This disclosure relates to systems, apparatus, and methods for protecting an enclosed space against ballistic objects and fire. More specifically, the disclosed embodiments relate to concrete and metal structures including modular panels configured to prevent penetration of an enclosure by projectiles and protect the interior of the enclosure against fire.
An electric power grid typically comprises one or more subsystems, each including one or more electric power generators (e.g., hydro-electric, nuclear, coal-burning, and/or the like), a network of relatively high-voltage transmission lines, a network of electric power transmission substations, and a network of relatively low-voltage transmission lines. Generally, the substations contribute substantially to the operation of the grid. In particular, the substations may be configured to permit electricity to be transmitted over significant distances. The substations also generally serve as hubs for intersecting power lines.
More specifically, the power generators (or power plants) may transmit generated electrical power over the high-voltage transmission lines to the substations. The substations typically include transformers configured to step-down the voltage of the received electrical power. This stepped-down electrical power is then transmitted to users (e.g., homes, commercial buildings, and/or other structures or devices configured to receive electrical power) via the low-voltage transmission lines. In some instances, substations receive electrical power from the low-voltage transmission lines. Transformers of the associated substations may step-up the voltage of this electrical power received from the low-voltage transmission lines, e.g., for output to the network of high-voltage transmission lines.
There is increasing concern that electric grids, such as the U.S. electrical grid including three such subsystems, are vulnerable to sabotage, such as acts of terrorism. For example, substations are typically located in remote, wide open areas, which are generally protected by only chain-link fences and security cameras. In one instance of electric grid sabotage, snipers waged a ballistic assault on a substation in San Jose, Calif. for 19 minutes early one morning in 2013. The snipers escaped, and the substation was rendered inoperable. Analysis has shown that simultaneous failure (e.g., partial or complete) of a relatively small number of substations (e.g., as a result of ballistic assault, such as that which occurred in San Jose), could destabilize the associated grid thereby resulting in a widespread blackout encompassing a significant portion of the area associated with the corresponding subsystem.
Accordingly, a need exists for improved grid security systems, apparatuses, and/or methods, particularly associated with substations.
In some embodiments, a modular concrete enclosure system may include a first column having a long axis, a first side, a second side opposite the first side, and a first groove in the first side of the first column, with the first groove parallel to the long axis. The system may further include a second column spaced from the first column by a distance, the second column having a long axis, a first side, a second side opposite the first side, and a second groove in the second side of the second column, with the second groove parallel to the long axis. The first side of the first column may face the second side of the second column. The system may include a first panel disposed between the first and second columns, with a first side edge of the first panel disposed in the first groove of the first column and a second side edge of the first panel disposed in the second groove of the second column. The system may include a second panel disposed between the first and second columns and abutting the first panel along a seam therebetween, with a first side edge of the second panel disposed in the first groove of the first column and a second side edge of the second panel disposed in the second groove of the second column. The second panel may include a projecting lip proximate a third edge of the second panel with the projecting lip generally covering the seam along at least a significant portion of the distance between the first and second columns.
In some embodiments, a fire-resistant, projectile-resistant, composite-material panel for use in a modular concrete enclosure may include a panel body having a front major face and a back major face opposite the front major face. The panel body may include concrete and a plurality of round objects embedded within the concrete and configured to hinder the advance of projectiles through the panel body, with each of the round objects having a dimension in a range of 0.25-1.0 inches. The panel may further include a resin layer disposed over the front major face, the resin layer configured to bind the front major face of the panel body when struck by projectiles, and a fire-resistant layer disposed over the back major face. The fire resistant layer may be configured to protect an interior space of the enclosure against fire exterior to the enclosure.
In some embodiments, a modular enclosure system may include at least two columns with each column oriented vertically and a plurality of panels, with each panel disposed between a pair of adjacent columns of the at least two columns. At least one of the panels may include a first vertical side member configured to be attached to a first column of the at least two columns, a second vertical side member configured to be attached to a second column of the at least two columns, and a plurality of slats oriented generally horizontally and spanning a distance between the first and second side members. Each of the plurality of slats may be (a) angled to deflect projectiles originating from outside the enclosure in a downward direction and (b) spaced from an adjacent slat of the plurality of slats to allow airflow into and out of the enclosure.
Features, functions, and advantages may be achieved independently in various embodiments of the present disclosure, or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
Various embodiments of a modular concrete enclosure system having panels configured to protect against ballistic objects and/or fire are described below and illustrated in the associated drawings. Unless otherwise specified, the modular concrete enclosure system and/or its various components may, but are not required to, contain at least one of the structure, components, functionality, and/or variations described, illustrated, and/or incorporated herein. Furthermore, the structures, components, functionalities, and/or variations described, illustrated, and/or incorporated herein in connection with the present teachings may, but are not required to, be included in other similar systems. The following description of various embodiments is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. Additionally, the advantages provided by the embodiments, as described below, are illustrative in nature and not all embodiments provide the same advantages or the same degree of advantages.
The following sections describe selected aspects of exemplary modular concrete enclosure systems as well as related modular panels. The examples in these sections are intended for illustration and should not be interpreted as limiting the entire scope of the present disclosure. Each section may include one or more distinct inventions, and/or contextual or related information, function, and/or structure.
This example describes how an illustrative embodiment of an enclosure can protect an electrical substation against a ballistic attack and against fire, see
System 10 may have a plurality of columns 14 and a plurality of panels 16 disposed between adjacent columns of the plurality of columns. The columns and panels may together form one or more walls. The one or more walls may form a barrier on one or more sides of an area or may define an enclosed area by circumsurrounding the enclosed area.
The one or more walls may all have the same dimensions, such as height and width, or may have different dimensions. The embodiment of system 10 shown in
The plurality of columns 14 may include a first column 30 and a second column 32 spaced from the first column by a distance 34. The first column may have a long axis 36 oriented in a generally vertical direction. The second column may have a long axis 38 oriented in a generally vertical direction and/or generally parallel to the long axis 36 of the first column.
The plurality of panels 16 may include a first panel 40 disposed between the first and second columns 30 and 32 and a second panel 42 disposed between the first and second columns and abutting first panel 38 along a seam therebetween. The second panel 42 may have a projecting lip 44 proximate a bottom edge of the second panel. The projecting lip may generally cover the seam between the first and second panels along at least a significant portion of distance 34 between the first and second columns. System 10 may include a top rail 46 connected to the first and second columns 30 and 32. The top rail 46 may be formed of one or more sections, with each section spanning two or more of the plurality of columns 14. The top rail may be opposite a coupling of the first and second columns to a foundation structure 48.
The embodiment of system 10 shown in
This example describes an illustrative modular concrete enclosure system, see
First column 102 may have a long axis 110, a first side 112, and a second side 114 opposite the first side. The first side of the first column may have a first vertical groove, slot, or recess 116 parallel to long axis 110. The first groove may be configured to receive vertical side edges of one or more panels, such as first panel 106 and/or second panel 108. In addition to the first groove 116 in the first side 112 of the first column 102, the first column may have a second groove 118 in the second side 114 of the first column.
Second column 104 may have a long axis 120, a first side 122, and a second side 124 opposite the first side. The second side of the second column may have a second vertical groove, slot, or recess 126 parallel to long axis 120. The second groove may be configured to receive vertical side edges of one or more panels, such as first panel 106 and/or second panel 108. In addition to the second groove 126 in the second side 124 of the second column 104, the second column may have a first groove 128 in the first side 122 of the second column. The first side 112 of the first column 102 may face the second side 124 of the second column 104. Second column 104 may be substantially identical to first column 104.
First panel 106 may be disposed between the first and second columns 102 and 104, with a first side edge 130 of the first panel disposed in the first groove 116 of the first column 102 and a second side edge 132 of the first panel disposed in the second groove 126 of the second column 104. The first panel 106 may be disposed between the first and second panels by placing the first side edge of the first panel in the first groove of the first column and placing the second side edge of the first panel in the second groove of the second column proximate top ends 134 of the first and second columns and then lowering the first panel into place as the side edges of the first panel slide along the grooves in the columns.
Second panel 108 may be disposed between the first and second columns 102 and 104 and may abut the first panel 106 along a seam 136 therebetween. A first side edge 138 of the second panel may be disposed in the first groove 116 of the first column and a second side edge 140 of the second panel may be disposed in the second groove 126 of the second column. The second panel may be lowered into place in a similar manner as first panel 106. The reception of the side edges of the panels within the grooves in the columns may properly align the panels to each and to the columns other during construction.
Second panel 108 may include a projecting lip 142 proximate a third edge 144 of the second panel. The third edge of the second panel may be a bottom edge of the second panel, though in other embodiments the third edge may be a top or side edge. The projecting lip may generally cover the seam 136 along at least a significant portion of a distance 146 between the first and second columns 102 and 104. First panel 106 may also include a projecting lip 148. The first and second panels 106 and 108 may be substantially identical.
System 100 may include one or more bottom panels 150 proximate a bottom edge 152 of the enclosure system. Bottom panels 150 may be largely identical to the first and second panels 106 and 108 with the possible exception that the bottom panels may not include a projecting lip proximate a lower edge 154. Bottom panels 150 may have side edges received within grooves in the sides of the columns, as with the first and second panels. In the case where the first panel 106 is also a bottom panel, the first panel 106 may not include a projecting lip.
System 100 may include a top rail 156 connected to the first and second columns 102 and 104. The top rail may be opposite a coupling of the first and second columns to a foundation structure 158. In the exemplary system shown in
Any or all of the components of system 100 may be constructed of concrete, including the first and second columns 102 and 104, the first and second panels 106 and 108, and the top rail 156. The concrete may be high strength concrete, for example, rated to 9,000-12,000 p.s.i. The concrete may be refractory or non-refractory. Any of all of these components may be constructed of concrete reinforced with rebar, either steel rebar, composite-material rebar, or non-conducting, composite-material rebar. Any or all of these components may be configured to resist the travel of ballistic objects. Any or all of these components may be configured to protect against fire and high temperatures associated with the presence of fire.
Each groove (e.g. 116, 118, 126, and 128) in a column (e.g. 102 and 104) may have a pair of opposing obtuse angles 166 for facilitating ease of engagement between the columns and the panels, see for example in the first groove 128 of the second column 104. In other embodiments, angles 166 may be substantially right angles.
The first and second columns 102 and 104 may include concrete 168 reinforced with composite-material rebar that is substantially electrically non-conductive, such as fiber-resin composite rebar. In some examples, modular concrete enclosure system 100 may be disposed to protect an electrical power substation and it may be advantageous to use non-conducting rebar as a reinforcing element. In some examples, standard steel rebar may be used. In some examples, steel rebar coated with a fiber-resin composite may be used. In the exemplary embodiment shown in
Lip 142 may be configured to substantially prevent transit of a projectile or other ballistic objects through seam 136. That is, in order for a projectile to reach seam 136 from outside the enclosure, the projectile would have to either travel through the bulk of the material of lip 142 or otherwise travel between lip 142 and the perimeter region 178 of the front outer surface 164 of the first panel and then take a 90 degree turn to travel through the seam. In some examples, lip 142 may substantially prevent transit of a 30 caliber bullet travelling at a supersonic speed through the seam. Lip 142 may include substantially the same materials as the remainder of the second panel 108.
The plurality of round objects 188 may be configured to hinder the advance of projectiles through panel body 180. Objects 188 may be rock or ceramic and may have a generally round shape or a more strictly spherical shape. The rounded objects 188 may turn projectiles, such as bullets, which have partially penetrated the panel body, thereby slowing or stopping the advance of the projectiles. The plurality of round objects may or may not have a uniform size. Each of the round objects may have a dimension in a range of 0.25 to 1.0 inches.
Second panel 108 may include an exterior-facing resin layer 190 disposed over the front major face 182 of the panel body. The resin layer may be configured to bind the front major face of the panel body when struck by projectiles. Suitable resin material, for example, may include components as described in U.S. Pat. No. 7,220,455 and U.S. Pat. No. 7,381,287, also as known in the industry under the trademark BATTLEJACKET®. Resin layer 190 may have a thickness in a range of 1/10 to ⅜ inches, preferably approximately ⅛ inches.
Second panel 108 may include an interior-facing fire-resistant layer 192 disposed over the back major face 184 of the panel body. The fire-resistant layer may be configured to protect an interior space of an enclosure against fire exterior to the enclosure. Fire-resistant layer may include an intumescent epoxy material, which may provide a range of fire protection from 15 minutes to more than 2 hours, depending on the thickness of the layer. Fire-resistant layer 192 may have a thickness in a range of 1/10 to ⅜ inches, preferably approximately 3/16 inches. In some embodiments, the resin layer 190 and the fire-resistant layer 192 may be disposed on the same side of the panel body.
Second panel 108 may include long fibers 194 configured to hinder the advance of projectiles through panel body 180. The long fibers may be distributed substantially uniformly though the panel body or may be distributed in discrete bundles of fibers. The fibers may have any appropriate orientation within the panel body, including vertical, horizontal, transvers to the front major face, or any combination of the three. The long fibers may be made of a non-conductive material such as fiberglass, e-glass, carbon fibers, etc. and/or the like.
Second panel 108 may be reinforced with composite-material rebar 196 that is substantially non-conductive. For example, rebar 196 may be a fiber-resin composite rebar product. In other examples steel rebar may be used. Rebar 196 may be employed in an appropriate grid pattern inside the second panel.
Enclosure system 100 may protect the enclosed area against ballistic objects such as bullets. System 100 may alternately or additionally protect the enclosed area against explosive blasts, including against shock waves caused by explosions and against shrapnel or other debris accelerated by the explosion.
In some examples, the panels (e.g. first and second panels 106 and 108) of enclosure system 100 may not include projecting lips (projecting lips 142 and 148) configured to cover the seam between two adjacent panels. In some examples, one of an adjacent pair of panels may have a channel on an edge which is configured to fit in a complementary fashion into a channel in a facing edge of the other of the adjacent pair of panels.
This example describes modular enclosure systems including one or more louver panels configured to deflect projectiles in a downward direction and allow airflow into and out of the enclosure, see
The first and second vertical side members 302 and 304 may include any components and structures that provide strength and support to the plurality of slats 306. In some examples, the first and second vertical side members may be rectangular steel panels or columns. Each of the first and second vertical side members may be configured to be attached to one or more vertical columns in an enclosure system and may, for example, include one or more apertures 310 through which bolts, anchors, or other attachment devices may extend in order to couple the side members to the respective columns.
The plurality of slats 306 may include any suitable structures and components to deflect projectiles. In some examples, each of the plurality of slats may be angled to deflect projectiles originating from outside the enclosure in a downward direction. It may sometimes be advantageous to vary the angles of the slots as a function of height location off the ground. Each of the plurality of slats may be spaced from ad adjacent slat of the plurality of slats to allow airflow into and out of the enclosure.
The plurality of slats 106 may be coupled to the first and second side members 302 and 304 at attachment points 312. Attachment points 312 may be made with screws, bolts with corresponding holes, welded structures, or any other suitable combinations structures and components that create tight junctions.
In the exemplary embodiment shown in
The plurality of slats 306 may be spaced from one another vertically to prevent horizontal, unimpeded transit of projectiles into the interior area 322. For example, consider two adjacent slats 306a and 306b, with slat 306a disposed above slat 306b. The lower edge 320a of slat 306a may be disposed substantially level with or above the upper edge 318b of slat 306b. So disposed, a horizontally travelling projectile that avoids contact with slat 306b may be unable to avoid contact with slat 306a.
A horizontally travelling projectile such as a bullet, shown schematically along trajectory 324, may ricochet or otherwise be deflected off of the concave surface 314 of a slat 306 in a downward direction into the area 322 inside the enclosure. A bullet travelling in an upward direction, shown schematically along trajectory 326, may be similarly deflected downward into area 322. Thus, assuming the projectile originates from the ground around the periphery of the enclosure, the projectile may be defeated and dispersed toward the ground.
Panel 300 may facilitate or allow the flow of air into and out of the enclosed area 322. Flow of air into the enclosure is indicated by dashed arrows at 328. Airflow 328 may provide cooling to, for example, an electrical power substation or other enclosed components indicated schematically at 330. Air may alternately or additionally flow from the interior 322 of the enclosure to the area 316 outside the enclosure.
The spacing between the plurality of slats 306 may provide an additional benefit in the event that an explosion occurs in the area 322 within the enclosure, for example, if the enclosed electrical power substation were to explode. In such a case, the blast may be directed upward and outward relative to the enclosed area 322, thereby dissipating the energy of the blast and absorbing any shrapnel accelerated by the explosion.
Columns 342 may be similar to columns 30, 32, 110, 120 described above in Examples 1 and 2. Columns 342 may be oriented vertically, may be made of reinforced concrete, may be disposed adjacent an electrical power substation 350, and may be configured to form at least a partial enclosure around the substation.
The one or more modular louver panels 346 may be similar to louver panel 300 described above. The louver panel(s) shown in
The one or more louver panels 346 may be coupled to the rest of system 340, for example, by tabs 352 proximate a top rail 354 of the enclosure system. The one or more louver panels may be disposed between a pair of adjacent columns of the at least two columns 342. The one or more louver panels may be coupled to the adjacent pair of columns by a set of fasteners 356 such as concrete anchors, concrete screws, bolts, etc. and/or the like.
The one or more modular concrete panels 348 may be similar to panels 16, 40, 42, 106, and/or 108 described above. That is, system 340 may include modular louver panels and modular concrete panels, each of which may provide a degree of protection against projectiles and fire.
Enclosure system 360 may include at least two columns 364 and a plurality of panels 366. As opposed to system 340 which includes one or more louver panels and one or more concrete panels, system 360 may include exclusively louver panels.
Columns 364 may be concrete columns similar to any of the columns described herein (e.g. columns 14, 30, 32, 102, 104, and 342). In some examples, columns 364 may be made of steel or any other appropriate material. Panels 366 may be similar to panels 300 and/or 342 described herein.
This section describes additional aspects and features of embodiments, presented without limitation as a series of paragraphs, some or all of which may be alphanumerically designated for clarity and efficiency. Each of these paragraphs can be combined with one or more other paragraphs, and/or with disclosure from elsewhere in this application in any suitable manner. Some of the paragraphs below expressly refer to and further limit other paragraphs, providing without limitation examples of some of the suitable combinations.
A1. A modular concrete enclosure system comprising:
a first column having a long axis, a first side, a second side opposite the first side, and a first groove in the first side of the first column, the first groove parallel to the long axis;
a second column spaced from the first column by a distance, the second column having a long axis, a first side, a second side opposite the first side, and a second groove in the second side of the second column, the second groove parallel to the long axis, and wherein the first side of the first column faces the second side of the second column;
a first panel disposed between the first and second columns, with a first side edge of the first panel disposed in the first groove of the first column and a second side edge of the first panel disposed in the second groove of the second column; and
a second panel disposed between the first and second columns and abutting the first panel along a seam therebetween, with a first side edge of the second panel disposed in the first groove of the first column and a second side edge of the second panel disposed in the second groove of the second column;
wherein the second panel includes a projecting lip proximate a third edge of the second panel and the projecting lip generally covers the seam along at least a significant portion of the distance between the first and second columns.
A2. The system of paragraph A1, wherein the first and second panels are stacked on top of one another so that a front outer surface of the first panel is generally co-planer with a front outer surface of the second panel, a back outer surface of the first panel is generally co-planar with a back outer surface of the second panel, and the projecting lip extends from the front outer surface of the second panel and overlaps a perimeter region of the front outer surface of the first panel proximate the seam.
A3. The system of paragraph A1, further comprising a top rail connected to the first and second columns opposite a coupling of the first and second columns to a foundation structure.
A4. The system of paragraph A1, wherein the first and second columns include concrete reinforced with composite-material rebar that is substantially electrically non-conductive.
A5. The system of paragraph A1, wherein the first and second columns and the first and second panels are disposed adjacent an electrical power substation and are configured to form at least a partial enclosure around the substation.
A6. The system of paragraph A1, wherein the lip is configured to substantially prevent transit of a projectile through the seam.
A7. The system of paragraph A6, wherein the projectile is a 30 caliber bullet traveling at a supersonic speed.
A8. The system of paragraph A1, wherein each of the first and second panels includes a panel body including concrete and a plurality of round objects embedded within the concrete and configured to hinder the advance of projectiles through the panel body, with each of the round objects having a dimension in a range of 0.25-1.0 inches.
A9. The system of paragraph A8, wherein the projecting lip includes substantially the same materials as the remainder of the second panel.
A10. The system of paragraph A8, wherein the panel body of each of the first and second panels has a front major face and a resin layer disposed over the front major face, the resin layer configured to bind the front major face of the panel body when struck by projectiles.
A11. The system of paragraph A8, wherein the panel body of each of the first and second panels has a back major face and a fire-resistant layer disposed over the back major face, the fire resistant layer configured to protect an interior space of the enclosure against fire exterior to the enclosure.
A12. The system of paragraph A8, wherein the panel body of each of the first and second panels includes long fibers configured to hinder the advance of projectiles through the panel body.
A13. The system of paragraph A8, wherein the panel body of each of the first and second panels is reinforced with composite-material rebar that is substantially electrically non-conductive.
B1. A fire-resistant, projectile-resistant, composite-material panel for use in a modular concrete enclosure, the panel comprising:
a panel body having a front major face and a back major face opposite the front major face, the panel body including concrete and a plurality of round objects embedded within the concrete and configured to hinder the advance of projectiles through the panel body, with each of the round objects having a dimension in a range of 0.25-1.0 inches;
a resin layer disposed over the front major face, the resin layer configured to bind the front major face of the panel body when struck by projectiles; and
a fire-resistant layer disposed over the back major face, the fire resistant layer configured to protect an interior space of the enclosure against fire exterior to the enclosure.
B2. The fire-resistant, projectile-resistant, composite-material panel of paragraph B1, wherein the concrete of the panel body is non-refractory, fire-resistant concrete.
B3. The fire-resistant, projectile-resistant, composite-material panel of paragraph B1, wherein the panel body includes long fibers configured to hinder the advance of projectiles through the panel body.
B4. The fire-resistant, projectile-resistant, composite-material panel of paragraph B1, wherein the panel body is reinforced with composite-material rebar that is substantially electrically non-conductive.
B5. The fire-resistant, projectile-resistant, composite-material panel of paragraph B1, wherein the panel has (a) a first side edge sized to fit into a first vertical groove in a side of a first vertical column and (b) a second side edge sized to fit into a second vertical groove in a side of a second vertical column spaced a distance from the first vertical column.
B6. The fire-resistant, projectile-resistant, composite-material panel of paragraph B5, wherein the panel further includes a lip projecting from the front outer surface proximate a bottom edge of the panel body and the projecting lip generally covers a seam between the panel and an adjacent panel along at least a significant portion of the distance between the first and second columns.
C1. A modular enclosure system comprising:
at least two columns with each column oriented vertically; and
a plurality of panels, with each panel disposed between a pair of adjacent columns of the at least two columns;
wherein at least one of the panels includes:
C2. The system of paragraph C1, wherein each of the plurality of slats includes a curved surface which is concave as viewed from outside the enclosure.
C3. The system of paragraph C2, wherein at least one panel of the plurality of panels includes (a) concrete, (b) a plurality of round objects embedded within the concrete and configured to hinder the advance of projectiles through the panel body, with each of the round objects having a dimension in a range of 0.25-1.0 inches, (c) an exterior-facing resin layer configured to bind the concrete of the panel when struck by projectiles, and (d) an interior-facing fire-resistant layer configured to protect an interior space of the enclosure against fire exterior to the enclosure.
C4. The system of paragraph C3, wherein the system includes a first concrete panel disposed between a pair of adjacent columns and a second concrete panel disposed between the pair of adjacent columns and abutting the first panel along a seam therebetween, with the second panel including a projecting lip proximate an edge of the second panel and the projecting lip generally covering the seam along at least a significant portion of a distance between the first and second columns
D1. A modular concrete enclosure system comprising:
a first column having a long axis, a first side, a second side opposite the first side, and a first groove in the first side of the first column, the first groove parallel to the long axis;
a second column spaced from the first column by a distance, the second column having a long axis, a first side, a second side opposite the first side, and a second groove in the second side of the second column, the second groove parallel to the long axis, and wherein the first side of the first column faces the second side of the second column;
a first panel disposed between the first and second columns, with a first side edge of the first panel disposed in the first groove of the first column and a second side edge of the first panel disposed in the second groove of the second column; and
a second panel disposed between the first and second columns and abutting the first panel along a seam therebetween, with a first side edge of the second panel disposed in the first groove of the first column and a second side edge of the second panel disposed in the second groove of the second column;
wherein each of the first and second panels includes:
D2. The system of paragraph D1, wherein the second panel includes a projecting lip proximate a third edge of the second panel and the projecting lip generally covers the seam along at least a significant portion of the distance between the first and second columns.
The different embodiments of the modular enclosure systems described herein provide several advantages over known solutions for protecting enclosures against ballistic attacks and fires. For example, the illustrative embodiments of modular enclosure systems described herein allow for rapid construction of an enclosure around an area. Additionally, and among other benefits, illustrative embodiments of the modular enclosure systems described herein allow for protection of an area against projectiles and fire. No known system or device can perform these functions. Thus, the illustrative embodiments described herein are particularly useful for protecting devices or other infrastructure against an attack. However, not all embodiments described herein provide the same advantages or the same degree of advantage.
The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. To the extent that section headings are used within this disclosure, such headings are for organizational purposes only, and do not constitute a characterization of any claimed invention. The subject matter of the invention(s) includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Invention(s) embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the invention(s) of the present disclosure.
This application claims priority from U.S. Provisional Patent Application Ser. No. 62/184,926 filed Jun. 26, 2015 and U.S. Provisional Patent Application Ser. No. 62/287,121 filed Jan. 26, 2016, each of which is hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62184926 | Jun 2015 | US | |
62287121 | Jan 2016 | US |