The present disclosure pertains to medical devices, and methods for manufacturing and using medical devices. More particularly, the disclosure is directed to devices and methods for softening lesions within or near a vascular lumen.
Many patients suffer from occluded arteries and other blood vessels which restrict blood flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. In some cases, an occlusion may be or otherwise include a calcified lesion that may impact a physician's ability to place a stent, or conduct balloon angioplasty, for example. The calcified lesion may be treated to soften and weaken the calcified lesion, which can make subsequent treatments such as stenting and balloon angioplasty more effective. A need remains for alternate devices and methods for treating calcified lesions.
This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. For example, the disclosure is directed to an ultrasound catheter that is adapted for placement within a blood vessel having a vessel wall for treating a calcified lesion within or adjacent the vessel wall The ultrasound catheter includes an elongate shaft extending from a distal region to a proximal region, an ultrasound transducer that is disposed relative to the distal region of the elongate shaft and is adapted to impart near-field acoustic pressure waves within the calcified lesion in order to induce fractures in the calcified lesion. An inflatable balloon is disposed about the ultrasound transducer and is coupled to the elongate shaft, the inflatable balloon having a collapsed configuration suitable for advancing the ultrasound catheter through a patient's vasculature and an expanded configuration suitable for anchoring the ultrasound catheter in position relative to a treatment site.
Alternatively or additionally, the inflatable balloon may include a proximal waist and a distal waist, the inflatable balloon secured to the elongate shaft via the proximal waist and the distal waist, with the proximal waist disposed proximal of the ultrasound transducer and the distal waist disposed distal of the ultrasound transducer.
Alternatively or additionally, the inflatable balloon may be configured to be inflated using an inflation fluid, the inflation fluid being a medium through which the ultrasound transducer transmits acoustic pressure waves.
Alternatively or additionally, the inflation fluid may include pre-formed gas bubbles, droplets or other cavitation nuclei that can be excited into resonance, collapse or other cavitation behavior to generate or amplify the acoustic pressure waves impinging upon the calcified lesion.
Alternatively or additionally, the inflation fluid may include gas bubbles or droplets having an average diameter of about 1 micron to about 2500 microns.
Alternatively or additionally, the inflatable balloon may have an inner surface, and the inner surface of the balloon may include a hydrophilic or hydrophobic treatment.
Alternatively or additionally, a portion of the ultrasound transducer may include a hydrophilic or hydrophobic treatment.
Alternatively or additionally, the inflatable balloon may include an inner surface, and the inner surface of the balloon may include a mechanical or chemical treatment that localizes, traps, collects or nucleates bubbles.
Alternatively or additionally, the inflatable balloon may be a single wall balloon.
Alternatively or additionally, the inflatable balloon may be a double wall balloon, the double wall forming an inner chamber proximate the ultrasound transducer and an outer chamber surrounding the inner chamber.
Alternatively or additionally, the double wall balloon may include an inner wall that is formed of a semipermeable material and an outer wall that is formed of a non-permeable material.
Alternatively or additionally, the ultrasound transducer may be configured to transmit a substantially uniform acoustic pressure over a length of about 10 millimeters to about 60 millimeters at a radial distance of about 1 millimeters to about 8 millimeters as measured from a longitudinal central axis of the elongate shaft.
Alternatively or additionally, the ultrasound transducer may include a plurality of individual ultrasound transducers.
Alternatively or additionally, each of the individual ultrasound transducers may be independently electrically driven.
Another example of the disclosure is an ultrasound device that is adapted for placement within a blood vessel having a vessel wall for causing mechanical fractures in a calcified lesion within or adjacent the vessel wall. The ultrasound device includes an elongate shaft extending from a distal region to a proximal region and an ultrasound transducer that is disposed within the distal region of the elongate shaft and is ultrasound transducer adapted to impart unfocused acoustic pressure waves upon the calcified lesion in order to induce fractures in the calcified lesion. An inflatable balloon is disposed about the ultrasound transducer and coupled to the elongate shaft. The ultrasound transducer has an effective length that is at least twice a distance between the ultrasound transducer and the calcified lesion when the ultrasound device is disposed proximate the calcified lesion.
Alternatively or additionally, the inflatable balloon may include a proximal waist and a distal waist, the inflatable balloon secured to the elongate shaft via the proximal waist and the distal waist, with the proximal waist disposed proximal of the ultrasound transducer and the distal waist disposed distal of the ultrasound transducer.
Another example of the disclosure is a method of treating a calcified lesion that is within or proximate a vessel wall forming part of a blood vessel. An ultrasound catheter is advanced through a patient's vasculature until reaching a desired treatment site proximate the calcified lesion, the ultrasound catheter including an ultrasound transducer secured relative to an inner shaft and an inflatable balloon secured to the inner shaft and disposed about the ultrasound transducer. The inflatable balloon is inflated with an inflation fluid to secure the ultrasound catheter in position proximate the calcified lesion. The ultrasound transducer is driven to produce near-field acoustic pressure waves within a thickness of the vessel wall and the calcified lesion in order to induce fractures within the calcified lesion. The inflatable balloon is deflated to permit repositioning or removal of the ultrasound catheter.
Alternatively or additionally, inflating the inflatable balloon with inflation fluid may include inflating the inflatable balloon with an inflation fluid that includes cavitation nuclei having an average diameter of about 1 micron to about 2500 microns.
Alternatively or additionally, the inflatable balloon may include an inner chamber and an outer chamber, and inflating the inflatable balloon with an inflation fluid may include inflating the inner chamber and the outer chamber at different pressures in order to drive dissolved gasses out of solution.
Alternatively or additionally, the method may further include periodically changing a pressure of the inflatable balloon in order to provide a pulsatile mechanical pressure to the vessel wall.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Many patients suffer from occluded arteries, other blood vessels, and/or occluded ducts or other body lumens which may restrict bodily fluid (e.g. blood, bile, etc.) flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. Revascularization techniques include using a variety of devices to pass through the occlusion to create or enlarge an opening through the occlusion. In some cases, lesions such as calcified lesions may create problems for revascularization techniques, and it may be beneficial to treat the calcified lesions in order to soften them and make them more malleable.
In some cases, for example, ultrasound may be used to treat vascular lesions, such as fibrotic and calcified lesions, at various states of disease progression, ranging from soft plaques to severely calcified lesions. Vascular lesions that may best lend themselves to being treated with ultrasound-based devices include irregular, severely calcified plaques that are located within and adjacent to vessel walls, and lesions that are more or less rigid and thus may be susceptible to being mechanically fatigued to failure. For example, ultrasound-based devices may be used to produce standing wave pressure patterns within the thickness of the lesion, bending moments at the ends of the lesion, and/or resonance along the length of the lesion. In some cases, the high frequency mechanical action of ultrasound may also be effective in treating earlier state vascular lesions, including fibrotic and soft plaques. In some cases, an ultrasound device may apply a treatment of unfocused, near-field ultrasound waves to treat vascular lesions.
An intravascular device such as an ultrasound catheter may be placed within a blood vessel in order to treat a vascular lesion that is within or adjacent to a vessel wall of the blood vessel.
As can be seen in the example of
In some cases, for example, the ultrasound transducer 14 may be configured to impart a uniform or substantially uniform acoustic pressure along the length of the calcified lesion 12. In cardiac vessel disease states, vascular lesions may span a length of 10 millimeters (mm) to 25 mm in vessels that are 2 mm to 4 mm in diameter. In peripheral vessel disease states, vascular lesions may span a length of up to 200 mm in vessels up to 12 mm in diameter. Depending on the therapeutic applications, the ultrasound transducer 14 may be configured to impart a uniform or substantially uniform acoustic pressure over a length of about 10 mm to about 60 mm at a radial distance of about 1 mm to about 8 mm as measured from a central axis L extending through the elongate shaft 16. While not illustrated, one can appreciate that multiple ultrasound transducers 14 may be configured upon a catheter to extend the effective therapeutic length, such as up to a length of 200 mm.
To impart a uniform or substantially uniform acoustic pressure in the near field 20, the ultrasound transducer 14 may have a length that is multiple times larger than a diameter of the ultrasound catheter 10. In some cases, the ultrasound transducer 14 may have a length that is at least as long as a length of the calcified lesion 12, in some cases, to generate a uniform or substantially uniform acoustic pressure over a length of about 20 to about 80 mm.
In some instances, the ultrasound transducer 14, may be a single ultrasound transducer or a series of ultrasound transducers or transducer elements driven in such a way as to effectively act as a single ultrasound transducer.
The inflatable balloon 66 may be inflated using any suitable inflation fluid. Examples include water, saline (e.g., 0.9% sodium chloride), and a mixture of saline and a radiopaque contrast agent (e.g., a 50/50 mixture). In some cases, the inflation fluid may be chosen for how acoustic energy transmits through the inflation fluid. It will be appreciated that by selecting a particular fluid with which to inflate the inflatable balloon 66, one is able to control the efficiency of acoustic energy transmission through the fluid and to the calcified lesion 12 (
In some cases, the inflation fluid may include dissolved gas, gas bubbles, stabilized microbubbles, droplets, commercial ultrasound contrast agent, or other cavitation nuclei which may be excited into resonance, collapse and cavitation behavior by the ultrasound transducer 72 to generate or significantly amplify the acoustic pressure waves impinging upon the calcified lesion. As shown for example in
In some cases, the inflatable balloon 126 may be a double wall inflatable balloon, having an inner wall 140 and an outer wall 142. An inner chamber 144 is defined within the inner wall 140, and an outer chamber 146 is defined between the inner wall 140 and the outer wall 142. In some cases, the inner wall 140 may be made of a semipermeable material and the outer wall 142 may be made of a non-permeable material. If both the inner chamber 144 and the outer chamber 146 contain a volume of fluid, and a relatively higher pressure is applied to the inner chamber 144 and a relatively lower pressure is applied to the outer chamber 146, the pressure differential may drive gas out of solution in the inner chamber 144 to form gas bubbles or other cavitation nuclei in the outer chamber 146.
In some cases, the outer chamber 146 may contain a volume of gas-saturated fluid, and reducing the pressure in the inner chamber 144 to create a pressure differential may drive gas out of solution in the outer chamber 146. In some cases, the inner chamber 144 may initially contain a volume of gas and the outer chamber 146 may initially contain a volume of fluid (liquid). A relatively higher pressure may be applied to the inner chamber 144 and a relatively lower pressure may be applied to the outer chamber 146. The pressure differential drives gas out of solution in the inner chamber 144 to form nuclei in the outer chamber 146. The gas in the inner chamber 144 may be replaced with a fluid prior to operating the ultrasound transducer 72.
In some cases, as shown in
A variety of polymeric materials may be used in manufacturing the ultrasound catheters 10, 60, 120 described herein. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the polymeric materials may include a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
In some cases, the ultrasound catheters 10, 60, 120 may include a lubricious, a hydrophilic, a hydrophobic, a protective, or other type of coating. Hydrophobic coatings such as fluoropolymers provide a dry lubricity which improves device handling and device exchanges. Lubricious coatings improve steerability and improve lesion crossing capability. Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility. Some other examples of such coatings and materials and methods used to create such coatings can be found in U.S. Pat. Nos. 6,139,510 and 5,772,609, which are incorporated herein by reference.
The devices described herein may be formed, for example, by coating, extrusion, co-extrusion, interrupted layer co-extrusion (ILC), or fusing several segments end-to-end. The layer may have a uniform stiffness or a gradual reduction in stiffness from the proximal end to the distal end thereof. The gradual reduction in stiffness may be continuous as by ILC or may be stepped as by fusing together separate extruded tubular segments. The outer layer may be impregnated with a radiopaque filler material to facilitate radiographic visualization. Those skilled in the art will recognize that these materials can vary widely without deviating from the scope of the present invention.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The scope of the disclosure is, of course, defined in the language in which the appended claims are expressed.
This application claims the benefit of U.S. Provisional Application No. 62/642,830, filed Mar. 14, 2018, the content of which is herein incorporated by reference in its entirety. This application is co-owned by the owners of U.S. Provisional Application No. 62/642,822, filed Mar. 14, 2018, the content of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4955895 | Sugiyama | Sep 1990 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5609606 | O'Boyle | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6123923 | Unger | Sep 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6607502 | Maguire et al. | Aug 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6849994 | White et al. | Feb 2005 | B1 |
7470240 | Schultheiss et al. | Dec 2008 | B2 |
7810395 | Zhou | Oct 2010 | B2 |
7867178 | Simnacher | Jan 2011 | B2 |
7985189 | Ogden et al. | Jul 2011 | B1 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8166825 | Zhou | May 2012 | B2 |
8556813 | Cashman et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8709075 | Adams et al. | Apr 2014 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins et al. | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
9005216 | Hakala et al. | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9072534 | Adams et al. | Jul 2015 | B2 |
9131949 | Coleman et al. | Sep 2015 | B2 |
9138249 | Adams et al. | Sep 2015 | B2 |
9180280 | Hawkins et al. | Nov 2015 | B2 |
9220521 | Hawkins et al. | Dec 2015 | B2 |
9237984 | Hawkins et al. | Jan 2016 | B2 |
9289224 | Adams et al. | Mar 2016 | B2 |
9320530 | Grace | Apr 2016 | B2 |
9333000 | Hakala et al. | May 2016 | B2 |
9375223 | Wallace | Jun 2016 | B2 |
9433428 | Hakala et al. | Sep 2016 | B2 |
9510887 | Burnett | Dec 2016 | B2 |
9554815 | Adams | Jan 2017 | B2 |
9555267 | Ein-gal | Jan 2017 | B2 |
9566209 | Katragadda et al. | Feb 2017 | B2 |
9579114 | Mantell et al. | Feb 2017 | B2 |
9642673 | Adams et al. | May 2017 | B2 |
9730715 | Adams | Aug 2017 | B2 |
9814476 | Adams et al. | Nov 2017 | B2 |
9861377 | Mantell | Jan 2018 | B2 |
9867629 | Hawkins | Jan 2018 | B2 |
9955946 | Miller et al. | May 2018 | B2 |
9993292 | Adams et al. | Jun 2018 | B2 |
10039561 | Adams et al. | Aug 2018 | B2 |
10159505 | Hakala et al. | Dec 2018 | B2 |
10201387 | Grace et al. | Feb 2019 | B2 |
10842567 | Grace et al. | Nov 2020 | B2 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20040002677 | Gentsler | Jan 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20050113722 | Schultheiss | May 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20060241524 | Lee et al. | Oct 2006 | A1 |
20070060990 | Satake | Mar 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070118057 | Ein-gal | May 2007 | A1 |
20070255270 | Carney | Nov 2007 | A1 |
20070270897 | Skerven | Nov 2007 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080132810 | Scoseria et al. | Jun 2008 | A1 |
20080229837 | Zhou | Sep 2008 | A1 |
20080296152 | Voss | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090036803 | Warlick et al. | Feb 2009 | A1 |
20090043300 | Reitmajer et al. | Feb 2009 | A1 |
20090247945 | Levit | Oct 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins | May 2010 | A1 |
20100198114 | Novak et al. | Aug 2010 | A1 |
20100199773 | Zhou | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100256535 | Novak et al. | Oct 2010 | A1 |
20110082534 | Wallace | Apr 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110208185 | Diamant et al. | Aug 2011 | A1 |
20110245740 | Novak et al. | Oct 2011 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095335 | Sverdlik et al. | Apr 2012 | A1 |
20120116289 | Hawkins et al. | May 2012 | A1 |
20120157892 | Reitmajer et al. | Jun 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130046207 | Capelli | Feb 2013 | A1 |
20130218054 | Sverdlik et al. | Aug 2013 | A1 |
20130253466 | Campbell | Sep 2013 | A1 |
20130345617 | Wallace | Dec 2013 | A1 |
20140039513 | Hakala | Feb 2014 | A1 |
20140052146 | Curtis et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140058294 | Gross | Feb 2014 | A1 |
20140257144 | Capelli et al. | Sep 2014 | A1 |
20140257148 | Jie | Sep 2014 | A1 |
20140276573 | Miesel | Sep 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20150359432 | Ehrenreich | Dec 2015 | A1 |
20160008016 | Cioanta et al. | Jan 2016 | A1 |
20160095610 | Lipowski et al. | Apr 2016 | A1 |
20160135828 | Hawkins et al. | May 2016 | A1 |
20160183957 | Hakala et al. | Jun 2016 | A1 |
20160184570 | Grace et al. | Jun 2016 | A1 |
20160270806 | Wallace | Sep 2016 | A1 |
20160324534 | Hawkins et al. | Nov 2016 | A1 |
20160331389 | Hakala et al. | Nov 2016 | A1 |
20160367274 | Wallace | Dec 2016 | A1 |
20160367275 | Wallace | Dec 2016 | A1 |
20170049463 | Popovic et al. | Feb 2017 | A1 |
20170056035 | Adams | Mar 2017 | A1 |
20170119470 | Diamant et al. | May 2017 | A1 |
20170135709 | Nguyen et al. | May 2017 | A1 |
20170303946 | Ku et al. | Oct 2017 | A1 |
20170311965 | Adams | Nov 2017 | A1 |
20180098779 | Betelia et al. | Apr 2018 | A1 |
20180153568 | Kat-kuoy | Jun 2018 | A1 |
20180256250 | Adams et al. | Sep 2018 | A1 |
20180280005 | Parmentier | Oct 2018 | A1 |
20180303501 | Hawkins | Oct 2018 | A1 |
20180360482 | Nguyen | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
102057422 | May 2011 | CN |
109223100 | Jan 2019 | CN |
202008016760 | Mar 2009 | DE |
102007046902 | Apr 2009 | DE |
102008034702 | Jan 2010 | DE |
102009007129 | Aug 2010 | DE |
202010009899 | Nov 2010 | DE |
102013201928 | Aug 2014 | DE |
1179993 | Feb 2002 | EP |
2157569 | Feb 2010 | EP |
2879595 | Jun 2015 | EP |
3318204 | May 2018 | EP |
20050098932 | Oct 2005 | KR |
20080040111 | May 2008 | KR |
0067648 | Nov 2000 | WO |
2009121017 | Oct 2009 | WO |
2012025833 | Mar 2012 | WO |
WO20120052924 | Apr 2012 | WO |
WO20120120495 | Sep 2012 | WO |
2013119662 | Aug 2013 | WO |
2016109739 | Jul 2016 | WO |
2018083666 | May 2018 | WO |
Entry |
---|
“International Search Report and Written Opinion,” for PCT Application No. PCT/2019/022016 dated May 29, 2019 (16 pages). |
“International Search Report and Written Opinion,” for PCT Application No. PCT/US2019/022009 dated May 22, 2019 (14 pages). |
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009. |
Number | Date | Country | |
---|---|---|---|
20190282249 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62642830 | Mar 2018 | US |