1. Field of the Invention
The invention relates generally to the field of oil and gas production. More specifically, the present invention relates to a ballistic system including an impedance barrier. Yet more specifically, the present invention relates to a perforating gun system whose shaped charges are held in a medium, and where a gap is formed within the medium between each adjacent shaped charge.
2. Description of Related Art
Perforating systems are used for the purpose, among others, of making hydraulic communication passages, called perforations, in wellbores drilled through earth formations so that predetermined zones of the earth formations can be hydraulically connected to the wellbore. Perforations are needed because wellbores are typically completed by coaxially inserting a pipe or casing into the wellbore, and the casing is retained in the wellbore by pumping cement into the annular space between the wellbore and the casing. The cemented casing is provided in the wellbore for the specific purpose of hydraulically isolating from each other the various earth formations penetrated by the wellbore.
Perforating systems 40 typically comprise one or more perforating guns 42 strung together, these strings of guns 42 can sometimes surpass a thousand feet of perforating length. Included with the perforating guns are shaped charges 44 that typically include a housing, a liner, an initiator, and a quantity of high explosive inserted between the liner and the housing. A detonating cord 46 attached to each shaped charge sequentially actuates the initiator within each shaped charge. The perforating systems are generally lowered into a wellbore on wireline or tubing 48 where the initiation of the perforating gun detonation is transmitted through the wireline or tubing 48. Firing heads 50 are typically included on the perforating guns for receiving the transmitted detonation signal from the surface 52 and in turn igniting the detonation cord 46.
When the high explosive within the shaped charge 44 is detonated, the force of the detonation collapses the liner and ejects it from one end of the charge at very high velocity in a pattern called a “jet” 54. The jet penetrates the casing, the cement and a quantity of the formation 56 thereby forming a conduit 58 by which the hydrocarbons entrained within the formation may be drained into the wellbore for production at the wellbore surface.
In addition to the perforating jet formed by detonation of the shaped charges, the charges also produce shock waves that emanate into the formation and along the perforating gun 42. These shock waves can be transmitted onto other shaped charges prior to or during their detonation and interfere with the trajectory of the perforating jet 54. This jet interference can in turn create curved perforations and reduce the overall depth of the perforations 58. Curved and shorter perforations present an undesired condition since this can reduce the production capability of hydrocarbon bearing formations. Therefore, there exists a need for an apparatus and method capable of impeding the shock and/or vibration transmitted between shaped charges.
The present invention involves a shaped charge assembly comprising, a shaped charge holder, bores formed on the shaped charge holder, and an impedance barrier disposed between each bore formed in the shaped charge holder. The shaped charge holder may be a perforating gun tube, a perforating gun body, and a shaped charge carrier. The impedance barrier can be comprised of a void formed in the shaped charge holder. Moreover, an impedance material can be disposed in the void where the impedance material might consist of wood, cork, rubber, cotton, plastic, polymeric materials, wool, foam, other shock absorbing materials, and combinations thereof. The void may comprise a groove formed along the outer surface of the shaped charge holder. The impedance barrier may optionally comprise a series of rings axially disposed along the length of the shaped charge holder. The impedance barrier might instead be comprised of a spiral pattern interconnected with axial grooves or alternatively might comprise a spiral pattern formed on the shaped charge holder. Shaped charges can also be disposed within the bores of the shaped charge assembly.
Also included with the shaped charge assembly can be a firing head, a detonating cord, and an actuating member. The actuating member could be a wireline conveyance member or a tubing conveyed member.
An alternative embodiment of a shaped charge assembly is included with this invention. The alternative embodiment comprises a shaped charge holder, bores formed on the shaped charge holder, shaped charges disposed in each bore, and an impedance barrier formed between each bore formed in the shaped charge holder. The impedance barrier of this alternative embodiment attenuates the shock wave imparted during detonation of each shaped charge and prevents the shock wave produced by one shaped charge from affecting the performance of other shaped charges. The shaped charge holder can be a perforating gun tube, a perforating gun body, or a shaped charge carrier. The impedance barrier of the alternative embodiment can be comprised of a void formed in the shaped charge holder. Also in the alternative embodiment, an impedance material can be disposed in the void. The impedance material can be wood, cork, rubber, cotton, plastic, polymeric materials, wool, foam, other shock absorbing materials, and combinations thereof. The void can comprise a groove formed along the outer surface of the shaped charge holder. The impedance barrier of the alternative embodiment may comprise a spiral pattern formed on shaped charge holder. The alternative shaped charge assembly can further comprise shaped charges disposed within the bores. This embodiment of a shaped charge assembly can further comprise a firing head, detonating cord, and an actuating member. The actuating member can be a wireline conveyance member or a tubing conveyed member.
a-1d depict a side view of embodiments of the present invention.
The present device disclosed herein addresses the problem of shock wave interference in ballistics systems by providing an impedance barrier between the shock producing sources.
As shown in the embodiment of
Alternative embodiments illustrating other impedance barrier configurations are shown in
As shown in a cut-away view in
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. For example, the invention described herein is applicable to any shaped charge phasing as well as any density of shaped charge. Moreover, the invention can be utilized with any size of perforating gun. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority from co-pending U.S. Provisional Application No. 60/730,671, filed Oct. 27, 2005, the full disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1300333 | Berry | Apr 1919 | A |
2686472 | Burns | Aug 1954 | A |
2782715 | Udry | Feb 1957 | A |
3094930 | Blair | Jun 1963 | A |
4191265 | Bosse-Platiere | Mar 1980 | A |
4794990 | Riggs | Jan 1989 | A |
4817531 | Walker et al. | Apr 1989 | A |
5619008 | Chawla et al. | Apr 1997 | A |
5837925 | Nice | Nov 1998 | A |
5841060 | Skaggs | Nov 1998 | A |
6386109 | Brooks et al. | May 2002 | B1 |
6412415 | Kothari et al. | Jul 2002 | B1 |
6520258 | Yang et al. | Feb 2003 | B1 |
6941871 | Mauldin | Sep 2005 | B2 |
20030150646 | Brooks et al. | Aug 2003 | A1 |
20040104029 | Martin | Jun 2004 | A1 |
20040107825 | Kash | Jun 2004 | A1 |
20040216633 | Kash | Nov 2004 | A1 |
20050173118 | Li et al. | Aug 2005 | A1 |
20060048664 | Tiernan et al. | Mar 2006 | A1 |
20070119327 | Myers et al. | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070095572 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60730671 | Oct 2005 | US |