This disclosure relates to systems, methods, and devices that allow the ballistics of a projectile to cut a chain composed of multiple interconnected metal links.
There are situations in which one might be carrying a firearm and need to cut a metal chain. For example, the military or police might need to enter a facility that has been secured with a chain and lock. In these cases, it is advantageous if one can cut the chain without needing to bring along bolt cutters. Bolt cutters can be heavy and bulky, especially if a long lever arm is needed to cut a chain having links with a large cross sectional area.
A projectile, such as a bullet exiting the barrel of a firearm, has both kinetic energy (½ the mass multiplied by the square of velocity) and momentum (mass multiplied by velocity). This kinetic energy and/or momentum could be used to melt and deform a link in a metal chain. To cut the largest possible chain with the smallest possible projectile, both the location of impact on a link in the chain and the angle of incidence at this location must be controlled accurately and consistently. This is especially the case if the chain has links with a larger cross-sectional area than the cross-sectional area of the projectile being used to cut the chain. The system and method used to ballistically cut the chain should also be as small and light as possible, as well as being adaptable to attachment to as many different types of devices as possible. The system and method should interfere as little as possible with normal usage of the device, such as a firearm, prior to or after the use of the device to cut the chain.
In one embodiment, this disclosure presents a system and method for cutting a metal chain using a chain holder that is attachable to a firearm. The chain holder ensures that the stadium-shaped (or oval-shaped) target link of the metal chain is held in a specific location and orientation relative to the path of a bullet exiting the barrel of the firearm. The impact of the bullet can melt or soften a portion of the target link. The momentum of the bullet can cause the target link to open up, allowing the rest of the chain to fall away from the link that has been opened. The entire system or method can be used to cut a chain with a single bullet, even when the target link has a cross-sectional area larger than the cross-sectional area of the bullet. For example, an oval-shaped link made from 0.375 inch round cross section steel can be cut using a 0.223-inch diameter bullet from an AR15 rifle.
The present disclosure is described in conjunction with the appended figures in which:
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood that the invention is not necessarily limited to the particular embodiments illustrated herein.
The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment. It should be understood that various changes could be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, shapes and geometries may be shown generically and details may be left out in order not to obscure the embodiments in unnecessary detail.
Embodiments of the present invention are based on using the kinetic energy and/or the momentum of a projectile to sever and open a space in a target link of a metal chain. The kinetic energy of a projectile is given as ½ mv2 where m is the mass and v is the velocity. The momentum of the projectile is given as mymv (mass times velocity). Both kinetic energy and momentum can be useful in severing and opening the space in the target link of a chain if the projectile can be accurately aimed at the right part of the target link. In an inelastic collision, some or all of the energy of a projectile is converted to heat, which can be used to soften, melt, or vaporize the material in a portion of the target link. The momentum can be used to open the softened part of the target link. Embodiments of the present invention can use kinetic energy and/or momentum from a projectile to open a gap in a target link of a chain so that the chain can be taken apart. Embodiments of the present invention can align and/or hold the target link in the chain accurately and securely enough to allow the kinetic energy and/or momentum of a projectile to do the job.
The firearm 101 of
Using the dimensions above, the density of steel (8 grams per cubic centimeter), and the energy required to melt steel (about 30 Joules/gram), one can determine if a bullet has the kinetic energy to melt enough steel in the link to cut the chain. Extensive testing showed that about 10% of the ballistic energy from an optimally aimed bullet is available for melting the steel. The remaining energy melts the bullet and is lost in other ways. Thus, one needs about 10× the calculated energy. Below is a summary of the ballistic energy needed to cut typical chains assuming that a volume of the chain equivalent to the cross sectional area of the link multiplied by the thickness of the link must be melted to create a gap in the target link.
Using the above information and the ballistic energy that was calculated for various gages and types of bullets, the following table shows which firearms can cut what sizes of chains if the bullet is accurately aimed at an optimal location on a target link of the chain. Note that it is desirable to cut the chain even when the energy available has been labeled as “Marginal”, by ensuring that the bullets are aimed accurately and consistently at the optimal location and in the optimal orientation to the target link.
Having described the physics involved in ballistic heating and deformation of the link of a chain, the next step is to identify the optimal location and direction of impact for a bullet onto a stadium-shaped link of a chain. First it should be noted that the bullet should be fired in a direction that is coplanar with the central stadium plane of the target link so that the bullet hits the target link at the center of the circular cross-section of the stadium-shaped ring. Having defined one of the dimensions,
With reference to the previous figures that show the chain holder 102, another benefit of the chain holder design should be pointed out. The firearm can be used as a normal firearm with the chain holder 102 attached at all times. The chain holder provides no obstruction to any projectiles that might be fired.
A number of variations and modifications of the disclosed embodiments can also be used. The principles described here can also be used for in applications other than chain cutting. While the principles of the disclosure have been described above in connection with specific apparatuses and methods, it is to be clearly understood that this description is made only by way of example and not as limitation on the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
655577 | Pell et al. | Aug 1900 | A |
1181223 | Holm | May 1916 | A |
1211779 | Steinmetz | Jan 1917 | A |
2446994 | Barker | Aug 1948 | A |
3879878 | Musgrave | Apr 1975 | A |
3950877 | Musgrave | Apr 1976 | A |
3950878 | Musgrave | Apr 1976 | A |
4115944 | Musgrave | Sep 1978 | A |
5883328 | A'Costa | Mar 1999 | A |
6318228 | Thompson | Nov 2001 | B1 |
7854085 | Hodgkins | Dec 2010 | B1 |
8418592 | Gonstad et al. | Apr 2013 | B1 |
D682972 | Kasanjian-King | May 2013 | S |
8490534 | Moore | Jul 2013 | B1 |
8893421 | Degidio | Nov 2014 | B2 |
Entry |
---|
Silvertip_3. “.308 vs 7.62 Nato—ar15.com.” .308 vs 7.62 Nato—ar15.com. Mar. 9, 2012. Accessed Jun. 18, 2018. https://www.ar15.com/forums/ar-15/_308_vs_7_62_nato/121-566526/. |
Maleante. “The Definitive Answer to Can I Shoot .223 in My 5.56?—ar15.com.” The Definitive Answer to Can I Shoot .223 in My 5.56?—ar15.com. Apr. 13, 2012. Accessed Jun. 18, 2018. https://www.ar15.com/forums/ar-15/The_definitive_answer_to_can_I_shoot 223_in_my_5_56_/118-570475/. |
Silvertip_3. “.308 vs 7.62 Nato—ar15.com.” .308 vs 7.62 Nato—ar15.com. Mar. 9, 2012. Accessed Oct. 16, 2015. http://www.ar15.com/forums/t_3_121/566526_308_vs_7_62_nato.html. |
Maleante. “The Definitive Answer to Can I Shoot .223 in My 5.56?—ar15.com.” The Definitive Answer to Can I Shoot .223 in My 5.56?—ar15.com. Apr. 13, 2012. Accessed Oct. 16, 2015. http://www.ar15.com/forums/t_3_118/570475_The_definitive_answer_to_can_1_shoot_223_in_my_5_56_html. |
Number | Date | Country | |
---|---|---|---|
Parent | 14545705 | Jun 2015 | US |
Child | 16013458 | US |