The present invention relates to walls for stopping and capturing projectiles, and to projectile slowing and capturing elements with sound absorbing properties.
Traditionally, outdoor shooting ranges utilize dirt berms to provide side ballistic protection. Although dirt berms are used effectively in this application, they have a number of disadvantages. First, dirt berms must have a 2:1 compacted slope. This means that for every foot of height, the berm must be 2 feet wide. A 16 foot high dirt berm must be 32 feet wide, which occupies a considerable area. Given that two berms are required for sidewall protection, this means that 64 feet must be devoted to the berms alone. Another consequence is the range takes significant time and expense to construct. Furthermore, considerable ongoing expense occurs because the berms must be erosion controlled, periodically the lead projectiles must be removed, and the berms must be re-compacted. These maintenance activities also prevent the range from being used while they occur. Finally, dirt berms have no acoustical absorption value.
Concrete walls or concrete masonry walls are a space-saving alternative to dirt berms that provide similar ballistic protection. However, concrete walls require a substantial footing or foundation because they are heavy. The type of foundation is determined by the wall's height, the wind load, the soil density, and the seismic zone. A standard 16 foot wall designed for a standard 70 mi./h. Wind load in a low seismic zone with normal 2,000 pound density soil requires a foundation approximately 8 feet wide and 3 feet deep. This design increases cost substantially and requires a 28 day cure time. In addition, in order to provide ballistic protection, a minimum of 5,000 PSI concrete is required, which further adds to the wall's cost. This design is time-consuming to construct and much more expensive than dirt berms. Concrete surfaces have no acoustical absorption; instead, they reflect gunfire sound levels. Gunfire sound levels easily reach levels of 145-165 dBA. This energy is reflected off parallel concrete surfaces, in this case the two side walls, which will reflect this gunfire sound level for as long as 8 seconds. This reflected sound level, when added to the actual gunfire sound level, produces very high, unhealthy sound levels that will carry for a length of over ¾ of a mile. This sound level can be very intrusive to neighbors or adjacent buildings within this ¾ mile radius.
Therefore, a need exists for a new and improved ballistic wall that provides ballistic protection with a small footprint, eliminates lead remediation, and absorbs the gunfire sound level. In this regard, the various embodiments of the present invention substantially fulfill at least some of these needs. In this respect, the sound absorbing wall according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of providing ballistic protection with a small footprint and eliminating lead remediation.
The present invention provides an improved ballistic wall, and overcomes the above-mentioned disadvantages and drawbacks of the prior art. As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide an improved ballistic wall that has all the advantages of the prior art.
To attain this, the preferred embodiment of the present invention essentially comprises a plurality of interlocking blocks formed of bullet-resistant material and acoustic sound absorbing material, a first portion of the periphery of each block having a protruding tongue, a second portion of the periphery of each block defining a groove sized to receive the tongue, and the tongues and grooves of adjacent blocks being mated to each other to form an interlocked structure. Each block may be formed of a stack of panels having a first surface panel, a second surface panel, and an interior panel, wherein the interior panel is offset from the first and second surface panels to form the tongues and to define the grooves. Each block may be formed of a stack of five panels offset from each other. The blocks may be arranged in a running bond, such that the vertical seams of one course are offset from the vertical seams of an adjacent course. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims attached.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood and in order that the present contribution to the art may be better appreciated.
The same reference numerals refer to the same parts throughout the various figures.
A preferred embodiment of the ballistic wall of the present invention is shown and generally designated by the reference numeral 10.
In the current embodiment, the ballistic material layers are made of a polymer composite resin mixed with multiple layers of a fiberglass mesh fabric material. The polymer composite resin binding agent bonds the multiple layers of fiberglass mesh to stop the penetration of projectiles. The two outer layers of the design drastically slow a projectile without capturing it. The inner layers of the ballistic material are designed to stop and capture projectiles. Each ballistic layer is three-quarter inch thick.
The acoustical board layers are made of wood fibers having a typical length of 12 inches and width of 3 mm, mixed with Portland cement, with an open mat configuration of 9 lbs./sq. ft. density. Each acoustical board layer is 4 inches thick. The acoustical board is designed so that the outermost acoustical board layer accepts projectile penetration and causes some decrease in projectile velocity before the projectile contacts the first layer of ballistic material. Because the projectile has lost some velocity in the outermost acoustical board layer and first layer of ballistic material, the projectile may yaw and splinter as it penetrates the second acoustical board layer. A 5.56 mm projectile is generally stopped by contact with the second layer of ballistic material. A 7.62 mm round is generally stopped before the third layer of ballistic material. Although the panels are not intended for direct intention fire, they are designed to stop all 5.56 mm and 7.62 mm rounds before the third layer of ballistic material when fired from one side of the panel at 90°. The ballistic wall is made of noncombustible materials and does not have any metal components, so the ballistic wall will not produce metal shrapnel if exploded. The ballistic material layer will melt if it is raised to a sufficiently high temperature, but it will not burn.
In order to provide a stable base and a squared off perimeter, panels 12 are modified to form specialized bottom pieces, end pieces, and cap pieces. In
The middle bottom piece 48 is identical to a panel 12 except for its shape. The middle bottom piece has a flat bottom 52 to provide stable contact with the ground 66. A left end bottom piece (not shown) is substantially identical to the middle bottom piece except that the left side is not dovetailed to provide a squared off perimeter.
The tops 32 and 50 of the right end bottom piece and middle bottom piece are dovetailed to receive the bottom 86 of the right end piece 82. The right end piece is identical to a panel 12 except for its shape. The right side 90 of the acoustical board layers 96 and ballistic layers 98 are cut off flush vertically. The top 84 is dovetailed to receive the bottom 16 of a panel 12 and/or an additional right end piece and/or a right end cap piece (not shown) depending upon the desired height and length of the ballistic wall 10. The left side 88 is dovetailed to receive the right side 20 of a panel 12 or a left end piece (not shown). A left end piece is substantially identical to a panel 12 except that the left side is not dovetailed to provide a squared off perimeter.
The ballistic wall 10 is topped by cap pieces. A middle cap piece 68 is identical to a panel 12 except for its shape. The top 70 of the acoustical board layers 100 and ballistic layers 102 is cut off flush horizontally. The bottom 72 is dovetailed to fit onto the tops of lower panels. A right cap piece (not shown) additionally has the right side cut off flush vertically. A left cap piece (not shown) additionally has the left side cut off flush vertically.
The front 40, rear 42, front 58, rear 60, front 92, rear 94, front 22, rear 24, and front 78 and rear 80 of the right end bottom piece, middle bottom piece, right end piece, panel, and cap piece all fit together to form a uniform vertical surface when the ballistic wall is assembled. Each piece is 2 feet wide, which enables pieces to be stacked vertically in excess of 8 feet without a foundation or structural support for temporary applications and/or when quick deployment is essential. The pieces have varying lengths to avoid the creation of seams that can be easily penetrated by a projectile. The ballistic wall can be stacked around a building to limit the potential for destruction by an explosive detonated in front of the ballistic wall or can be used to block off streets.
In order to provide a stable base and a squared off perimeter, panels 12 are modified to form specialized bottom pieces, end pieces, and cap pieces. In
The middle bottom piece 180 is identical to a panel 112 except for its shape. The middle bottom piece has a flat bottom 198 to provide stable contact with the ground 66. The left side 206 is dovetailed to receive the right side 184 of an additional middle bottom piece or the right side of a left end bottom piece. A left end bottom piece (not shown) is substantially identical to the middle bottom piece except that the left side is not dovetailed to provide a squared off perimeter. The left side also has a cavity 202 that receives a vertical tube 160.
The tops 152 and 204 of the right end bottom piece and middle bottom piece are dovetailed to fit into the bottom 150 of the right end piece 134. The right end piece is identical to a panel 112 except for its shape. The right side 140 of the acoustical board layers 178 and ballistic layers 176 is cut off flush vertically. The top 148 is dovetailed to fit into the bottom 116 of a panel 112 and/or an additional right end piece and/or a right end cap piece (not shown) depending upon the desired height and length of the ballistic wall 200. The left side 186 is dovetailed to receive the right side 120 of a panel 112 or a left end piece (not shown). A left end piece is substantially identical to a panel 112 except that the left side is not dovetailed to provide a squared off perimeter. The right side 140 also has a cavity 154 that receives a vertical tube 160.
The ballistic wall 200 is topped by cap pieces. A right end cap piece 132 is identical to a panel 112 except for its shape. The top 144 of the acoustical board layers and ballistic layers is cut off flush horizontally. The bottom 146 is dovetailed to fit onto the tops of lower panels. The right side 142 is cut off flush vertically. A left cap piece (not shown) instead has the left side cut off flush vertically. The left side 188 also has a cavity 158 that receives a vertical tube 160.
The front 164, rear 170, front 166, rear 168, front 122, rear 124 of the right end bottom piece, right end piece, and panel, and the front and rears of the middle bottom piece and the right end cap piece all fit together to form a uniform vertical surface when the ballistic wall is assembled. Each piece is 2 feet wide, which enables pieces to be stacked vertically in excess of 8 feet. The pieces have varying lengths to avoid the creation of seams that can be easily penetrated by a projectile. The vertical 4 inch in diameter tube steel and horizontal foundation 162 that is buried in the ground 66 are intended for use in outdoor range applications. The tubes and foundation provide stability for wind loads up to 90 mi./h. The cavities that accept the tubes are located the center of each piece's 2 foot width and are 4 inches by 4 inches. The cavities are also positioned within the first 2 feet of each piece's length. The tubes are spaced at 8′6″ on center, which enables every piece to receive a tube. Because the pieces are set using a reach lift and placed over the tubes, individual panels can be easily replaced as needed.
In order to provide a stable base and a squared off perimeter, panels 12 are modified to form specialized bottom pieces 30, 48, and 224, end pieces 82 and 220, and cap pieces 240, 68, and 216. In
The middle bottom piece 48 is identical to a panel 12 except for its shape. The middle bottom piece has a flat bottom 52 to provide stable contact with the ground 66. The left end bottom piece is substantially identical to the middle bottom piece except that the left side 226 is not dovetailed to provide a squared off perimeter. The left end bottom piece has a flat bottom 238 to provide stable contact with the ground 66.
The tops 32, 50, and 236 of the right end bottom piece, middle bottom piece, and left end bottom piece are dovetailed to fit into the bottoms 86, 50, and 238 of the right end piece 82, panels 12, and left end piece 220. The right end piece is identical to a panel 12 except for its shape. The right side 90 of the acoustical board layers 96 and ballistic layers 98 are cut off flush vertically. The top 84 is dovetailed to fit into the bottom 16 of a panel 12 and/or an additional right end piece and/or the bottom 232 of a right end cap piece 212 depending upon the desired height and length of the ballistic wall 10. The left side 88 is dovetailed to receive the right side 20 of a panel 12 or the right side 242 of a left end piece 220. A left end piece is substantially identical to a panel 12 except that the left side 222 is not dovetailed to provide a squared off perimeter.
The ballistic wall 300 is topped by cap pieces. A middle cap piece 68 is identical to a panel 12 except for its shape. The top 70 of the acoustical board layers 100 and ballistic layers 102 is cut off flush horizontally. The bottom 72 is dovetailed to fit onto the tops of lower panels. A right cap piece 212 additionally has the right side 214 of the acoustical board layers 252 and ballistic layers 254 cut off flush vertically. A left cap piece 216 additionally has the left side 218 cut off flush vertically.
The front 40, rear 42, front 58, rear 60, front 92, rear 94, front 22, rear 24, front 78, rear 80, and front 248 and rear 250 of the right end bottom piece, middle bottom piece, right end piece, panel, middle cap piece, and right end cap piece, as well as the fronts and rears of the left end bottom piece, left end piece, and left end cap piece, all fit together to form uniform front 310 and rear 312 vertical surfaces when the ballistic wall 300 is assembled. Each piece is 2 feet wide, and the pieces have varying lengths to avoid the creation of seams that can be easily penetrated by a projectile.
The ballistic wall 300 is placed within the U-shaped channel 322 of a support frame 324 to prevent the ballistic wall from being tipped over in a riot control situation. The support frame has a rear plate 314, a bottom plate 318, a front plate 316, and a rod 320. The rear plate, bottom plate, and front plate define the U-shaped channel. The rod connects one end of the bottom plate to the top of the front plate. The support frame enables pieces to be stacked vertically in excess of 12 feet.
While current embodiments of the ballistic wall have been described in detail, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention. And although providing ballistic protection with a small footprint and eliminating lead remediation has been described, it should be appreciated that the ballistic wall herein described is also suitable for reducing gunfire sound levels by eliminating sound reflections and reverberations because of its sound absorption properties.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2283582 | Scherer | May 1942 | A |
4075808 | Pearlman | Feb 1978 | A |
4076246 | Meyer | Feb 1978 | A |
4683800 | Snedeker | Aug 1987 | A |
5230194 | McClure | Jul 1993 | A |
5661273 | Bergiadis | Aug 1997 | A |
6244009 | Cerrato | Jun 2001 | B1 |
6247286 | Heyns | Jun 2001 | B1 |
6568310 | Morgan | May 2003 | B2 |
7628104 | Warren et al. | Dec 2009 | B2 |
7845266 | Duke et al. | Dec 2010 | B2 |
8141471 | DeCristofaro et al. | Mar 2012 | B2 |
8186262 | Farquhar et al. | May 2012 | B2 |
8256186 | Bryan | Sep 2012 | B2 |
8479464 | Holzworth | Jul 2013 | B2 |
20070180982 | Dagher et al. | Aug 2007 | A1 |
20100083819 | Mann et al. | Apr 2010 | A1 |
20110173911 | Propst | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130233163 A1 | Sep 2013 | US |