Ballistic aiming system with digital reticle

Information

  • Patent Grant
  • 10907934
  • Patent Number
    10,907,934
  • Date Filed
    Thursday, October 11, 2018
    6 years ago
  • Date Issued
    Tuesday, February 2, 2021
    3 years ago
Abstract
A reticle for an aiming device includes a number of holdover indicators on the reticle that may be individually selected; an input for receiving ballistics data; and a processor configured to, based at least in part on the received ballistics data, select one or more of the holdover indicators; and cause the selected holdover indicator or indicators to visibly change state on the reticle. Methods of operating a digital reticle are also described. Further disclosed is a system that includes the reticle above, as well as a rangefinder for providing range data and a ballistics calculator for providing ballistics data.
Description
BACKGROUND OF THE INVENTION

Riflescopes are mounted to rifles to assist a shooter, or user, in aiming the rifle to hit a desired target. Riflescopes may include reticles, which are markings or other indicators that appear in the field of view over the image of target through the riflescope. Reticles may include horizontal and vertical crosshairs with a central intersection point that can be calibrated to coincide with the point of impact of a projectile from the rifle. This central aiming point of the reticle may be zeroed-in at a particular zero range distance and then adjusted for different ranges and conditions using elevation and windage turrets to make slight adjustments to its vertical and horizontal position relative to the rifle. In this way, the user may always use the central intersection point of the crosshairs to aim the riflescope, and thus, the rifle. However, making mechanical adjustments to these elevation and windage turrets takes time, which may be disadvantageous in the field where a desired target could move at any time. Additionally, there are detailed reference charts the user must reference or memorize to correctly adjust these elevation and windage turrets.


As an alternative to the fine mechanical adjustments of elevation and windage turrets, some reticles are printed or formed with set holdover points, to use as aiming points instead of the central point. These holdover points save the user time in not having to make mechanical adjustments to dials, but still include complex charts to consult or memorize, which can cost the user time in the field and may result in mistake.


Embodiments of the invention address these and other limitations of the prior art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a ballistic aiming system, including a digital reticle riflescope mounted to a rifle and a device running a ballistics solution application according to embodiments of the invention.



FIG. 2 shows a ballistic aiming system, including a digital reticle riflescope and a rangefinder with a built-in ballistics solution calculator application according to embodiments of the invention.



FIG. 3 is an example block diagram of a ballistic aiming system, including a digital reticle riflescope mounted to a rifle, a rangefinder with a built-in ballistics solution calculator, a device running a ballistics solution app, and peripheral sensors according to embodiments of the invention.



FIG. 4A shows an example ballistic trajectory.



FIG. 4B shows another example ballistic trajectory.



FIG. 4C shows an example ballistic trajectory as well as a calculated deviation from the ballistic trajectory.



FIG. 5 shows a cross-sectional view of an example digital reticle riflescope according to embodiments of the invention.



FIG. 6 shows a wiring schematic view of an example digital reticle according to embodiments of the invention.



FIG. 7 shows a mechanical reticle within the field of view of an example digital reticle riflescope.



FIG. 8 shows a digital reticle with LEDs overlaid on the mechanical reticle within the field of view of the digital reticle riflescope of FIG. 7 according to embodiments of the invention.



FIG. 9 is a detailed portion of the field of view of the digital reticle riflescope of FIG. 8, including the mechanical reticle with crosshairs and the digital reticle with LEDs according to embodiments of the invention.



FIG. 10 is the detailed portion of the field of view of the digital reticle riflescope of FIG. 9 with a central LED lit according to embodiments of the invention.



FIG. 11 is the detailed portion of the field of view of the digital reticle riflescope of FIG. 9, displaying a ballistics solution for a set of ranges through selectively lit LEDs according to embodiments of the invention.



FIG. 12 is the detailed portion of the field of view of the digital reticle riflescope of FIG. 9, displaying a ballistics solution through selectively lit LEDs that act as aiming adjustment points according to embodiments of the invention.



FIG. 13 shows an example digital reticle riflescope with a power selector ring and an LED indicator according to embodiments of the invention.



FIG. 14 shows the field of view of an example digital reticle riflescope, displaying a ballistic solution through the lit central LED at a low magnification power level according to embodiments of the invention.



FIG. 15 shows the field of view of the digital reticle riflescope of FIG. 14, displaying the ballistic solution through the lit LED, acting as an aiming point, at a higher magnification power level according to embodiments of the invention.



FIG. 16 shows the field of view of the digital reticle riflescope of FIG. 14, at the higher magnification power level of FIG. 15, displaying both the ballistic solution and an anti-cant indicator according to embodiments of the invention.



FIG. 17 shows the field of view of an example digital reticle riflescope, displaying a ballistic solution for a set of ranges through the lit LEDs, acting as aiming adjustment points, at a low magnification power level according to embodiments of the invention.



FIG. 18 shows the field of view of the digital reticle riflescope of FIG. 17, displaying the ballistic solution for a set of ranges through the different lit LEDs at a higher magnification power level according to embodiments of the invention.





DETAILED DESCRIPTION

Systems


As shown in FIG. 1, a ballistic aiming system 100 may include a digital reticle riflescope 110 mounted to a rifle or other firearm 115 and a computational device 120 running a ballistics solution computer application, or app 130. The computational device 120 may be any computing device capable of running a ballistics solution application, such as a mobile phone, tablet computer, or a specialized ballistics computer, for example. The digital reticle riflescope 110 may be paired to the device 120 running the ballistics solution application 130 over a wireless communications means, such as Bluetooth or WiFi, for example. In other embodiments the riflescope 110 may communicate to the device 120 through a wired connection. The user may input information into the ballistics solution application 130 and/or select configuration settings for the digital reticle riflescope 110. The ballistics solution application 130 may use the input information to send a ballistics solution to the digital reticle riflescope 110. Once a ballistics solution is sent to the digital reticle riflescope 110, the user may view and use the ballistics solution on the digital reticle riflescope 110 without the device 120 running the ballistics solution application 130. Ballistics information used in a ballistics calculation may include information about a cartridge, projectile, caliber, bullet weight or mass, muzzle velocity, muzzle energy, ballistic coefficient, scope height, and/or drag coefficient, for example. Other ballistics information may include zero range, target ranges, preferred drag curves or models (common examples include G1, G2, G5, G6, G7, G8, or GL), and/or twist rate.


As illustrated in FIG. 2, additionally or alternatively, the ballistic aiming system 200 may include a digital reticle riflescope 110 mounted to a rifle 115 (not shown) and a rangefinder 140 with a built-in ballistics solution calculator. The rangefinder 140 may be paired or otherwise in communication with the digital reticle riflescope 110 and may send ballistics solutions to the digital reticle riflescope 110 based on the determined range to target. The digital reticle riflescope 110 may include a receiver or input 114 to receive the data. The rangefinder 140 may have been paired to the digital reticle riflescope 110 using a separate device 120 running a ballistics solution application 130, as shown in FIG. 1, where the various configuration settings were initially setup. Because the rangefinder 140 may have a built-in ballistics solution calculator, it is not necessary for the user to also have the device 120 running the ballistics solution application 130 for the system 200 to function. Rather, once paired, the rangefinder 140 may communicate directly with the digital reticle riflescope 110. The digital reticle riflescope 110 may also include a processor 112, which is used to select particular holdover indicators based at least in part on the received ballistics information, as described in detail below. In some embodiments the processor 112 may be embodied by a microcontroller, Application Specific Integrated Circuit (ASIC), firmware such as an FPGA, other hardware, or software or other machine codes operating on a general or special purpose processor, controller, or microcontroller.


Additionally or alternatively, the ballistic aiming system 300 may include all of the digital reticle riflescope 110, the rangefinder 140, the device 120 running the ballistics solution application 130, and peripheral sensors that provide additional input information used in calculating the ballistics solution, as shown in FIG. 3. In this way, the user may have an entire network of devices in communication with each other that automatically gather data about the surrounding environment and use these conditions to calculate the most accurate ballistics solution for the user. In operation, output from any of the sensors illustrated connected to the ballistics solution application 130 or the rangefinder 140 may be used as one or more inputs to the ballistics calculation that determines the eventual ballistics solution.


Zeroing-In


As shown in FIG. 4A zeroing-in a riflescope to a shooting device includes shooting at a target from a known range (e.g., 100 yards) and adjusting the position of the reticle and/or riflescope 110 relative to a rifle bore line 230 until the central aiming point of the reticle within the riflescope 110, along an optical axis 240, appears to the user to coincide with an actual point of impact 225 on the target. These adjustments may be made in both the horizontal and vertical directions, using the windage and elevation adjustment knobs, respectively. When properly zeroed-in, the parabolic or curved ballistic trajectory 220 of the projectile from the particular rifle 115 at the baseline environmental conditions during the zeroing-in process intersects the optical line of sight 240 of the riflescope 110 at the known zero range.


Through the zeroing-in process, the riflescope 110, and thus, the optical axis 240, becomes locked into a set position relative to the rifle bore line 230. This set position between the riflescope line of sight 240 and the rifle bore line 230 may be exploited by using holdover points or aiming adjustment points displayed on the reticle or in the field of view of the riflescope 110 to cause the user to make adjustments θ to the angle and position of the rifle bore line 230, which results in corresponding changes to the initial line of fire 220 of the selected projectile.


The zero range may be one of the pieces of ballistic data entered into the device 120 running the ballistics solution application 130.


Ballistics


The ballistic trajectory 220 for the selected projectile will vary with environmental conditions, such as crosswind, pressure, temperature, density altitude, humidity, angle of incline, etc. Additionally, the ballistic trajectory 220 of a projectile from the rifle 115 will vary with the projectile characteristics, such as caliber, bullet weight, ballistic coefficient, muzzle velocity, etc. and/or with the barrel length and twist rate.


As shown in FIG. 4A, the ballistic trajectory 220 is a curve that begins its initial ascent at the angle of the rifle bore line 230. Due to gravitational forces, the projectile will undergo a certain amount of vertical bullet drop relative to the rifle bore line 230 at any point along the ballistic trajectory 220 of the projectile.


At the zero range, the ballistic trajectory 220 and correlated bullet drop have already been calibrated during the zeroing-in process, so that the optical axis 240 intersects the ballistic trajectory 220 at the point of impact 225, as illustrated in FIG. 4A. Thus, a shooter has a high degree of certainty that the shot will hit the target at the desired point. At ranges beyond (or before) the zero range, however, when the shooter aims at the same point on the target through the central aiming point along the optical axis 240 of the riflescope 110, the intersection 225 of the ballistic trajectory 220 and the optical axis 240 will still occur at the zero range, while the actual point of impact will be lower if the bullet hits the target at all, as shown in FIG. 4B. Note that in FIG. 4B the target is further from the shooter than the zero range distance. When the shooter aims at the target, but the target is farther away than the zero range distance, the projectile will miss the target, absent any other correcting factors, such as elevation differential, wind, etc. This could result in a complete miss that scares the target away, or a non-fatal shot that wounds the target and causes it run off injured before the shooter can re-calibrate and administer a kill shot. Therefore, for increased accuracy and to ensure the user is taking ethical shots at long-range targets, the ballistic aiming system automatically calculates a ballistics solution (illustrated here as an angle θ), based on multiple, real-time data inputs, thereby providing increased shooting accuracy. Alternatively, the user may select which inputs are updated manually and/or in real-time within the system as well as which variables to keep constant and/or not use within the ballistic solution calculation. The ballistic aiming system uses the ballistics solution θ to instantly visibly indicate a specifically calibrated holdover point or aiming adjustment points in the digital reticle riflescope's field of view that the user may use to aim at the desired point on the target. As shown in FIG. 4C, the line of sight 250 along the point within the field of view of the digital reticle riflescope 110, indicated by the ballistic aiming system, intersects with the ballistic trajectory 220 at the desired point of impact 225 on the target.


For given environmental conditions, selected projectile, and other user input information, the ballistics solution application 130 may compute a new ballistic trajectory 220 for the selected projectile. The ballistics solution application 130 may use stored drag curves, such as the G1, G7 curves mentioned above, and custom drag curves, empirically measured data tables, the ballistics information described above, and/or algorithms for the selected projectile to calculate the amount of vertical bullet drop at any range.


The ballistics solution application 130 may use the computed ballistic trajectory 220 to calculate a ballistics solution θ for a given range. The ballistics solution θ may be given in terms of the amount of angular adjustment that should be made to the rifle 115 to hit the target at the determined range. The ballistics solution θ may be a set of both an elevation angle γ and an azimuth angle φ, i.e., a horizontal component and a vertical component. The amount of adjustment in the ballistics solution θ may be given in minutes of angle (MOA), milliradian (mil or MRAD), Bullet Drop Compensation (BDC), etc.


Because zeroing-in the riflescope 110 to the rifle 115 results in the riflescope 110 and its optical axis 240 being set at a constant angle relative to the rifle bore line 230, any angular adjustment θ to the riflescope 110 will result in the same angular adjustment θ to the rifle.


The ballistics solution θ will vary depending on the range to the target. Alternatively, if no range is input, the ballistics solution θ may be given as a set of angular adjustment values θ100 . . . θn for a series of incremental ranges. For example, if the zero range was 100 yards, the ballistics solution θ could include an angular adjustment value θ100 of 0 mil for 100 yards, since the ballistic trajectory 220 should already coincide with the optical axis 240 at the point of impact 225 for the zero range, and another angular adjustment value θ200 of 0.62 mil for 200 yards, etc. In some embodiments, the user may choose how many and which yardage targets will be displayed on the digital reticle riflescope 110. For instance, the user may operate the ballistics solution application 130 to elect to show holdover indicators for 3 distances, 100, 300, and 500 yards. In some embodiments the user may choose up to 8 or 10 different yardages. In operation, in some embodiments, the ballistics solution application 130 calculates different ballistic solutions θ for each of the selected yardages, and sends them to the digital reticle riflescope as separate solutions, where they are stored on the riflescope 100. The riflescope then calculates or otherwise determines which holdover solutions to select, such as by illuminating particular LEDs, as described in detail below.


In addition to the zero range, the ballistics solution application 130 may store environmental conditions present during zeroing-in. For example, the ballistics solution application 130 may store multiple rifle 115 and projectile profiles, for different ammunition, zero ranges, etc. The ballistics solution application 130 may store user-entered data observed from previous engagements (DOPE) and other information that may be correlated with a particular rifle 115 and projectile profile combination. The ballistics solution application 130 may use some or all of user-entered information and/or data automatically received from peripheral sensors within the ballistic aiming system 300, as shown in FIG. 3, for example.


Rangefinder


The rangefinder 140 may be a laser rangefinder, such as the KILO2400 available from SIG SAUER of Newington, N.H., USA, or other rangefinder. The rangefinder 140 may include a built-in ballistics solution calculator for determining a ballistics solution θ based on the determined range to the target, the selected projectile, the selected rifle, and the environmental conditions. In other words, as described above and shown in FIG. 2, the rangefinder 140 may be paired directly to the digital reticle riflescope 110, and thus, may operate within the ballistic aiming system 200 without the need for the device 120 running the ballistics solution application 130. Specifically, the rangefinder 140 may determine the range to the target and then calculate a ballistics solution θ based on the determined range and other data input by the user or received via peripheral sensor devices.


Additionally or alternatively, as shown in FIG. 3, the rangefinder 140 may be paired with both the digital reticle riflescope 110 and the device 120 running the ballistics solution application 130. In this configuration of the ballistic aiming system 300, the rangefinder 140 may send real-time compensation data, from the rangefinder 140 itself or from connected peripherals, to the device 120 running the ballistics solution application 130. In this way, the user may view the real-time data streamed to the ballistics solution application 130 and updated on the screen. Thus, an additional or alternative weapon using a conventional riflescope may also benefit from the device 120 running the ballistics solution application 130, since that weapon's profile may be selected and its ballistics solution θ displayed for the determined range and environmental conditions. This may be most advantageous for groups of hunters with spotters and multiple weapon and projectile profiles.


Digital Reticle


As shown in FIG. 5, the digital reticle riflescope 110 may include an objective lens assembly 102, an ocular lens assembly 104, an erector lens assembly 106, elevation and windage adjustment turrets 112 and 114, a mechanical reticle 400, and a digital reticle 500.


The digital reticle riflescope 110 includes a mechanical reticle 400 within its field of view, such as is shown in FIG. 7. The mechanical reticle 400 may be provided within and/or on a reticle lens, plano-plano glass, and/or electro-formed wire reticle and include a horizontal crosshair 402 and a vertical crosshair 404 that intersect in the center of the field of view along the optical axis 240 of the digital reticle riflescope 110. For example, the horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400 may have a modified plex design, as shown in FIG. 7, with widths ranging from about 70 μm to about 120 The horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400 form a central aiming point intersection 406 at the optical axis 240. The shooter may use this central aiming point intersection 406 of the mechanical reticle 400 to zero-in the riflescope 110 relative to the rifle 115 through adjusting the elevation and windage turrets 112 and 114 until the optical axis 240 intersects the ballistic trajectory 220 at the zero range.


The digital reticle 500 may include a series of holdover indicators, such as individually addressable LEDs, that are selectively lit by a processor within the digital reticle riflescope 110. For example, the digital reticle 500 may include 25-200 individually addressable LEDs located along the horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400, as illustrated in FIG. 8. In some embodiments the holdover indicators appear only on either the horizontal crosshair 402 or vertical crosshair 404. In other embodiments the holdover indicators appear on both the horizontal and vertical crosshairs 402 and 404, and nowhere else on the digital reticle 500. The LEDs may be arranged within a clear substrate, shaped to cooperate with the mechanical reticle 400 and its containing structure, and connected to power and the processor through leads, as shown in FIG. 6. The leads may be grouped together in sets of 5-10, which may run horizontally, parallel with the horizontal crosshair 402, from the edge of the field of view to the corresponding groups of LEDs, connecting them for selective illumination by the digital reticle riflescope 110. For example, 72 LEDs may be grouped into 12 sets of 6, where each set has a grouping of 6 connector leads, each about 7 μm thick with about 10 μm spacing between, that run from the vertical crosshair 404 either to the left or to the right, so that the connector lead groupings form only 6 lines, each about 0.078 mm thick with about 0.7 mm spacing between, crossing the entire field of view, as shown in FIG. 6. These leads are not readily visible, but rather may have some level of transparency within the field of view of the digital reticle riflescope 110, although the LEDs themselves would be visible, were they not blocked by the wider horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400 behind them. Additionally or alternatively, the connector leads may run vertically, parallel to the vertical crosshair 404, although this may appear blurrier than the horizontally oriented leads.


The LEDs may be non-transmissive OLEDs arranged atop the mechanical horizontal and vertical crosshairs 402 and 404. The OLEDs may be around 40 for example, with about a 30 μm dot size. The dot pitch for the OLEDs may be 0.056 mm, for example, and may vary depending on the location along the horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400. The OLEDs may have a very thin cathode deposition layer with a transparency of under 5%, for example. Additionally or alternatively, the LEDs may be TOLEDs with 60% transmission. Advantageously, however, the LEDs need not be transparent nor transmissive due to their arrangement atop the horizontal and vertical crosshairs 402 and 404 of the mechanical reticle 400. This allows for cost savings and less expensive manufacture of the digital reticle 500. Embodiments of the invention may work with any appropriate indicator or lighting technology, and is not limited to any particular technology.


The LEDs may be arranged on or adjacent the containing structure of the mechanical reticle 400, which may be located in the first and/or second focal plane, for example, near the objective and/or ocular lens of the riflescope 110. To enable the user to view the LEDs when lit, the LEDs may be located on the side of the mechanical reticle 400 closer to the ocular lens and oriented to illuminate in the direction of the ocular lens along the optical axis, as shown in FIG. 5. If the mechanical reticle 400 is located in the first focal plane, the riflescope 110 may light LEDs corresponding to a ballistic solution θ and those same LEDs may remain lit throughout all magnification powers of the riflescope 110. Additionally or alternatively, the mechanical reticle 400 may be located in a different focal plane than some or all of the LEDs.



FIG. 8 shows the digital reticle 500 atop the mechanical reticle 400 in the field of view of the digital reticle riflescope 110. The digital reticle 500 includes a central LED 506 that is co-located with the central aiming point intersection 406 of the mechanical reticle 400 and the optical axis 240 of the digital reticle riflescope 110. Vertical or elevation adjustment LEDs 504 of the digital reticle 500 are located along the vertical crosshair 404 of the mechanical reticle 400 and may be lit to provide the corresponding vertical aiming adjustment of the ballistics solution θ to compensate for bullet drop. Horizontal or windage adjustment LEDs 502 of the digital reticle 500 are located along the horizontal crosshair 402 of the mechanical reticle 400 and may be lit to provide the corresponding horizontal aiming adjustment of the ballistics solution θ to compensate for crosswind, as described below. The digital reticle 500 may also include anti-cant indicators 508 along the side edges of the horizontal crosshair 402 that alert the user to rotate the rifle 115, independently of the ballistics solution θ. Such cant systems are described in U.S. patent application Ser. No. 15/220,254, entitled Optical System with Cant Indication and U.S. patent application Ser. No. 15/372,877, entitled Optical System Accessory with Cant Indication, both of which are incorporated by reference herein. FIG. 9 shows a more detailed view of the digital reticle 500 atop the mechanical reticle 400 in the central portion of the digital reticle riflescope's field of view from FIG. 8.


In operation of the digital reticle, the holdover indicator LEDs are lit to provide aiming adjustment points for the user. The particular holdover indicators that are energized may be selected by a processor 112 located on or in communication with the digital reticle riflescope 110 (FIG. 3). An aiming adjustment point indicates to the user how far along the horizontal and vertical directions to shift the central aiming point to superimpose or align over the desired point of impact on the target. The aiming adjustment points may be located along both the horizontal and vertical crosshairs.


The digital reticle riflescope 110 may receive a ballistics solution θ from the rangefinder 140 or the device 120 running the ballistics solution application 130. The ballistics solution θ may include an aiming adjustment in the form of MOA, mil, etc. for adjusting the holdover point vertically, to compensate for gravitational bullet drop, for example. The ballistics solution θ may also include an aiming adjustment in the form of MOA, mil, etc. for adjusting the holdover point horizontally, such as for wind correction. The processor 112 determines which holdover indicators are selected based at least in part on the ballistics solution θ. In other words, different ballistics solutions θ may cause the processor 112 to select different holdover indicators. The processor 112 may calculate and select which holdover indicator to energize based on the received ballistics solution. The processor 112 may determine that a particular solution falls between two discrete holdover indicators and perform a rounding function to select the closest one. As described below, the processor 112 may take into account a magnification setting of the digital reticle riflescope 110. The processor 112 may then cause the selected holdover indicator to changes state, such as by causing electric current to flow through one or more of the selected LEDs. Aiming with the proper holdover indicator allows the shooter to properly aim at a target without making adjustments to the windage or elevation turrets, saving time and increasing efficiency and accuracy.


As shown in FIG. 11, the digital reticle riflescope 110 has lit a series of LEDs θ100 . . . θ700 corresponding to the ballistics solution θ for a set of incremental ranges when no range to the target has been determined, such as in the ballistic aiming system 100 of FIG. 1 that does not include a rangefinder 140. The user may separately determine the range to target and use the lit LEDs corresponding to incremental ranges to adjust his aim. For example, the shooter may manually estimate the range as 300 yards. The shooter would then use the third illuminated aim point down as the holdover point, since it corresponds with the pre-calculated ballistic solution θ for the rifle and projectile set at 300 yards. As described above, the number of simultaneously lit holdover indicators may be user controlled. In FIG. 11, the user has selected, or the system defaulted, to energizing seven separate holdover indicators.


As shown in FIG. 12, the digital reticle riflescope 110 has lit an LED along the vertical crosshair 404 to indicate a vertical aiming adjustment point 512. Additionally in FIG. 12, the digital reticle riflescope 110 has lit an LED along the horizontal crosshair 402 to indicate a horizontal aiming adjustment point 514. The vertical and horizontal aiming adjustment points 512 and 514 may be used by the shooter to quickly find the corresponding virtual holdover point 516 in the field of view of the digital reticle riflescope 110 that represents the best ballistics solution θ based on the input data. For example, the shooter may hold the central crosshair intersection over the target, take note of where the windage point 514 falls with respect to the target, then place the elevation point 512 over the place where the windage point 514 fell with respect to the target, and fire.


The digital reticle riflescope 110 may selectively illuminate LEDs atop the mechanical reticle 400 based on the ballistics solution θ received and the magnification level of the digital reticle riflescope 110.


As shown in FIG. 10, when first powered on or when no ballistics solution θ has been sent to the digital reticle riflescope 110, a central lit LED 510, located at the optical axis 240, may help illuminate the central aiming point 406 in low light conditions. Additionally, if the ballistics solution θ does not include a significant horizontal or vertical aiming adjustment at the particular magnification level of the digital reticle riflescope 110, as shown in FIG. 14, the central lit LED 510 may indicate the best holdover aiming point for the ballistics solution θ.


The digital reticle 500 provides an advantage over Bullet Drop Compensator (BDC) reticles in that because the holdover points used in embodiments of the invention are dynamic, the user is not limited to only a few projectile types of similar caliber and bullet weight that match the subtension of the predefined holdover reticle markings. Rather, the digital reticle 500 may provide aiming adjustment points for any projectile types because the ballistic aiming system adapts which LEDs are illuminated based on the particular projectile profile selected or programmed. Additionally, the user need not make a custom reference chart for his rifle 115 and projectile profile, as is done with BDC reticles, because the digital reticle riflescope 110 will illuminate the exact aiming adjustment points to use for the selected profile. This feature of the digital reticle riflescope 110 enables it to be used across a variety of firearms, rather than the user having multiple riflescopes with differing BDC reticles matched to each firearm.


Magnification


In some embodiments, the digital reticle riflescope 110 may be a variable power riflescope with a second or rear focal plane reticle. The digital reticle riflescope 110 may further selectively illuminate LEDs based at least in part on the magnification power level of the riflescope 110. The magnification power level may be determined using an encoder, sensors, mechanical position indicators, etc. as the user increases or decreases the magnification power. In this way, even if the digital reticle 500 is in the second focal plane, it may dynamically display the ballistic solution θ as a function of the magnified target view over the mechanical reticle 400 that remains the same size throughout the magnification levels. In operation, the digital reticle riflescope 110 operates as described above, by receiving a ballistics solution θ and then calculating which holdover indicator should be illuminated. In embodiments of the invention that include magnification compensation, the processor 112 takes the present magnification setting into account when calculating which holdover indicator to illuminate. As described above, the magnification power level may be determined using an encoder or sensor, etc., and the determined power level is then communicated to the processor 112.


As shown in FIG. 14, the lit central LED 510 in the field of view of the digital reticle riflescope 110 indicates the best holdover aiming point for the ballistics solution θ at the lower magnification power level. When the user zooms in, however, as shown in FIG. 15, the lit LED indicates the vertical aiming adjustment point 512 as the best holdover aiming point for the same ballistics solution θ, but at a higher magnification power level. In this way, the digital reticle riflescope 110 advantageously allows the user to make finer adjustments to his rifle 115 according to the ballistics solution θ, using dynamic holdover aiming points for the same ballistics solution θ line of sight 250 at increasing magnification power levels. Additionally, FIG. 16 shows the same vertical aiming adjustment point 512 at the same magnification power level of FIG. 15, but with the LevelPlex system of the digital reticle riflescope 110 switched on to provide feedback to the user about rifle cant, independently of the ballistics solution θ.


Power Selector Ring


As shown in FIG. 13, the digital reticle riflescope 110 may include a power selector ring 150 for altering the magnification power level of the riflescope 110. The greater the magnification power level, the larger the image of the target within the field of view will appear.


The power selector ring 150 may include an encoder, a zoom sensor, or other method of determining the selected magnification power level for the riflescope 110 at any given time. The encoder may send a magnification signal to a processor within the riflescope 110. The magnification signal may include data about the selected and/or last magnification power level of the riflescope 110 and/or power selector ring 150. Based on the magnification signal, the processor may determine which LEDs to selectively illuminate on the digital reticle 500 to compensate for the new and/or changed magnification power level.


For example, as shown in FIG. 17, the digital reticle riflescope 110 has lit LEDs indicating a horizontal aiming adjustment point 514 on the horizontal crosshair 402 and a series of vertical aiming adjustment points, including θ700, on the vertical crosshair 404, corresponding to both the lower magnification power level and the ballistics solution θ for a set of ranges and determined crosswind. When the user turns the power selector ring 150 to increase the magnification power level, as shown in FIG. 18, the digital reticle riflescope 110 changes which LEDs are lit for the same ballistics solution θ in response. As shown in FIG. 18, the horizontal aiming adjustment point 514 is located further to the right along the horizontal crosshair 402 and the vertical aiming adjustment point θ700 is located further down on the vertical crosshair 404. Even though the holdover aiming point 516 of FIG. 18 has shifted down and to the right from the holdover aiming point 516 of FIG. 17, the corresponding line of sight 250 through the holdover aiming point 516 has not changed, since the ballistics solution θ (i.e., the relative rifle 115 orientation) is the same.


The power selector ring 150 may include an LED or other indicator 155 that is oriented to illuminate in the direction of the user, as shown in FIG. 13. The LED indicator 155 may illuminate when the digital reticle riflescope 110 is wirelessly paired with the rangefinder 140 and/or device 120 running the ballistics solution application 130 over Bluetooth or other communications means. Additionally, the LED indicator 155 may flash for various counts, set times, and/or frequencies to indicate different states to the user. Additionally or alternatively, the LED indicator 155 may change colors to indicate different states to the user. For example, the LED indicator 155 may flash at a slower frequency when the user is configuring the digital reticle riflescope 110 through the ballistics solution application 130 running on a paired device 120. As another non-limiting example, the LED indicator 155 may flash five times at a more rapid frequency and then remain constantly on for five seconds to indicate to the user that a target is being ranged using a paired rangefinder 140 and a new ballistics solution θ has been received by the digital reticle riflescope 110. The LED indicator 155 may have its brightness, color, and/or power controlled or set by the user through controls on the digital reticle riflescope 110 and/or configuration settings within the ballistics solution application 130. Additionally or alternatively, the LED indicator 155 may be located elsewhere on the digital reticle riflescope 110, such as on the diopter adjustment ring or within the field of view through the ocular lens, for example. In this way, the LED indicator 155 advantageously signals to the user that the digital reticle riflescope 110 is ready to be used with the latest ballistics solution θ without the user having to move out of shooting posture.


EXAMPLES

Illustrative example embodiments of the technologies disclosed herein are provided below. An embodiment of the technologies may include any one ore more, and any combination of, the example embodiments described below.


Example 1 includes a reticle for an aiming device, comprising a plurality of holdover indicators on the reticle that may be individually selected; an input for receiving ballistics data; and a processor configured to, based at least in part on the received ballistics data, select one or more of the holdover indicators, and cause the selected holdover indicator or indicators to visibly change state on the reticle.


Example 2 includes aspects of Example 1, in which the ballistics data is received from a rangefinder, in which the input is also structured to receive range data, and in which the processor is configured to select the one or more of the holdover indicators based at least in part of the received ballistics data and received range data.


Example 3 includes aspects of Example 1, in which the ballistics data is received from a device running a ballistics computer application.


Example 4 includes aspects of Examples 1-3, in which the input is structured to receive additional data from one or more of the group consisting of: a wind sensor, an inclinometer, a Global Positioning System, a thermometer, an altimeter, a barometer, and a motion sensor, and in which the processor is configured to select the one or more of the holdover indicators based at least in part of the received ballistics data and the additional data.


Example 5 includes aspects of Examples 1-4, further including a primary crosshair having a vertical portion and a horizontal portion, and in which the plurality of holdover indicators are disposed only on one the vertical portion or the horizontal portion of the primary crosshair.


Example 6 includes aspects of Examples 1-5, further including a primary crosshair having a vertical portion and a horizontal portion, and in which the plurality of holdover indicators are disposed only on both of the vertical portion and the horizontal portion of the primary crosshair.


Example 7 includes aspects of Examples 1-6, further comprising a cant indicator that provides an indication of a degree of rotation of the reticle.


Example 8 includes aspects of Examples 1-7, in which the plurality of holdover indicators includes Light Emitting Diodes (LEDs), and in which the processor is configured to illuminate the selected LEDs.


Example 9 includes aspects of Examples 1-8, in which the plurality of holdover indicators are not visible when not illuminated.


Example 10 includes aspects of Examples 1-9, in which the input additionally receives magnification data of a riflescope supporting the reticle, and in which the processor is configured to select one or more of the holdover indicators based at least in part on the magnification data.


Example 11 includes a method for operating a reticle for an aiming device, the reticle including a plurality of holdover indicators that may be individually selected, the method comprising receiving ballistics data from a ballistics computing device; selecting one or more of the holdover indicators based at least in part on the ballistics data; and causing the selected holdover indicator or indicators to visibly change state on the reticle.


Example 12 includes aspects of Example 11, further comprising receiving range data from a rangefinder; and selecting the one or more of the holdover indicators based at least in part on the ballistics data and on the range data.


Example 13 includes aspects of Examples 11-12, further comprising receiving additional data from one or more of the group consisting of: a wind sensor, an inclinometer, a Global Positioning System, a thermometer, an altimeter, a barometer, and a motion sensor, and selecting the one or more of the holdover indicators based at least in part on the ballistics data and on the additional data.


Example 14 includes aspects of Examples 11-13, further comprising providing an indication of a degree of rotation of the reticle


Example 15 includes aspects of Examples 11-14, in which causing the selected holdover indicator or indicators to visibly change state on the reticle comprises illuminating at least one LED.


Example 16 includes an aiming system for a projectile launching device, including a reticle including a plurality of holdover indicators; a rangefinder for providing range data; a ballistics calculator for providing ballistics data; a receiver for receiving the range data and the ballistics data; and a processor configured to, based at least in part on the received ballistics data, select one or more of the holdover indicators; and cause the selected holdover indicator or indicators to visibly change state on the reticle


Example 17 includes aspects of Example 16, further comprising one or more selected from the group of: a wind sensor, an inclinometer, a Global Positioning System, a thermometer, an altimeter, a barometer, and a motion sensor.


Example 18 includes aspects of Examples 16-17, in which the reticle is supported by a riflescope having selectable magnification, in which the receiver is structured to additionally receive magnification information, and in which the processor is configured to select one or more of the holdover indicators based at least in part on the magnification information.


The disclosed aspects may be implemented, in some cases, in hardware, firmware, software, or any combination thereof. The disclosed aspects may also be implemented as instructions carried by or stored on one or more or computer-readable storage media, which may be read and executed by one or more processors. Such instructions may be referred to as a computer program product. Computer-readable media, as discussed herein, means any media that can be accessed by a computing device. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media.


Although the reticle described herein was described with reference to a digital reticle riflescope 110, it is not strictly necessary that the reticle be mounted in or associated with a scope, and may instead be mounted in or associated with another type of aiming device.


All described embodiments and features of the disclosed invention may be combined with each other in any arbitrary manner, except where as described to be exclusive or known to those of skill in the art as technically unable to be combined. The above description is meant to be read broadly, and in a non-limiting manner, and the invention is limited only by the scope of the claims below.

Claims
  • 1. An aiming device, comprising: an electro-mechanical reticle including a primary crosshair having a vertical portion and a horizontal portion, the primary crosshair formed from a mechanical reticle that is visible when the electrically powered reticle is both powered off and powered on;a plurality of electrically powered holdover indicators on the reticle that may be individually selected to be in an energized and visible state, the plurality of holdover indicators disposed only on both of the vertical portion and the horizontal portion of the primary crosshair, and shaped and positioned to be fully contained within the mechanical reticle;an input for receiving ballistics data; anda processor configured to, based at least in part on the received ballistics data: select one or more of the holdover indicators; andcause the selected holdover indicator or indicators to visibly change state on the reticle by energizing the selected holdover indicator or indicators.
  • 2. The aiming device according to claim 1, in which the ballistics data is received from a rangefinder, in which the input is also structured to receive range data, and in which the processor is configured to select the one or more of the holdover indicators based at least in part of the received ballistics data and received range data.
  • 3. The aiming device according to claim 1, in which the ballistics data is received from a device running a ballistics computer application.
  • 4. The aiming device according to claim 1, in which the input is structured to receive additional data from one or more of the group consisting of: a wind sensor, an inclinometer, a Global Positioning System, a thermometer, an altimeter, a barometer, and a motion sensor, and in which the processor is configured to select the one or more of the holdover indicators based at least in part of the received ballistics data and the additional data.
  • 5. The aiming device according to claim 1, further comprising a cant indicator that provides an indication of a degree of rotation of the reticle.
  • 6. The aiming device according to claim 1, in which the plurality of holdover indicators includes Light Emitting Diodes (LEDs), and in which the processor is configured to illuminate the selected LEDs.
  • 7. The aiming device according to claim 6, in which the plurality of holdover indicators are not visible when not illuminated.
  • 8. The aiming device according to claim 1, in which the input additionally receives magnification data of a riflescope supporting the reticle, and in which the processor is configured to select one or more of the holdover indicators based at least in part on the magnification data.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a non-provisional of and claims benefit from U.S. Provisional Application No. 62/571,173, filed Oct. 11, 2017, titled “BALLISTIC AIMING SYSTEM WITH DIGITAL RETICLE,” the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (295)
Number Name Date Kind
1107163 Grauheding Aug 1914 A
1127230 Grauheding Feb 1915 A
1190121 Critchett Jul 1916 A
1708389 Karnes Apr 1929 A
1724093 Kauch et al. Aug 1929 A
1803939 Karnes May 1931 A
1989697 Knisley Feb 1935 A
2154454 Joyce Apr 1939 A
2162723 Karnes Jun 1939 A
2171571 Karnes Sep 1939 A
2250179 Brown Jul 1941 A
2253948 Brown Aug 1941 A
2355920 Marston Aug 1944 A
2363523 Greenblatt, Jr. et al. Nov 1944 A
2372613 Antonin Mar 1945 A
2404302 Land et al. Jul 1946 A
2420252 Land May 1947 A
2433843 Hammond et al. Jan 1948 A
2450712 Brown Oct 1948 A
2455963 Roed Dec 1948 A
2464195 Burley et al. Mar 1949 A
2504168 Rood Apr 1950 A
2534225 Brown Dec 1950 A
2538253 Emory et al. Jan 1951 A
2586807 Fowler Feb 1952 A
2596522 Bethke May 1952 A
2609606 Draper et al. Sep 1952 A
2690014 Draper et al. Sep 1954 A
2734273 Blindenbacher et al. Feb 1956 A
2737652 White et al. Mar 1956 A
2806287 Sullivan Sep 1957 A
2811894 Braker Nov 1957 A
2878466 Shank et al. Mar 1959 A
2949816 Weaver Aug 1960 A
2963788 Luboshez Dec 1960 A
2964991 Coeytaux et al. Dec 1960 A
3059338 Coeytaux Oct 1962 A
3097432 Shaw Jul 1963 A
3121134 Heinzel Feb 1964 A
3169726 Jackson Feb 1965 A
3190003 O'brien Jun 1965 A
3199197 Macleod et al. Aug 1965 A
3286352 Schray Nov 1966 A
3340614 Leatherwood Sep 1967 A
3381380 Thomas May 1968 A
3383987 Macmillan May 1968 A
3392450 Herter et al. Jul 1968 A
3431652 Leatherwood Mar 1969 A
3492733 Leatherwood Feb 1970 A
3682552 Hartman Aug 1972 A
3744133 Fukushima et al. Jul 1973 A
3782822 Spence Jan 1974 A
3948587 Rubbert Apr 1976 A
4205916 Vogl et al. Jun 1980 A
4263719 Murdoch Apr 1981 A
4285137 Jennie Aug 1981 A
4312262 Tye Jan 1982 A
4403421 Shepherd Sep 1983 A
4497548 Burris Feb 1985 A
4531052 Moore Jul 1985 A
4561204 Binion Dec 1985 A
4584776 Shepherd Apr 1986 A
4618221 Thomas Oct 1986 A
4671165 Heidmann et al. Jun 1987 A
4720804 Moore Jan 1988 A
4743765 Ekstrand May 1988 A
4777352 Moore Oct 1988 A
4777861 Lecuyer et al. Oct 1988 A
4787739 Gregory Nov 1988 A
4806007 Bindon Feb 1989 A
4912853 McDonnell et al. Apr 1990 A
4945646 Ekstrand Aug 1990 A
4965439 Moore Oct 1990 A
5026158 Golubic Jun 1991 A
5068969 Siebert Dec 1991 A
5181323 Cooper Jan 1993 A
5355224 Wallace Oct 1994 A
5375072 Cohen Dec 1994 A
5413029 Gent et al. May 1995 A
5456157 Lougheed et al. Oct 1995 A
5491546 Wascher et al. Feb 1996 A
RE35409 Moore Dec 1996 E
5783825 Wiese Jul 1998 A
5822713 Profeta Oct 1998 A
5901452 Clarkson May 1999 A
5920995 Sammut Jul 1999 A
5973315 Saldana et al. Oct 1999 A
6032374 Sammut Mar 2000 A
6111692 Sauter Aug 2000 A
6247259 Tsadka et al. Jun 2001 B1
6269581 Groh Aug 2001 B1
6357158 Smith, III Mar 2002 B1
6453595 Sammut Sep 2002 B1
6516551 Gaber Feb 2003 B2
6516699 Sammut et al. Feb 2003 B2
6591537 Smith Jul 2003 B2
6681512 Sammut Jan 2004 B2
6729062 Thomas et al. May 2004 B2
6802131 Scholz et al. Oct 2004 B1
6886287 Bell et al. May 2005 B1
7069684 Smith, III Jul 2006 B2
7171775 LaCorte Feb 2007 B1
7171776 Staley, III Feb 2007 B2
7185455 Zaderey Mar 2007 B2
7194838 Smith, III Mar 2007 B2
D542879 Zaderey May 2007 S
7222452 Smith, III May 2007 B2
7225578 Tai Jun 2007 B2
7237355 Smith, III Jul 2007 B2
7269920 Staley, III Sep 2007 B2
7292262 Towery et al. Nov 2007 B2
7296358 Murphy et al. Nov 2007 B1
7325353 Cole et al. Feb 2008 B2
7325354 Grauslys et al. Feb 2008 B2
7328531 Dietz Feb 2008 B2
7343707 Smith, III Mar 2008 B2
7350329 Bell et al. Apr 2008 B1
7386953 Ball Jun 2008 B2
7421816 Conescu Sep 2008 B2
7490430 Staley, III Feb 2009 B2
7516571 Scrogin et al. Apr 2009 B2
7530192 Grauslys et al. May 2009 B2
7584570 Smith Sep 2009 B2
7603804 Zaderey et al. Oct 2009 B2
7624528 Bell et al. Dec 2009 B1
7654029 Peters et al. Feb 2010 B2
7658031 Cross et al. Feb 2010 B2
7690145 Peters et al. Apr 2010 B2
7703679 Bennetts et al. Apr 2010 B1
7703719 Bell et al. Apr 2010 B1
7705975 Farris Apr 2010 B1
7738082 Peters Jun 2010 B1
7748155 Cole Jul 2010 B2
7764434 Håkansson et al. Jul 2010 B2
7793456 LaCorte Sep 2010 B1
7806331 Windauer et al. Oct 2010 B2
7832137 Sammut et al. Nov 2010 B2
7836626 Shepherd Nov 2010 B2
7856750 Sammut et al. Dec 2010 B2
7877886 Hamilton Feb 2011 B1
7905046 Smith, III Mar 2011 B2
7937878 Sammut et al. May 2011 B2
8001714 Davidson Aug 2011 B2
8006429 Windauer Aug 2011 B2
8033464 Windauer et al. Oct 2011 B2
8046951 Peters et al. Nov 2011 B2
8051597 D'Souza et al. Nov 2011 B1
8056281 Staley, III Nov 2011 B2
8074394 Lowrey Dec 2011 B2
8081298 Cross Dec 2011 B1
8091268 York Jan 2012 B2
8109029 Sammut et al. Feb 2012 B1
8172139 McDonald et al. May 2012 B1
8196828 Kelly Jun 2012 B2
8201741 Bennetts et al. Jun 2012 B2
8230635 Sammut et al. Jul 2012 B2
8281995 Bay Oct 2012 B2
8282493 Román et al. Oct 2012 B2
8286384 Zaderey et al. Oct 2012 B2
8314923 York et al. Nov 2012 B2
8317100 Windauer et al. Nov 2012 B2
8336776 Horvath et al. Dec 2012 B2
8353454 Sammut et al. Jan 2013 B2
8365455 Davidson Feb 2013 B2
8375620 Staley, III Feb 2013 B2
8408460 Schneider et al. Apr 2013 B2
8414298 D'Souza et al. Apr 2013 B2
8448372 Peters et al. May 2013 B2
8453368 Bockmon Jun 2013 B2
8468930 Bell Jun 2013 B1
8500563 Román et al. Aug 2013 B2
8516736 Windauer Aug 2013 B2
8584944 White et al. Nov 2013 B2
8608069 Bay Dec 2013 B1
8656630 Sammut Feb 2014 B2
8701330 Tubb Apr 2014 B2
8705173 Peters et al. Apr 2014 B2
8707608 Sammut et al. Apr 2014 B2
D709588 Silvers et al. Jul 2014 S
8807430 Millett Aug 2014 B2
8833655 McCarty et al. Sep 2014 B2
8881981 Millett Nov 2014 B2
8893423 Tubb Nov 2014 B2
8893971 Sammut et al. Nov 2014 B1
8905307 Sammut et al. Dec 2014 B2
8910412 Mikroulis Dec 2014 B2
8919647 Chen et al. Dec 2014 B2
8959823 Peters et al. Feb 2015 B2
8959824 Sammut et al. Feb 2015 B2
8966806 Sammut et al. Mar 2015 B2
8991702 Sammut et al. Mar 2015 B1
9004358 Bay Apr 2015 B2
9033232 Bockmon May 2015 B2
9038307 Silvers et al. May 2015 B2
9038901 Paterson et al. May 2015 B2
9057587 Roman et al. Jun 2015 B2
9068794 Sammut Jun 2015 B1
9068795 Roman et al. Jun 2015 B2
9074845 Wiklund Jul 2015 B2
9091507 Paterson et al. Jul 2015 B2
9110295 Lupher et al. Aug 2015 B2
9115956 Hakanson et al. Aug 2015 B2
9115958 Crispin Aug 2015 B2
9121672 Tubb Sep 2015 B2
9127907 Lupher et al. Sep 2015 B2
9127909 Ehrlich Sep 2015 B2
9127910 Volfson Sep 2015 B2
9127911 Varshneya et al. Sep 2015 B2
9140521 Millett Sep 2015 B2
9151574 Lowrey Oct 2015 B2
9157701 Varshneya et al. Oct 2015 B2
9175927 Tubb Nov 2015 B2
9194880 Kremer Nov 2015 B2
9212868 Roman et al. Dec 2015 B2
9239213 Chen et al. Jan 2016 B2
9250035 Sullivan et al. Feb 2016 B2
9250036 Farca et al. Feb 2016 B2
9250038 Sammut et al. Feb 2016 B2
9255771 Sammut et al. Feb 2016 B2
9292034 Windauer Mar 2016 B2
D753785 Silvers et al. Apr 2016 S
9310163 Bay Apr 2016 B2
9310165 Bell et al. Apr 2016 B2
9335120 Roman et al. May 2016 B2
9335123 Sammut May 2016 B2
9347742 Varshneya et al. May 2016 B2
9395155 Bockmon Jul 2016 B1
9429653 Volfson Aug 2016 B2
9429745 Brumfield Aug 2016 B2
9435610 Silvers et al. Sep 2016 B2
9459077 Sammut et al. Oct 2016 B2
9464871 Bay Oct 2016 B2
9466120 Maryfield et al. Oct 2016 B2
9482488 Moyle Nov 2016 B2
9482489 Peters et al. Nov 2016 B2
9482516 McCarthy et al. Nov 2016 B2
9500444 Sammut et al. Nov 2016 B2
9518804 Hamilton Dec 2016 B2
9557142 Tubb Jan 2017 B2
9568277 Crispin Feb 2017 B2
9568279 Maryfield et al. Feb 2017 B2
9574849 Hakanson et al. Feb 2017 B2
9574850 Sammut et al. Feb 2017 B2
9581415 Tubb Feb 2017 B2
9593907 Regan et al. Mar 2017 B2
9612086 Sammut et al. Apr 2017 B2
9651338 Theisinger May 2017 B2
9665120 Windauer May 2017 B2
9678099 Maryfield et al. Jun 2017 B2
9678208 Volfson Jun 2017 B2
9689643 Farca et al. Jun 2017 B2
20050241207 Staley, III Nov 2005 A1
20050257414 Zaderey et al. Nov 2005 A1
20070097351 York et al. May 2007 A1
20070137088 Peters Jun 2007 A1
20070144052 Smith, III Jun 2007 A1
20080098640 Sammut et al. May 2008 A1
20090183417 Smith, III Jul 2009 A1
20090199451 Zaderey et al. Aug 2009 A1
20090199453 Cross et al. Aug 2009 A1
20110021293 York Jan 2011 A1
20110271577 Davidson Nov 2011 A1
20110296733 York Dec 2011 A1
20120132709 Lowrey May 2012 A1
20120145785 Scrogin et al. Jun 2012 A1
20120217300 McDonald et al. Aug 2012 A1
20130014421 Sammut et al. Jan 2013 A1
20140000146 Davidson Jan 2014 A1
20140041277 Hamilton Feb 2014 A1
20140063261 Betensky et al. Mar 2014 A1
20140123534 Hodnett May 2014 A1
20140166750 Chen et al. Jun 2014 A1
20140166751 Sammut et al. Jun 2014 A1
20140231014 Davidson Aug 2014 A1
20140339307 Sammut et al. Nov 2014 A1
20150153139 Davidson Jun 2015 A1
20150276346 Hamilton et al. Oct 2015 A1
20150323780 Hamilton Nov 2015 A1
20160010950 Sammut et al. Jan 2016 A1
20160025455 Paterson et al. Jan 2016 A1
20160091282 Baker et al. Mar 2016 A1
20160109210 Lupher et al. Apr 2016 A1
20160138890 Hofmann et al. May 2016 A1
20160163080 Baker et al. Jun 2016 A1
20160169625 Richards Jun 2016 A1
20160202021 Roman et al. Jul 2016 A1
20160202960 Le et al. Jul 2016 A1
20160252325 Sammut et al. Sep 2016 A1
20160265880 Maryfield et al. Sep 2016 A1
20160327367 Porter et al. Nov 2016 A1
20160377379 Roman et al. Dec 2016 A1
20160377380 Sammut Dec 2016 A1
20170108376 Maryfield et al. Apr 2017 A1
20170343317 VanBecelaere Nov 2017 A1
20190072364 VanBecelaere Mar 2019 A1
Foreign Referenced Citations (82)
Number Date Country
2589391 Feb 2010 CA
2773537 Nov 2011 CA
2784280 Nov 2011 CA
2743103 Oct 2013 CA
2904485 Aug 2014 CA
2847309 Sep 2014 CA
2767420 Dec 2014 CA
2660897 Jun 2015 CA
2858582 Jun 2015 CA
726699 Oct 1942 DE
2000614 Jul 1971 DE
2736598 Feb 1978 DE
2652120 May 1978 DE
3219940 Dec 1983 DE
3622901 Jan 1988 DE
19846655 Apr 1999 DE
102004034267 Feb 2006 DE
202005017276 Mar 2006 DE
112007000314 Jan 2009 DE
102008053948 May 2009 DE
102013217240 Mar 2014 DE
102013012257 Jan 2015 DE
0359950 May 1994 EP
0605290 Jan 1997 EP
0844457 May 1998 EP
1007995 Jun 2000 EP
1057201 Dec 2000 EP
1436568 Jul 2004 EP
1443354 Aug 2004 EP
1690060 Aug 2006 EP
1725890 Nov 2006 EP
1748273 Jan 2007 EP
1801614 Jun 2007 EP
1804017 Jul 2007 EP
1943681 Jul 2008 EP
1969302 Sep 2008 EP
1723382 Nov 2008 EP
2008049 Dec 2008 EP
1723383 Sep 2009 EP
2148165 Jan 2010 EP
2276050 Jan 2011 EP
2276050 Jan 2011 EP
2339286 Jun 2011 EP
2402704 Jan 2012 EP
1516151 Jun 2012 EP
2475950 Jul 2012 EP
1817538 Mar 2013 EP
2659218 Nov 2013 EP
2513591 Feb 2014 EP
2694908 Feb 2014 EP
2739933 Jun 2014 EP
1646837 Aug 2014 EP
2778739 Sep 2014 EP
2781875 Sep 2014 EP
2802837 Nov 2014 EP
2452151 Mar 2015 EP
2943735 Nov 2015 EP
2956733 Dec 2015 EP
2676098 Feb 2016 EP
1038149 Apr 2016 EP
3036504 Jun 2016 EP
3084338 Oct 2016 EP
3102905 Dec 2016 EP
2811252 Jan 2017 EP
3111155 Jan 2017 EP
2536995 Oct 2017 EP
1388007 Feb 1965 FR
2699658 Jun 1994 FR
2700840 Apr 1996 FR
2094950 Sep 1982 GB
2420867 Feb 2008 GB
S5536823 Mar 1980 JP
I485630B May 2015 TW
2006060007 Jun 2006 WO
2015095614 Jun 2015 WO
2015156899 Oct 2015 WO
2016018478 Feb 2016 WO
2016018478 Mar 2016 WO
2016145122 Sep 2016 WO
2016145123 Sep 2016 WO
2016145124 Sep 2016 WO
2016145124 Nov 2016 WO
Related Publications (1)
Number Date Country
20190128643 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62571173 Oct 2017 US