This application claims priority to PCT Application No. PCT/EP2014/065754, filed Jul. 22, 2014, which claims priority to German Patent Application No. 102013109228.4, filed Aug. 26, 2013, each of which are incorporated herein by reference in their entirety.
Devices and methods for initiating percussion of a perforating gun assembly are generally described. In particular, devices and methods for a ballistic transfer module are provided.
Hydrocarbons, such as fossil fuels (e.g. oil) and natural gas, are extracted from underground wellbores extending deeply below the surface using complex machinery and explosive devices. Once the wellbore is established by placement of cases after drilling, a perforating gun assembly, or train or string of multiple perforating gun assemblies, are lowered into the wellbore, and positioned adjacent one or more hydrocarbon reservoirs in underground formations. With reference to
Once the perforating gun(s) is properly positioned, the piston 42 is accelerated by hydraulic pressure or mechanical impact, which in turn initiates the percussion initiator 10, which initiates the booster 43 to initiate the detonating cord 44, which detonates the shaped charges 46 to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string.
In another assembly of the prior art as shown in
Advances in the art of initiating percussion initiators, particularly useful between a first perforating gun assembly and an adjacent perforating gun assembly (or multiples thereof) are constantly sought. In particular, assemblies according to the ballistic transfer module described herein improve percussion initiation, which results in improved reliability while decreasing complexity of the system, as well as lowering the cost to manufacture and assemble the perforating gun assemblies.
An embodiment provides a deformable member configured for use in a ballistic transfer module.
Another embodiment provides a ballistic transfer module including a deformable member, a booster holder, a booster and a detonating cord according to claim 1.
Another embodiment provides a method of initiating at least one percussion initiator of the perforating gun assembly using the ballistic transfer module and by deforming the deformable member according to the independent method claim.
A more particular description briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale, but are drawn to emphasize specific features relevant to embodiments.
Reference will now be made in detail to embodiments. Each example is provided by way of explanation, and is not meant as a limitation and does not constitute a definition of all possible embodiments.
In an embodiment, a ballistic transfer module is provided that is capable of being placed into operation as part of a perforating gun assembly or string. The ballistic transfer module includes, as part of the assembly, a deformable member, as will be discussed in greater detail below. A method of using the ballistic transfer module to initiate percussion initiators in the perforating gun assembly, preferably between a first perforating gun assembly and adjacent perforating gun assembly, is also described.
According to an aspect and with particular reference to
In an embodiment, the body 21 may include a gap 26, meaning the body 21 is a semi-solid body. The gap 26 is positioned within the body 21, and in an embodiment, the gap 26 is bound by walls forming a cylindrically-shaped opening and is centrally positioned along an axis A, such as a centralized axis, at a depth D of about 0.4 mm to about 0.6 mm below the inner surface 27 of the body 21. In an embodiment, a gap depth GD of the gap 26 is about 0.4 mm to about 0.6 mm, and has a radius R of about 3 mm to about 7 mm.
In an embodiment, a flange or collar or sleeve or wall 22 extends from the body 21 of the deformable member 20, and a retaining member 23 extends or depends from the collar 22. As depicted herein, the collar 22 surrounds a collar orifice 24, the orifice 24 being open on one end at an orifice opening 28 and closed at the opposite end forming a base of the orifice 24. As shown, the inner surface 27 of the body 21 forms the base of the orifice 24.
In an embodiment, the retaining member 23 is configured to receive and hold, (“hold” means to enclose within bounds, to limit or hold back from movement or to keep in a certain position), at least a portion of a head 31 of a booster holder 30 (see
According to an aspect, a gap cover 25, which may be configured as an acceleration member or a flyer disc, covers the gap 26. In an embodiment, the gap cover 25 forms a wall of the gap 26. In the embodiment of
Now referring to
According to an embodiment, the booster holder 30 is provided in abutting contact with the inner surface 27 of the deformable member 20. The booster holder 30 includes a housing member 33 and a head 31 extending from one end of the housing member 33. The housing member 33 includes a housing member bore 34, within which is positioned a detonating cord 44, which connects to a booster 43. As shown herein, booster holder 30 may include cut-away portions that result in a reduction in materials (and thus cost to manufacture), and also provides room for expansion by the booster 43 and the detonating cord 44 upon initiation (as discussed in more detail below).
In an embodiment, the deformable member 20 is configured for assembly in contact with the at least a portion of the head 31 of the booster holder 30.
The firing head 41, in an embodiment, includes a firing head bore 11 including a first wall 12, the bore 11 extending along the length of the firing head 41, and the bore having varying diameters. The first wall 12 opens at a first opening 16 for receiving the booster holder 30, and terminates at a ledge 14 for positioning and abutment of at least a portion of the head 31. In an embodiment, the first wall 12 is thus sized and shaped for receiving at least the head 31 of the booster holder 30 such that when the booster holder 30 is positioned within the bore 11, a portion of the head 31 abuts the ledge 14, while a portion of the head 31 extends beyond the ledge into a portion of the bore defined by a second wall 13. The second wall 13 terminates at the ledge 14 on one end and a second opening 15 at the other end.
In an embodiment, the outer surface 29 of the deformable member 20 is configured for abutment with the percussion initiator 10 and the inner surface 27 of the deformable member 20 is configured for abutment with the booster holder 30. In an embodiment (not shown), the head 31 of the booster holder 30 simply abuts the body 21 of the deformable member 20, and is held in place through retaining means such as but not limited to glue, fasteners and the like. In any case, the components are situated so that the booster 43 abuts the deformable member 20.
In an embodiment, a positioning member 32 extends from the head 31 of the housing member 33, and is configured for entering the collar orifice through the orifice opening 28 and being at least partially seatingly engaged within the collar orifice 24 of the deformable member 20. Thus, the retaining member 23 of the deformable member 20 functions to hold the positioning member 32 in place. In an embodiment, the positioning member 32 is held in at least a semi-fixed position, meaning at least that the positioning member 32 is at least partially fixed, set or otherwise immobilized, in contacting relationship with the deforming member 20. In a preferred embodiment, the retaining member 23 is configured as an annular lip that protrudes from the flange 22. The annular lip is complementarily sized and shaped for receiving at least a portion (preferably a protruding portion) of the positioning member 32, and functions to lock the positioning member 32 into place, or at least hold the positioning member 32 in a semi-fixed position.
As described hereinabove, the ballistic transfer module 50, according to an aspect, includes at least the following components: the deformable member 20, the booster holder 30, the booster 43 and the detonating cord 44, each of the components capable of being assembled in any variation of the embodiments disclosed herein.
At least an embodiment also provides a method for initiating one or more percussion initiators of the perforating gun assembly 40 by assembling the ballistic transfer module 50 as described above and using the deformable member 20 in place of the firing pin 2.
Thus, at least one portion of the perforating gun assembly 40 is assembled as the ballistic transfer module 50, including the deformable member 20, the booster holder 30, the booster 43 and the detonating cord 44, in the various embodiments as discussed in detail above.
In use, the detonating cord 44 is initiated, which in turn activates the booster 43, causing the booster 43 to explode. Explosion of the booster causes the deformable member 20 to deform, which in turn ignites the percussion initiator 10 to fire the perforating gun assembly 40. In an embodiment, a time delay mechanism (not shown) is placed between the booster transfer module 50 and the perforating gun assembly 40 for time-delay initiation.
The components and methods illustrated are not limited to the specific embodiments described herein, but rather, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that all such modifications and variations are included. Further, steps described in the method may be utilized independently and separately from other steps described herein.
While the device and method have been described with reference to the specific embodiments described herein, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the intended scope. In addition, many modifications may be made to adapt a particular situation or material to the teachings found herein without departing from the essential scope thereof.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, references to “one embodiment,” “an embodiment,” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Terms such as “first,” “second,” “above”, “below”, etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.”
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the device and method, including the best mode, and also to enable any person of ordinary skill in the art to practice the device and method, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 109 228 | Aug 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/065754 | 7/22/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/028205 | 3/5/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2666388 | Wheeler | Jan 1954 | A |
2876701 | Long | Mar 1959 | A |
3106892 | Miller | Oct 1963 | A |
3391817 | Shaw | Jul 1968 | A |
3610151 | Nett | Oct 1971 | A |
3678853 | Kilmer | Jul 1972 | A |
3945322 | Carlson | Mar 1976 | A |
4335652 | Bryan | Jun 1982 | A |
4612992 | Vann et al. | Sep 1986 | A |
5031538 | Dufrane | Jul 1991 | A |
5162606 | Jacob | Nov 1992 | A |
5182417 | Rontey | Jan 1993 | A |
5223665 | Burleson et al. | Jun 1993 | A |
5327835 | Adams | Jul 1994 | A |
5417162 | Adams | May 1995 | A |
5490563 | Wesson et al. | Feb 1996 | A |
5680905 | Green et al. | Oct 1997 | A |
5775426 | Snider et al. | Jul 1998 | A |
5780764 | Welch et al. | Jul 1998 | A |
5889228 | Ewick | Mar 1999 | A |
6085843 | Edwards et al. | Jul 2000 | A |
6408759 | Ewick | Jun 2002 | B1 |
6719061 | Muller et al. | Apr 2004 | B2 |
7044236 | Iversen et al. | May 2006 | B2 |
7913603 | LeGrange et al. | Mar 2011 | B2 |
8079296 | Barton et al. | Dec 2011 | B2 |
8622149 | Gill et al. | Jan 2014 | B2 |
20020125045 | George | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
201011301 | Jan 2008 | CN |
101691837 | Apr 2010 | CN |
201517410 | Jun 2010 | CN |
102005058356.3 | Jun 2007 | DE |
1552100 | Jan 1969 | FR |
Entry |
---|
Owen Oil Tools, HTD-Blast System (Horizontal Time Delay Ballistic Assisted Sequential Transfer), Product Description Sheet TC-044-0.3, Revised May 2012. |
PCT Search Report and Written Opinion, dated May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065754. |
DE Patent Office, Office Action dated May 26, 2014, in German, for DE Patent Application No. 10 2013 109 228.4, in the same family as PCT Application No. PCT/EP2014/065754. |
SIPO, Search Report for CN App. No. 201480047088.0, which is in the same family as PCT App. No. PCT/EP2014/065754, dated Jun. 2, 2017, 3 pages. |
SIPO, Office Action for CN App. No. 201480047088.0, which is in the same family as PCT App. No. PCT/EP2014/065754, dated Jun. 2, 2017, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20160202033 A1 | Jul 2016 | US |