Ballistic microneedle infusion device

Information

  • Patent Grant
  • 8814831
  • Patent Number
    8,814,831
  • Date Filed
    Tuesday, November 22, 2011
    13 years ago
  • Date Issued
    Tuesday, August 26, 2014
    10 years ago
Abstract
An infusion set has a disposable inserter that can insert a needle at a controlled rate of speed to a depth to deliver insulin or other medicament to the upper 3 mm of skin surface, and a skin securing, adhesive layer to secure the skin surface at the insertion site such that the inserter that can insert a needle without a risk of tenting of the skin surface. Position of the inserted needle can be maintained by providing a separated inner and outer hub of the infusion set that can isolate the inserted needle from external forces such that the needle can be maintained at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface during normal use.
Description
FIELD OF THE INVENTION

The present invention relates generally to infusion sets, including a disposable inserter for an infusion set, which ensures proper positioning of insertion by using an adhesive to hold an infusion set in position, and a ballistic inserter releasably coupled with the infusion set to insert a needle at a controlled rate of speed to a desired intradermal depth.


BACKGROUND OF THE INVENTION

A large number of people, including those suffering from conditions such as diabetes use some form of infusion therapy, such as daily insulin infusions to maintain close control of their glucose levels. There are two principal modes of daily insulin therapy. The first mode includes syringes and insulin pens. These devices are simple to use and are relatively low in cost, but they require a needle stick at each injection, typically three to four times per day. The second mode includes infusion pump therapy, which entails the purchase of an insulin pump that lasts for about three years. The initial cost of the pump can be significant, but from a user perspective, the overwhelming majority of patients who have used pumps prefer to remain with pumps for the rest of their lives. This is because infusion pumps, although more complex than syringes and pens, offer the advantages of continuous infusion of insulin, precision dosing and programmable delivery schedules. This results in closer blood glucose control and an improved feeling of wellness.


The use of an infusion pump requires the use of a disposable component, typically referred to as an infusion set or pump set, which conveys the insulin from a reservoir within the pump into the skin of the user. An infusion set typically consists of a pump connector, a length of tubing, and a hub or base from which an infusion needle or cannula extends. The hub or base has an adhesive which retains the base on the skin surface during use, which may be applied to the skin manually or with the aid of a manual or automatic insertion device.


Currently, most insulin infusion sets deliver insulin to the sub-cutaneous layers of skin using either fixed metal needles or flexible plastic cannulas. Such infusion sets typically deliver insulin 4-10 mm below the skin surface. However, the upper 3 mm of skin surface, the intradermal space, facilitates better drug absorption. Unfortunately, due to the relative thinness of the intradermal layer, inserting a needle at such depth and maintaining an infusion site over an extended period of time within this narrow band is difficult.


Further, most insulin infusion sets typically do not provide any features to isolate the inserted needle from shock or other external forces. Since these infusion sets typically deliver insulin 4-10 mm below the skin surface, shock or other external forces to the set have less effect on the deeper inserted needle. However, where an attempt is made to target the upper 3 mm of skin surface, any shock or movement of the set can adversely affect needle insertion and infusion performance.


Still further, most insulin sets have inserters that can result in skin surface “tenting” during needle insertion, where the skin surface is deflected somewhat prior to or during needle insertion which makes precisely targeting the upper 3 mm of skin surface difficult.


Accordingly, a need exists for an infusion set that can deliver content to the upper 3 mm of skin surface, the intradermal space, to facilitate better drug absorption, while maintaining a degree of comfort to the user.


SUMMARY OF THE INVENTION

An object of the present invention is to provide an infusion set which can deliver insulin or other medicament to the upper 3 mm of skin surface, the intradermal space, to facilitate better drug absorption, while maintaining a degree of comfort to the user.


Another object of the present invention is to provide an infusion set having a disposable inserter that can insert a needle at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface.


Another object of the present invention is to provide an infusion set having a disposable inserter that can insert a needle at a controlled high rate of speed to substantially reduce tenting of the skin surface and insert a needle at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface.


Another object of the present invention is to provide an infusion set having a disposable inserter that can be removed, thereby leaving a low-profile infusion set at the infusion site.


Another object of the present invention is to provide an infusion set having a skin securing, adhesive layer to secure the skin surface at the insertion site such that the inserter that can insert a needle without a risk of tenting of the skin surface.


Another object of the present invention is to provide an infusion set that can isolate an inserted needle from external forces such that the needle can be maintained at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface during normal use.


These and other objects are substantially achieved by providing an infusion set having a disposable inserter that can insert a needle at a controlled high rate of speed to a depth to deliver insulin or other medicament to the upper 3 mm of skin surface, and a skin-securing adhesive layer to secure the skin surface at the insertion site such that the inserter that can insert a needle without a risk of tenting of the skin surface. The disposable inserter can be removed, thereby leaving a low-profile infusion set at the infusion site. The position of the inserted needle can be maintained by providing an inner and outer hub of the infusion set that can isolate the inserted needle from external forces such that the needle can be maintained at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface during normal use.





BRIEF DESCRIPTION OF THE DRAWINGS

The various objects, advantages and novel features of the exemplary embodiments of the present invention will be more readily appreciated from the following detailed description when read in conjunction with the appended drawings, in which:



FIG. 1 is a perspective view of an infusion set and a disposable ballistic inserter in an assembled position in accordance with an embodiment of the present invention;



FIG. 2 is a bottom perspective view of the infusion set and disposable ballistic inserter of FIG. 1 in accordance with an embodiment of the present invention;



FIG. 3A is a cross-sectional view of the infusion set and disposable ballistic inserter of FIG. 1 prior to activation, in accordance with an embodiment of the present invention;



FIG. 3B is a cross-sectional view of the infusion set and disposable ballistic inserter of FIG. 1 after activation, in accordance with an embodiment of the present invention;



FIG. 4 is a cross-sectional view of the infusion set after activation and removal of the disposable ballistic inserter but prior to attachment to the infusion pump tube attachment, in accordance with an embodiment of the present invention;



FIG. 5 is a cross-sectional view of the infusion set after activation and attachment to the infusion pump tube attachment, in accordance with an embodiment of the present invention;



FIG. 6 is a set of enlarged views of the table of the infusion set of FIG. 1, in accordance with an embodiment of the present invention;



FIG. 7 is a set of enlarged sectional views of the lower inserter housing of the disposable ballistic inserter and the infusion set, in accordance with an embodiment of the present invention; and



FIG. 8 is an enlarged view of the lower inserter housing of the disposable ballistic inserter being deflected away and released from the infusion set, in accordance with an embodiment of the present invention.





Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.


DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

The exemplary embodiments of the present invention deliver insulin or other medicament to the intradermal layers of the skin via a standard insulin pump or other similar device. By utilizing a disposable ballistic inserter, a skin securing adhesive, and an isolated inner hub, proper insertion and maintenance of the inserted needle in the intradermal space is ensured using a low profile set, while maintaining a degree of comfort to the user.


The exemplary embodiments of the present invention provide an exemplary infusion set having a disposable ballistic inserter that can insert a needle at a depth to deliver content to the upper 3 mm of skin surface. To do so, the exemplary embodiments comprise a disposable ballistic inserter that can insert a needle of an infusion set at a controlled high rate of speed to substantially reduce tenting of the skin surface and insert the needle at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface. The disposable ballistic inserter can be removed, thereby leaving a low-profile infusion set at the infusion site. The infusion set is also provided with at least one skin securing, adhesive layer to secure the infusion set to the skin surface at the insertion site, such that the ballistic inserter when activated by the user is at the correct position relative to the skin surface, and such that the skin is secured during insertion to further aid needle insertion without a risk of tenting of the skin surface. The infusion set is still further provided with an inner and outer hub that can isolate an inserted needle from external forces such that the needle can be maintained at a depth to deliver content to the upper 3 mm of skin surface during normal use.



FIGS. 1 and 2 are perspective views of an infusion set and a disposable ballistic inserter in an assembled configuration in accordance with an embodiment of the present invention, and FIG. 3A is a cross-sectional view of the infusion set and disposable ballistic inserter of FIG. 1 prior to activation. In a preferred embodiment, the infusion set and disposable ballistic inserter are received by the user in the assembled configuration, but embodiments of the present invention are not limited thereto.


As shown in FIGS. 1, 2 and 3A, the infusion set 100 is releasably secured to the disposable ballistic inserter 200 for placement of the infusion set and insertion of a needle or cannula into a skin surface. To do so, the infusion set 100 can comprise an outer hub 102, an inner hub 104 (i.e., needle hub), and a surrounding member 106. The inner hub 104 can comprise at least one needle 108. The needle 108 can preferably comprise a 34 gauge, single-bevel stainless steel needle/cannula, but embodiments are not limited thereto. In yet other embodiments of the present invention, the needle 108 can be plastic or other material, between 25 gauge and 36 gauge, and be provided with a tri-bevel or 5-bevel, and be between 1.0 and 10 mm long, but embodiments are not limited thereto. The needle 108 can be bonded to the inner hub 104 with an adhesive, such as a Loctite/UV cured adhesive, or can be over molded with, or threaded into the inner hub 104. The surrounding member 106 can comprise an outer skin adhesive 110, and the inner hub 104 can comprise an inner skin adhesive 112. In exemplary embodiments of the present invention described below, the hubs and other elements can be constructed of a molded plastic material, polycarbonate, thermoplastic polymer such as polyethylene terephthalate (PET and PETG), or similar materials.


As shown in greater detail in FIG. 4, the outer hub 102 of the infusion set 100 comprises a low-profile, substantially circular, dome shape with rounded edges and a number of features to releasably secure the ballistic inserter 200 and after removal thereof, releasably secure a tube set connection. To do so, the upper surface of the outer hub 102 comprises a septum/valve connection 114 for connection with a tube set connector after removal of the ballistic inserter 200. The connection 114 is connected to the inner hub 104 via at least one flexible tubing 116. In an exemplary embodiment of the present invention, the inner hub 104 is connected to the outer hub 102 solely through the flexible tubing 116 after removal of the ballistic inserter 200. Prior to insertion, the inner hub 104 is held within the outer hub 102 by a table 212 as described in greater detail below. After activation, the inner hub 104 is held in place by the inner skin adhesive 112, and is connected to the outer hub 102 through the flexible tubing 116.


As further shown in FIG. 4, the outer hub 102 has a diameter which can releasably fit within an opening of the ballistic inserter 200 as described in greater detail below. The upper surface of the outer hub 102 still further comprises one or more arcuate openings 118 positioned over the inner hub 104. In doing so, arms 220 of the table 212 of the ballistic inserter 200 can pass through the outer hub 102 and contact and secure the inner hub 104. Further, the arcuate form of the openings 118 allow rotation of the arms 220 of the table 212, and one or more gaps 120 in the openings 118 can permit the arms of the table 212 to be pulled free from the outer hub 102 of the infusion set 100 and discarded as described in greater detail below.


The outer hub 102 still further comprises a stepped rail 122 around an outer circumference for releasably securing the ballistic inserter 200 to the infusion set 100. The stepped rail 122 is provided as a guidance feature to align travel in the normal direction after impact. Further, the stepped rail 122 comprises chamfers that are configured to allow the lower inserter housing 204 to be rotated clockwise as described in greater detail below. Rotating the lower inserter housing 204 causes attachment arms of the lower inserter housing 204 to flex out, thereby allowing the ballistic inserter 200 to be removed from the infusion set 100.


Returning to FIGS. 1, 2 and 3A, the ballistic inserter 200 comprises a button 202 slidably coupled to a lower inserter housing 204. The button 202 is configured to slidably engage the lower inserter housing 204 as guided by one or more tracks 206 on an outer surface of the lower inserter housing 204. A ballistic hammer 208 is captured within the assembled button 202 and lower inserter housing 204, and is configured to be driven downward by a spring 210. The table 212 is positioned within the lower inserter housing 204 to extend through the outer hub 102 of the infusion set 100 as described above, and to contact and secure the inner hub 104. Prior to insertion, the inner hub 104 is held within the outer hub 102 by the table 212. To do so, the table 212 is releasably locked to the inner hub 104 via one or more arms 220 which protrude through openings 118 of the outer hub 102, and capture detents 222 on an upper surface of the inner hub 104. The arms 220 of the table 212 can be released from the detents 222 of the inner hub 104 by a twisting motion as described in greater detail below.


The button 202 captures the spring 210 between a closed upper button surface within member 218 and the hammer 208. In doing so, the spring 210 is configured to urge the hammer 208 downward upon loading and release of the hammer. However, prior to activation, the hammer 208 is held from downward movement by one or more aims 214 and inclined detents 216 thereon, held by an opening in the lower inserter housing 204.


Accordingly, downward movement of the button 202 serves to first compress the spring 210. At or near an end of downward travel of the button 202, member 218 of the button 202 contact the inclined detents 216 of the hammer 208, which releases the one or more arms 214 and inclined detents 216 from the opening in the lower inserter housing 204 and the hammer 208 is released and urged downward by the spring 210. The button 202 is then locked to the lower inserter housing 204 at this point via button snaps 203 capturing detents on the lower inserter housing 204 as shown in FIG. 3B.


Once released by the button 202, the hammer 208 is urged downward and strikes the table 212. The struck table 212 now moves downward and the arms 220 of the table 212 extending through the outer hub 102 moves the inner hub 104 and needle 108 downward such that the inner hub 104 is placed at the infusion site, secured via adhesive 112, and needle 108 is inserted. In doing so, the inner hub 104 and needle 108 are driven into the skin surface at a controlled high rate of speed, of 3.3 ft/sec. (1.0 m/sec.) up to and including those greater than 10 ft/sec. (3.0 m/sec.), which minimizes the risk of tenting at needle insertion. By using such a driving spring, a high-speed insertion is achieved which is considered more reliable for insertion of short (i.e., 1.5 mm) needle or cannula.


As noted above, precise insertion is achieved by first securing the infusion set 100 to the infusion site via the adhesive 110, which permits the user to activate the disposable ballistic inserter 200 at the proper alignment as described above, and insert the needle. In doing so, the needle is driven into the skin surface at a controlled high rate of speed to minimize the risk of tenting at needle insertion. Further, the adhesive 110 at or very near the insertion site secures the skin surface and further minimizes tenting of the skin surface during insertion.


After insertion, the user can then turn or twist the ballistic inserter 200 relative to the secured infusion set 100 for release. Specifically, the infusion set 100 is secured to the infusion site via the adhesive 110 and 112, which permits the user to turn the ballistic inserter 200 relative to the set 100 for release without affecting infusion set position, such that the rail 122 and openings 118 and 120 of the outer hub 102 allow the release and removal of the disposable ballistic inserter 200. Specifically, the arms 220 of the table member 212 of the ballistic inserter 200 pass through the outer hub 102 and contact and secure the inner hub 104. The table 212 is releasably locked to the inner hub 104 via arms 220 which protrude through openings 118 of the outer hub 102, and capture detents 222 on an upper surface of the inner hub 104. The arms 220 of the table 212 can be released from the detents 222 of the inner hub 104 by a twisting motion. The arcuate form of the openings 118 allow rotation of the arms 220 of the table 212, and gaps 120 in the openings 118 permit the arms 220 of the table 212 to be pulled free from the outer hub 102 of the infusion set 100. Further, rotating the lower inserter housing 204 causes attachment anus of the lower inserter housing 204 to flex out, thereby allowing the ballistic inserter 200 to be removed from the infusion set 100.


In an exemplary use of the embodiments of the present invention, proper insertion of the infusion set 100 into the delivery site consists of three straightforward steps. First, the infusion set 100 and ballistic inserter 200 are positioned and used to insert the needle 108 into the intradermal layers of the skin. To do so, an adhesive covering backing (not shown) if provided, can be peeled off one or both of the skin adhesive layers 110 and 112 of the infusion set 100, and the infusion set 100 is adhered to the skin surface in the area of the desired infusion site. The user then presses downward on the inserter button 202, loading the spring 208, releasing the hammer 208 to strike the table 212, which moves the inner hub 104, placing the inner hub 104 of the infusion set at the infusion site and inserting the needle 108 into the skin surface of the infusion site.


Second, the ballistic inserter 200 is removed from the infusion set 100 with a twisting motion and then discarded, leaving the low-profile infusion set 100 in place. As shown in FIG. 4, the infusion set 100 is then exposed to receive the tube set connection (not shown). Once in position, the inner hub 104 is fully enclosed by the outer hub 102, and is connected to the outer hub 102 solely through the flexible tubing 116 after removal of the ballistic inserter 200. Further, the inner hub is adhesively secured to the skin surface using the adhesive layer 112 that is separate from the adhesive layer 110 securing the outer hub 102 to the skin surface. Third, the user can then attach the tube set connection as shown in FIG. 5 to the valve connection 114 of the outer hub 102 using one or more of the features used to secure the ballistic inserter 200 to the infusion set 100. FIG. 5 is a cross-sectional view of the infusion set after activation and attachment to the infusion pump tube attachment, in accordance with an embodiment of the present invention.


As shown in FIG. 5, the infusion pump tube attachment 224 can comprise a substantially dome-shaped component to cover, enclose and secure with the outer hub 102. To do so, the exemplary attachment 224 comprises a dome-shaped component having an opening to receive the outer hub 102, and includes connector snaps 226 to attach the infusion pump tube attachment 224 to the stepped rail 122 of the outer hub 102 similar to the connection with the ballistic inserter 200. Release of the infusion pump tube attachment 224 can also be performed in a manner similar to the release of the ballistic inserter 200, wherein a turning motion of the attachment 224 deflects the connector snaps 226 from the stepped rail 122 of the outer hub 102 and releases the infusion pump tube attachment 224. Further, the infusion pump tube attachment 224 can be provided with a connector needle or cannula 230 for piercing the septum/valve connection 114 of the outer hub 102, and can be provided with the tube 228 for connection with an infusion pump (not shown).


The user can prime the pump tube attachment 224 prior to attachment to the infusion set 100, and then deliver insulin or other medicament to the infusion site via the attached infusion pump (not shown).


Inside the exemplary device, the inner hub 104 is entirely contained within the outer hub 102, and the ballistic inserter 200 can be connected to the inner hub 104 through openings in the outer hub 102. As noted above, the ballistic inserter 200 comprises the button 202, spring 210, hammer 208 and table 212. Accordingly, as the user presses downward on the inserter button 202, the spring 210 is loaded up against the hammer 208, which is snapped to the lower inserter housing 204. When the spring 210 is fully compressed, the same downward motion unlatches the hammer snaps of arms 214, and the button 202 is locked into the lower inserter housing 204.


The spring 210 is compressed until it gains a maximum potential energy. This energy is determined by calculating the torsional stresses built up in the spring as it is compressed. By calculating potential energy, and the kinetic energy at the point of needle insertion, an insertion velocity can be calculated. In an exemplary embodiment of the present invention, the spring 210 is configured to insert an exemplary needle at a controlled high rate of speed, of 3.3 ft/sec. (1.0 m/sec.) up to and including those greater than 10 ft/sec. (3.0 m/sec.). Depending upon cannula sharpness, a high terminal velocity produces more reliable results for intradermal insertions of short (i.e., 1.5 mm) needle or cannula.


When the hammer snaps of arms 214 are unlatched, the hammer 208 is propelled downward by the spring 210 toward the table 212. The table 212 is releasably locked to the inner hub 104 via one or more arms 220 which protrude through the outer hub 102. When the hammer 208 collides with the table 212, the inner hub 104 moves downward, adheres to the skin surface, and pierces the skin surface with the needle 108.


Prior to insertion, the table 212 prevents rotation of the ballistic inserter 200 with respect to the outer hub 102. FIG. 6 is a set of enlarged views of the table of the infusion set of FIG. 1, in accordance with an embodiment of the present invention. As shown in FIG. 6(a), the table 212 comprises on or more arms 220 having a number of features thereon. For example, the arms 220 comprise a vertical face member 221 to prevent rotation relative to the outer hub 102 before insertion as shown in FIG. 6(c). The members 221 are caught by openings 225 in the outer hub 102. After insertion, members 221 are below openings 225 in the outer hub 102, such that the table 212 is free to rotate relative to the outer hub 102 as shown in FIG. 6(d). The anus 220 further comprise one or more undercuts 223 which are configured to capture the detents 222 on the upper surface of the inner hub 104. The arms 220 of the table 212 can be released from the detents 222 of the inner hub 104 after insertion, by the same twisting motion that releases the lower inserter housing 204 from the set as described above.


After the needle 108 is inserted, and the table 212 and inner hub 104 are in a down position, the user can turn the ballistic inserter 200 (e.g., clockwise), and the table 212 rotationally slides away from the inner hub 104 which is locked to the skin surface via the adhesive layer 112. This turning motion also flexes the lower inserter housing 204 snaps 205 outward, away from the outer hub 102. As described above and shown in FIGS. 7(a), 7(b) and 7(c), and in FIG. 8, the outer hub 102 comprises the stepped rail 122 with chamfers around an outer circumference for releasably securing the ballistic inserter 200 to the infusion set 100, and for later releasably securing the infusion pump tube attachment 224 with the outer hub 102. To do so, the lower inserter housing 204 comprises attachment arms with snaps 205 for securing the lower inserter housing 204 to the rail 122 of the outer hub 102. The lower inserter housing 204 further comprises elements 207 which are configured to engage the chamfers 227 of the rail 122. In doing so, the stepped rail 122 is configured to allow the lower inserter housing 204 to be rotated (e.g., clockwise) which causes the attachment arms of snaps 205 of the lower inserter housing 204 to flex out as urged by contact with the chamfers 227 of the rail 122, thereby allowing the inserter 200 to be removed from the set 100. The user can now pull off the ballistic inserter 200 for disposal.


Accordingly, a simple rotational and vertical motion can be used to release the ballistic inserter 200. Potentially, a rotational unlocking motion can cause an infusion set to peel off the skin surface if the user twists the entire assembly at an angle. Disconnecting the ballistic inserter 200 from the outer hub 102 after the down stroke of the button 202 minimizes this risk, and is more ergonomic and reliable.


To ensure shock isolation of the inner hub 104, the inner hub 104 is fully enclosed by the outer hub 102, and is connected to the outer hub 102 solely through the flexible tubing 116 after removal of the ballistic inserter 200. Further, the inner hub is adhesively secured to the skin surface using the adhesive layer 112 that is separate from the adhesive layer 110 securing the outer hub 102 to the skin surface. The inner hub 104 has a separate adhesive, and is connected to the outer hub 102 via only the flexible tube 116, such that the inner hub 104 is protected from external vibrations and forces. In the exemplary embodiment shown, the flexible tubing 116 at least partially loops upward (on the vertical) between the inner hub 104 and the outer hub 102, which permits a smaller footprint device profile. As noted above, the inner hub 104 is connected to the outer hub 102 solely through the flexible tubing 116. Prior to insertion, the inner hub 104 is held within the outer hub 102 by the table 212. After activation and release and removal of the table 212, the inner hub 104 is held in place by the inner skin adhesive 112 beneath the inner hub 104, and is connected to the outer hub 102 through the flexible tubing 116. The tube set connection 224 can then be snapped over the same features which held the ballistic inserter 200, and rotated to allow for comfortable pump tube routing.


In the disclosed arrangement, the needle 108 is protected from external forces and vibrations by the outer hub 102, and the isolation of the inner hub 104. By carefully isolating the inner hub 104 and the needle 108 from external forces, the needle position within the intradermal layer is maintained.


Further, the arrangement of the assembled set 100 and ballistic inserter 200 ensure proper alignment and positioning. Most existing inserters are either oversized, to ensure an insertion force perpendicular to the skin surface, or are thin and portable, which can lead to misaligned insertion. In the exemplary embodiments of the present invention, by first adhering or “locking” the outer skin adhesive 110 of the infusion set 100 to the skin surface, the ballistic inserter 200 is aligned properly for needle insertion. Accordingly, the exemplary embodiments of the present invention can include a relatively small inserter which is properly aligned with the infusion site at a time of use.


Such a system and method further allows the use of a small intradermal needle, or microneedle, which can be placed perpendicular to the skin surface, and which is isolated from outside forces, thereby maintaining position and causing less pain to the user during use. Still further, by infusing into the intradermal layer of the skin, the exemplary embodiments of the present invention offer the potential for better absorption of insulin when compared to subcutaneous delivery systems. In doing so, it may be possible for the typical user to both consume less insulin and maintain a better medicament regime. It will be appreciated that multiple needles or microneedles can be used, if desired, in place of a single needle or microneedle.


As noted above, intradermal infusion sets are at risk of tenting, which is the undesired effect where skin is deflected at or during insertion, creating a shape associated with a tent. In doing so, the skin surface tents during needle insertion rather than needle penetration into the skin. However, since the present invention provides a needle which is inserted at a controlled high rate of speed, of 3.3 ft/sec. (1.0 m/sec.) up to and including those greater than 10 ft/sec., and wherein the skin surface is secured at and/or near the insertion site, the exemplary embodiments of the present invention do not present such a risk and ensure more precise needle insertion depth.


In existing steel cannula infusion sets which deliver insulin to the subcutaneous layer, the needle is not isolated from any undesired outside forces which may cause pain when translated to the needle and the needle moves within the skin. Also, other intradermal devices face problems of premature or otherwise undesired needle removal when the device is bumped if the needle is not isolated form the outside forces.


In the exemplary embodiments of the present invention, the intradermal needle is isolated from outside forces by at least three features. First, the outer hub 102 shields the sensitive inner hub 104 from direct contact with external forces. Second, the inner hub 104 and outer hub 102 are secured to the infusion site via separate adhesive segments. Third, the connection between the outer hub 102 and the inner hub 104 is extremely flexible, so that any forces imparted on the protective outer hub 102 do not carry over to the needle 108. For example, the provision of the flexible tubing connection 116, along with the outer hub 102, serves to effectively isolate the needle 108 from the outside forces and other interference.


Proper inserter alignment is accomplished by providing a solid, fixed foundation for the user to press the inserter button. Such a solid, fixed foundation is provided by the surrounding member 106, outer skin adhesive 110, and the inner skin adhesive 112 The skin adhesive layers secure the set 100 at a desired orientation, such that the attached ballistic inserter 200 is also at a desired orientation of use, and the user is substantially prevented from holding the inserter at angles to the insertion site. Accordingly, precise, repeatable insertions are accomplished via the pre-adhesion of the outer hub 102. By fixing a ring of skin around the actual insertion site, movement of the skin surface relative to the inner hub are reduced.


Existing infusion sets sometimes require the use of a separate inserter. In the exemplary embodiments of the present invention described herein, the user does not have to carry a separate inserter or load the infusion set onto an inserter. The integrated system allows the user more freedom from carrying and loading a separate inserter resulting in improved convenience and simpler operation.


Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the appended claims and their equivalents.

Claims
  • 1. An infusion system, comprising: an infusion set, comprising an inner hub and an outer hub wherein at least one of said inner hub and said outer hub is releasably secured by an inserter; andan inserter comprising an inserter button and a spring, wherein said inserter button is configured to release said spring to move toward said infusion set and thereafter begin to drive said infusion set for placement at an infusion site,wherein said inserter comprises a hammer, disposed at an end of said spring and configured for release by movement of said inserter button, and a table, rotationally secured to said inner hub and configured to be struck by said hammer.
  • 2. An infusion system as recited in claim 1, further comprising: a first adhesive layer disposed on a surface of said inner hub; anda second adhesive layer disposed on a surface of said outer hub, wherein said first adhesive layer is separate from said second adhesive layer.
  • 3. An infusion system as recited in claim 1, further comprising a flexible tube coupled between said inner hub and said outer hub and providing a fluid communication path therebetween.
  • 4. An infusion system as recited in claim 1, wherein said table is configured to releasably secure said inner hub in a retracted position within said outer hub.
  • 5. An infusion system as recited in claim 1, wherein: said table comprises a first detent; andsaid inner hub comprises second detent, wherein said first detent is configured to rotationally engage with said second detent to releasably secure said table with said inner hub.
  • 6. An infusion system as recited in claim 1, wherein said inserter further comprises a lower inserter housing, slidably coupled with said inserter button, and rigidly coupled with said outer hub.
  • 7. An infusion system as recited in claim 6, wherein: said outer hub comprises a third detent; andsaid lower inserter housing comprises a fourth detent, wherein said third detent is configured to rotationally engage with said fourth detent to releasably secure said inserter with said outer hub.
  • 8. An infusion system as recited in claim 1, wherein said spring is configured to place said infusion set at a controlled rate of speed, preferably greater than 3.3 ft/sec. (1.0 m/sec.).
  • 9. An infusion system to insert and maintain a needle at a depth to deliver medicament to the upper 3 mm of a skin surface, comprising: an inner hub, configured to be adhesively secured to a skin surface;an outer hub, configured to be adhesively secured to a skin surface, and wherein said outer hub is configured to enclose said inner hub; anda flexible tube, for flexibly coupling said inner hub with said outer hub and providing a fluid communication path therebetween,wherein said outer hub is connected to said inner hub solely through said flexible tube, and wherein said inner hub is adhesively secured to said skin surface using a first adhesive layer that is separate from a second adhesive layer securing said outer hub to said skin surface.
  • 10. An inserter, comprising: an inserter button, and a lower inserter housing slidably coupled with said inserter button and configured to be rigidly coupled with an outer hub of an infusion set;a hammer releasably secured within said lower inserter housing;a spring, captured between said inserter button and said hammer;a table, configured to rotationally secure an inner hub of said infusion set and configured to be struck by said hammer, wherein said inserter button is configured to release said hammer to strike said table and drive said infusion set for placement at an infusion site.
  • 11. An inserter as recited in claim 10, wherein said table is configured to releasably secure said inner hub in a retracted position within said outer hub.
  • 12. An inserter as recited in claim 10, wherein: said table comprises a first detent; andsaid inner hub comprises second detent, wherein said first detent is configured to rotationally engage with said second detent to releasably secure said table with said inner hub.
  • 13. An inserter as recited in claim 12, wherein: said outer hub comprises a third detent; andsaid lower inserter housing comprises a fourth detent, wherein said third detent is configured to rotationally engage with said fourth detent to releasably secure said inserter with said outer hub.
  • 14. An inserter as recited in claim 10, wherein said spring is configured to place said infusion set at a controlled rate of speed, preferably greater than 3.3 ft/sec. (1.0 m/sec.).
  • 15. A method targeting a desired depth to deliver content to an upper skin surface, comprising the steps of: placing an infusion device upon an infusion site and pressing an inserter button of said infusion device to release a hammer and spring to strike a table of said infusion device;striking said table of said infusion device, said table releasably coupled with an infusion set of said infusion device, to move a needle of said infusion set of said infusion device into said infusion site a controlled rate of speed; andremoving said inserter button, hammer and spring, and table, from said infusion set.
  • 16. A method targeting a desired depth to deliver content to an upper skin surface, comprising the steps of: placing an outer hub of an infusion device upon an infusion site and pressing an inserter button of said infusion device to move a needle of an inner hub of said infusion device into said infusion site, wherein said needle is driven into said infusion site at a controlled rate of speed; andremoving said inserter button from said infusion device, wherein said inner hub is fully enclosed by said outer hub, and is connected to said outer hub solely through a flexible tubing after removal of said inserter button from said infusion device.
  • 17. An infusion set inserter, comprising: an inserter housing comprising an inner member and an outer member, at least a portion of said outer member being displaceable relative to said inner member to activate the inserter,said inner member releasably secured to an infusion set and being configured to prevent, prior to activation, displacement in an insertion direction of said infusion set receivable by said housing;a ballistic hammer movably disposed within the inserter housing; anda spring, captured between and contacting said outer member and said ballistic hammer;wherein said outer member is configured to activate the device by releasing said spring and said ballistic hammer to strike said inner member which thereafter begins to drive said infusion set in said insertion direction for placement at an infusion site.
  • 18. The inserter as recited in claim 17, wherein said infusion set comprises a patient cannula and an adhesive for adhering said infusion set to a patient's skin.
  • 19. The inserter as recited in claim 18, wherein said inner member supports said infusion set in an initial position spaced apart from a patient's skin prior to activation.
  • 20. The inserter as recited in claim 17, wherein said ballistic hammer selectively moves between a pre-activated position, in which the ballistic hammer does not contact the infusion set, and an activated position.
  • 21. The inserter as recited in claim 20, wherein said spring biases the ballistic hammer toward the activated position prior to activation.
  • 22. The inserter as recited in claim 20, wherein during at least part of the travel of said infusion set from an initial position to a position in which said patient cannula is inserted in the patient's skin, the ballistic hammer does not contact said infusion set.
  • 23. The inserter as recited in claim 17, wherein said outer member comprises an activation button.
  • 24. The inserter as recited in claim 17, wherein said infusion set comprises an intradermal infusion set.
  • 25. A method of inserting a cannula of an infusion set into a patient's skin, the method comprising: placing an inserter housing carrying an infusion set over an intended infusion site, said housing comprising an inner member and an outer member with said inner member releasably secured to said infusion set for preventing displacement in an insertion direction of said infusion set prior to activation; anddisplacing at least a portion of said outer member relative to said inner member to activate the inserter, said activation comprising: releasing a spring captured between and contacting said outer member and a ballistic hammer movably disposed within said inserter housing; anddriving said ballistic hammer with the force of said spring toward said inner member which thereafter begins to drive said infusion set in said insertion direction for placement at the intended infusion site.
  • 26. The method as recited in claim 25, wherein said infusion set comprises an intradermal infusion set.
  • 27. An insertion device assembly, comprising: an infusion set; andan inserter comprising: an inserter housing comprising an inner member and an outer member, at least a portion of said outer member being displaceable relative to the inner member, the inserter housing supporting said infusion set in an initial position spaced apart from a patient's skin prior to activation, said infusion set including a patient cannula and an adhesive for adhering said infusion set to a patient's skin;a ballistic hammer slidably disposed within the inserter housing to move between a pre-activated position and an activated position; anda spring disposed within the inserter housing and biasing the ballistic hammer toward the activated position prior to activation;wherein displacement of the at least portion of the outer member activates the inserter, causing the ballistic hammer to move between the pre-activated position and the activated position under the force of the spring toward said infusion set and thereafter begin to impart momentum to said infusion set; andwherein during at least part of the travel of said infusion set from the initial position to a position in which said patient cannula is inserted in the patient's skin, the ballistic hammer does not contact said infusion set.
  • 28. The insertion device assembly as recited in claim 27, wherein said biasing element is disposed between and contacts said outer member and said ballistic hammer.
  • 29. The insertion device assembly as recited in claim 27, wherein said infusion set comprises an intradermal infusion set.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of a U.S. provisional patent application of Cole Constantineau et al. entitled “Ballistic Microneedle Infusion Device”, Ser. No. 61/344,970, filed on Nov. 30, 2010, the entire content of said application being incorporated herein by reference.

US Referenced Citations (265)
Number Name Date Kind
3857382 Williams, Jr. et al. Dec 1974 A
3918355 Weber Nov 1975 A
3963380 Thomas, Jr. et al. Jun 1976 A
4204538 Cannon May 1980 A
4490141 Lacko et al. Dec 1984 A
4685902 Edwards et al. Aug 1987 A
4723947 Konopka Feb 1988 A
4734092 Millerd Mar 1988 A
4755173 Konopka et al. Jul 1988 A
5176662 Bartholomew et al. Jan 1993 A
5226899 Lee et al. Jul 1993 A
5242406 Gross et al. Sep 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5453099 Lee et al. Sep 1995 A
5522803 Teissen-Simony Jun 1996 A
5536249 Castellano et al. Jul 1996 A
5545143 Fischell Aug 1996 A
5545152 Funderburk et al. Aug 1996 A
5593390 Castellano et al. Jan 1997 A
5728074 Castellano et al. Mar 1998 A
5800420 Gross et al. Sep 1998 A
5820602 Kovelman et al. Oct 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5858005 Kriesel Jan 1999 A
5925021 Castellano et al. Jul 1999 A
5957895 Sage et al. Sep 1999 A
5968011 Larsen et al. Oct 1999 A
5980506 Mathiasen Nov 1999 A
6017328 Fischell et al. Jan 2000 A
6056718 Funderburk et al. May 2000 A
6068615 Brown et al. May 2000 A
6074369 Sage et al. Jun 2000 A
6086575 Mejslov Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6110148 Brown et al. Aug 2000 A
6123690 Mejslov Sep 2000 A
6132400 Waldenburg Oct 2000 A
6175752 Say et al. Jan 2001 B1
6206134 Stark et al. Mar 2001 B1
6254586 Mann et al. Jul 2001 B1
6272364 Kurnik Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6277627 Hellinga Aug 2001 B1
6293925 Safabash et al. Sep 2001 B1
6302866 Marggi Oct 2001 B1
6352523 Brown et al. Mar 2002 B1
6355021 Nielsen et al. Mar 2002 B1
6391005 Lum et al. May 2002 B1
6485461 Mason et al. Nov 2002 B1
6520938 Funderburk et al. Feb 2003 B1
6521446 Hellinga Feb 2003 B2
6544212 Galley et al. Apr 2003 B2
6546269 Kurnik Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6558351 Steil et al. May 2003 B1
6565509 Say et al. May 2003 B1
6576430 Hsieh et al. Jun 2003 B1
6579267 Lynch et al. Jun 2003 B2
6589229 Connelly et al. Jul 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6669669 Flaherty et al. Dec 2003 B2
6692457 Flaherty Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6706159 Moerman et al. Mar 2004 B2
6723072 Mahoney et al. Apr 2004 B2
6740059 Flaherty May 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6830562 Mogensen et al. Dec 2004 B2
6840922 Nielsen et al. Jan 2005 B2
6852104 Blomquist Feb 2005 B2
6890319 Crocker May 2005 B1
6949084 Marggi et al. Sep 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6977180 Hellinga et al. Dec 2005 B2
6997907 Safabash et al. Feb 2006 B2
7004928 Aceti et al. Feb 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7029455 Flaherty Apr 2006 B2
7052251 Nason et al. May 2006 B2
7056302 Douglas Jun 2006 B2
7064103 Pitner et al. Jun 2006 B2
7070580 Nielsen Jul 2006 B2
7083597 Lynch et al. Aug 2006 B2
7109878 Mann et al. Sep 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7137964 Flaherty Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7207974 Safabash et al. Apr 2007 B2
7214207 Lynch et al. May 2007 B2
7226278 Nason et al. Jun 2007 B2
7303543 Maule et al. Dec 2007 B1
7303549 Flaherty et al. Dec 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7407493 Cane′ Aug 2008 B2
7496392 Alarcon et al. Feb 2009 B2
7585287 Bresina et al. Sep 2009 B2
7699807 Faust et al. Apr 2010 B2
7713258 Adams et al. May 2010 B2
7722595 Pettis et al. May 2010 B2
7731691 Cote et al. Jun 2010 B2
7736338 Kavazov et al. Jun 2010 B2
7879010 Hunn et al. Feb 2011 B2
7896844 Thalmann et al. Mar 2011 B2
8152769 Douglas et al. Apr 2012 B2
8152771 Mogensen et al. Apr 2012 B2
8162892 Mogensen et al. Apr 2012 B2
8172803 Morrissey et al. May 2012 B2
8172805 Mogensen et al. May 2012 B2
8221359 Kristensen et al. Jul 2012 B2
8262618 Scheurer Sep 2012 B2
8277415 Mounce et al. Oct 2012 B2
8285328 Caffey et al. Oct 2012 B2
8287467 List et al. Oct 2012 B2
8287516 Kornerup et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310415 Mclaughlin et al. Nov 2012 B2
8313468 Geipel et al. Nov 2012 B2
20020040208 Flaherty et al. Apr 2002 A1
20030055380 Flaherty Mar 2003 A1
20030109829 Mogensen et al. Jun 2003 A1
20030176852 Lynch et al. Sep 2003 A1
20030199823 Bobroff et al. Oct 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040059316 Smedegaard Mar 2004 A1
20040078028 Flaherty et al. Apr 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040092878 Flaherty May 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040127844 Flaherty Jul 2004 A1
20040153032 Garribotto et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040162521 Bengtsson Aug 2004 A1
20040204673 Flaherty Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040220551 Flaherty et al. Nov 2004 A1
20040235446 Flaherty et al. Nov 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050021005 Flaherty et al. Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050043687 Mogensen et al. Feb 2005 A1
20050065760 Murtfeldt et al. Mar 2005 A1
20050090784 Nielsen et al. Apr 2005 A1
20050101912 Faust et al. May 2005 A1
20050101932 Cote et al. May 2005 A1
20050101933 Marrs et al. May 2005 A1
20050113761 Faust et al. May 2005 A1
20050124936 Mogensen et al. Jun 2005 A1
20050171512 Flaherty Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050215982 Malave et al. Sep 2005 A1
20050222645 Malave et al. Oct 2005 A1
20050238507 DiIanni et al. Oct 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050273076 Beasley et al. Dec 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060001551 Kraft et al. Jan 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060074381 Malave et al. Apr 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060129090 Moberg et al. Jun 2006 A1
20060135913 Ethelfeld Jun 2006 A1
20060142698 Ethelfeld Jun 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060200073 Radmer et al. Sep 2006 A1
20060217663 Douglas Sep 2006 A1
20060263839 Ward et al. Nov 2006 A1
20060264835 Nielsen et al. Nov 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20070016149 Hunn et al. Jan 2007 A1
20070021733 Hansen et al. Jan 2007 A1
20070027427 Trautman et al. Feb 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070073229 Gorman et al. Mar 2007 A1
20070073559 Stangel Mar 2007 A1
20070088244 Miller et al. Apr 2007 A1
20070088271 Richards Apr 2007 A1
20070093754 Mogensen et al. Apr 2007 A1
20070118405 Campbell et al. May 2007 A1
20070149925 Edwards et al. Jun 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20080004515 Jennewine Jan 2008 A1
20080021395 Yodfat et al. Jan 2008 A1
20080051697 Mounce et al. Feb 2008 A1
20080051698 Mounce et al. Feb 2008 A1
20080051709 Mounce et al. Feb 2008 A1
20080051710 Moberg et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051716 Stutz Feb 2008 A1
20080051718 Kavazov et al. Feb 2008 A1
20080051727 Moberg et al. Feb 2008 A1
20080051730 Bikovsky Feb 2008 A1
20080051738 Griffin Feb 2008 A1
20080051765 Mounce Feb 2008 A1
20080097321 Mounce et al. Apr 2008 A1
20080097326 Moberg et al. Apr 2008 A1
20080097327 Bente et al. Apr 2008 A1
20080097328 Moberg et al. Apr 2008 A1
20080097375 Bikovsky Apr 2008 A1
20080097381 Moberg et al. Apr 2008 A1
20080103483 Johnson et al. May 2008 A1
20080116647 Anderson et al. May 2008 A1
20080119707 Stafford May 2008 A1
20080132842 Flaherty Jun 2008 A1
20080147041 Kristensen Jun 2008 A1
20080160492 Campbell et al. Jul 2008 A1
20080194924 Valk et al. Aug 2008 A1
20080215006 Thorkild Sep 2008 A1
20080261255 Tolosa et al. Oct 2008 A1
20080264261 Kavazov et al. Oct 2008 A1
20080269680 Ibranyan et al. Oct 2008 A1
20080269713 Kavazov Oct 2008 A1
20080281297 Pesach et al. Nov 2008 A1
20080294028 Brown Nov 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080312608 Christoffersen et al. Dec 2008 A1
20080319414 Yodfat et al. Dec 2008 A1
20090005724 Regittnig et al. Jan 2009 A1
20090005728 Weinert et al. Jan 2009 A1
20090012472 Ahm et al. Jan 2009 A1
20090062767 Van Antwerp et al. Mar 2009 A1
20090076453 Mejlhede et al. Mar 2009 A1
20090124979 Raymond et al. May 2009 A1
20090198191 Chong et al. Aug 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090204077 Hasted et al. Aug 2009 A1
20090221971 Mejlhede et al. Sep 2009 A1
20090240240 Hines et al. Sep 2009 A1
20090254041 Krag et al. Oct 2009 A1
20090281497 Kamen et al. Nov 2009 A1
20090326457 O'Connor Dec 2009 A1
20100049129 Yokoi et al. Feb 2010 A1
20100160902 Aeschilimann et al. Jun 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100222743 Frederickson et al. Sep 2010 A1
20100286714 Gyrn et al. Nov 2010 A1
20100291588 Mcdevitt et al. Nov 2010 A1
20100298830 Browne et al. Nov 2010 A1
20120253282 Nagel et al. Oct 2012 A1
20120259185 Yodfat et al. Oct 2012 A1
20120265034 Wisniewski et al. Oct 2012 A1
20120277554 Schurman et al. Nov 2012 A1
20120277667 Yodat et al. Nov 2012 A1
20120277724 Larsen et al. Nov 2012 A1
20120283540 Brüggemann Nov 2012 A1
20120291778 Nagel et al. Nov 2012 A1
20120293328 Blomquist Nov 2012 A1
20120296269 Blomquist Nov 2012 A1
20120296310 Blomquist Nov 2012 A1
20120296311 Brauker et al. Nov 2012 A1
Foreign Referenced Citations (8)
Number Date Country
0 980 687 Feb 2000 EP
1 743 667 Jan 2007 EP
WO 99-34212 Jul 1999 WO
WO 2007-051139 May 2007 WO
WO 2008051920 May 2008 WO
WO 2009-021039 Feb 2009 WO
WO 2009-021052 Feb 2009 WO
WO 2010085338 Jul 2010 WO
Related Publications (1)
Number Date Country
20120143136 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
61344970 Nov 2010 US