebaker, Jr. Dec 1976 A
4019188 Hochberg et al. Apr 1977 A
4106032 Miura et al. Aug 1978 A
4113598 Jozwiak, Jr. et al. Sep 1978 A
4146900 Arnold Mar 1979 A
4171777 Behr Oct 1979 A
4189937 Nelson Feb 1980 A
4196437 Hertz Apr 1980 A
4223324 Yamamori et al. Sep 1980 A
4271100 Trassy Jun 1981 A
4284418 Andres Aug 1981 A
4368850 Szekely Jan 1983 A
4403228 Miura et al. Sep 1983 A
4403234 Miura et al. Sep 1983 A
4480259 Kruger et al. Oct 1984 A
4490728 Vaught et al. Dec 1984 A
4500895 Buck et al. Feb 1985 A
4514742 Suga et al. Apr 1985 A
4515105 Danta et al. May 1985 A
4544617 Mort et al. Oct 1985 A
4606501 Bate et al. Aug 1986 A
4607267 Yamamuro Aug 1986 A
4613875 Le et al. Sep 1986 A
4614953 Lapeyre Sep 1986 A
4634647 Jansen et al. Jan 1987 A
4647179 Schmidlin Mar 1987 A
4663258 Pai et al. May 1987 A
4666806 Pai et al. May 1987 A
4683481 Johnson Jul 1987 A
4720444 Chen Jan 1988 A
4728969 Le et al. Mar 1988 A
4741930 Howard et al. May 1988 A
4760005 Pai Jul 1988 A
4770963 Pai et al. Sep 1988 A
4791046 Ogura Dec 1988 A
4839232 Morita et al. Jun 1989 A
4839666 Jayne Jun 1989 A
4870430 Daggett et al. Sep 1989 A
4882245 Gelorme et al. Nov 1989 A
4896174 Stearns Jan 1990 A
4929968 Ishikawa May 1990 A
4961966 Stevens et al. Oct 1990 A
4973379 Brock et al. Nov 1990 A
4982200 Ramsay Jan 1991 A
4982404 Hartman Jan 1991 A
5030536 Pai et al. Jul 1991 A
5041849 Quate et al. Aug 1991 A
5045870 Lamey et al. Sep 1991 A
5063655 Lamey et al. Nov 1991 A
5066512 Goldowsky et al. Nov 1991 A
5113198 Nishikawa et al. May 1992 A
5190817 Terrell et al. Mar 1993 A
5202704 Isao Apr 1993 A
5208630 Goodbrand et al. May 1993 A
5209998 Kavassalis et al. May 1993 A
5240153 Tubaki et al. Aug 1993 A
5240842 Mets Aug 1993 A
5294946 Gandy et al. Mar 1994 A
5300339 Hays et al. Apr 1994 A
5350616 Pan et al. Sep 1994 A
5385803 Duff et al. Jan 1995 A
5397664 Noelscher et al. Mar 1995 A
5403617 Haaland Apr 1995 A
5425802 Burton et al. Jun 1995 A
5426458 Wenzel et al. Jun 1995 A
5428381 Hadimioglu et al. Jun 1995 A
5482587 McAleavey Jan 1996 A
5491047 Kim et al. Feb 1996 A
5510817 Sohn Apr 1996 A
5512712 Iwata et al. Apr 1996 A
5520715 Oeftering May 1996 A
5522555 Poole Jun 1996 A
5535494 Plesinger et al. Jul 1996 A
5541625 Holstun et al. Jul 1996 A
5554480 Patel et al. Sep 1996 A
5600351 Holstun et al. Feb 1997 A
5604519 Keefe et al. Feb 1997 A
5635969 Allen Jun 1997 A
5640187 Kashiwazaki et al. Jun 1997 A
5646656 Leonhardt et al. Jul 1997 A
5654744 Nicoloff, Jr. et al. Aug 1997 A
5678133 Siegel Oct 1997 A
5682190 Hirosawa et al. Oct 1997 A
5712669 Swanson et al. Jan 1998 A
5717986 Vo et al. Feb 1998 A
5731048 Ashe et al. Mar 1998 A
5756190 Hosomi et al. May 1998 A
5761783 Osawa et al. Jun 1998 A
5777636 Naganuma et al. Jul 1998 A
5780187 Pierrat Jul 1998 A
5787558 Murphy Aug 1998 A
5818477 Fullmer et al. Oct 1998 A
5853906 Hsieh Dec 1998 A
5882830 Visser et al. Mar 1999 A
5893015 Mojarradi et al. Apr 1999 A
5900898 Shimizu et al. May 1999 A
5958122 Fukuda et al. Sep 1999 A
5967044 Marschke Oct 1999 A
5968674 Hsieh et al. Oct 1999 A
5969733 Sheinman Oct 1999 A
5981043 Murakami et al. Nov 1999 A
5990197 Escano et al. Nov 1999 A
5992978 Fujii et al. Nov 1999 A
6019466 Hermanson Feb 2000 A
6036295 Ando et al. Mar 2000 A
6081281 Cleary et al. Jun 2000 A
6116178 McCabe Sep 2000 A
6116718 Peeters et al. Sep 2000 A
6290342 Vo et al. Sep 2001 B1
6328436 Floyd et al. Dec 2001 B1
6416158 Floyd et al. Jul 2002 B1
Foreign Referenced Citations (20)
Number Date Country
0 655 337 Nov 1994 EP
0 726 158 Aug 1996 EP
53-35539 Apr 1978 JP
55-19556 Feb 1980 JP
55-28819 Feb 1980 JP
56-146773 Nov 1981 JP
57192027 Nov 1982 JP
58-224760 Dec 1983 JP
60-229764 Nov 1985 JP
62-35847 Feb 1987 JP
02-293151 Dec 1990 JP
4-158044 Jun 1992 JP
4-182138 Jun 1992 JP
5-4348 Jan 1993 JP
5-193140 Aug 1993 JP
5-269995 Oct 1993 JP
WO9311866 Jun 1993 WO
WO9418011 Aug 1994 WO
WO9701449 Jan 1997 WO
WO 9727058 Jul 1997 WO
Related Publications (1)
Number Date Country
20050024446 A1 Feb 2005 US