The present invention relates to the field of medical devices, in particular a balloon catheter traction device.
In the prior art, the scheme for retracting the esophagus by using the balloon has the following two solutions:
The balloon is manufactured to create a C-shaped structure for dilation by using a non-compliant material. Before use, the residual air is removed from the balloon by suction, and a rigid guidewire is inserted through the balloon's axis to straighten it from its collapsed C-shape to a straight line. During the procedure, the balloon is inserted into the esophageal. After withdrawing the rigid guidewire and introducing liquid while maintaining a certain pressure (greater than 4 atmospheres), the balloon regains its preformed C-shaped structure, providing support for traction. However, due to the use of non-compliant balloons, the initial diameter of the balloon is relatively large, usually exceeding 8 millimeters. Additionally, embedding a rigid guidewire is necessary to facilitate its passage through the lumen. Consequently, this approach is only feasible through the oral cavity and cannot be used to access the esophageal lumen through the nasal passage. Furthermore, since it must be introduced through the oral cavity, it significantly impacts patient comfort and can only be employed on patients under general anesthesia (unconscious), making it unsuitable for awake patients.
Another type of traction device involves the use of semi-compliant balloons, characterized by an eccentric axis and localized reinforcement along the balloon's axis. As the balloon inflates, the expansion on either side of the balloon's axis is uneven, causing the balloon to bend. Ultimately, as the balloon continues to inflate, it forms a C-shaped structure to achieve the goal of deviating the esophagus. However, in this approach, as the balloon inflates, its material becomes thinner, causing the traction force of the balloon to first increase and then decrease. Additionally, the radial expansion of the balloon hinders its axial expansion, resulting in a reduced difference in expansion rates along the bending direction. This weakens the bending effect. Consequently, in this scenario, the traction force of the balloon decreases over time. During actual usage, the bending force cannot be maintained, thus failing to meet clinical requirements.
This application addresses the issues of significant patient discomfort and unsustainable bending force caused by existing balloon catheter retractor or traction devices. A balloon catheter traction device is provided that enhances its bending capability and improves its ability to maintain its bending performance.
In order to achieve this objective, the present invention provides a balloon catheter traction device comprising a balloon catheter and a balloon fixed onto the balloon catheter. When fluid is inflated into the balloon, it bends and subsequently causes the balloon catheter to bend accordingly. When a radial restraint or radial limiting feature is applied to the balloon, it prevents further expansion in the radial direction once the balloon reaches a certain diameter.
In this context, the balloon is manufactured with semi-compliant characteristics, resulting in an eccentrically positioned balloon concerning or with respect to the axis. The balloon features a fixed-length restraint on the inner side in the axial intended bending direction, without any restriction on the outer side in the axial intended bending direction. The fixed-length restraint on the inner side of the balloon's axial intended bending direction could be reinforced ribs positioned on the inner side of the balloon's axial bending direction. The fixed-length restraint on the inner side of the balloon's axial intended bending direction could be lines fixed at both ends of the balloon. The radial restraint of the balloon could be achieved by using a mesh or sleeve with a fixed or limited diameter, or even by utilizing another balloon with a fixed diameter. The radial restraint of the balloon could also be achieved by modifying specific regions of the balloon to increase the modulus and stiffness of those regions.
An optimal approach for radial restraint or limiting of the balloon is a woven mesh around the outer circumference of the balloon. This woven mesh exhibits different stretching properties in the radial and axial directions. The longitudinal threads of the mesh possess a strong elastic modulus that resists radial expansion and maintains a fixed diameter. Meanwhile, the latitudinal threads of the woven mesh offer elasticity, enabling the mesh to have stretching characteristics in the axial direction. The weaving method or pattern of the mesh involves denser longitudinal threads and sparser latitudinal threads. The two ends of the woven mesh are fixed to the two ends of the balloon. The mesh is initially in a folded and rolled configuration along with the balloon. During use, as the balloon on the balloon catheter inflates and bends, the woven mesh follows the bending. Once the diameter of the balloon reaches the preset diameter of the woven mesh, even if the balloon is further inflated, its diameter no longer changes. The latitudinal threads of the woven mesh consist of multiple segments of short threads, resulting in a structure of segmented woven mesh. The segmented woven mesh features several complete latitudinal threads on the inner side of the balloon's axial intended bending direction, acting as fixed-length restraints. The woven mesh has one or a few nearby latitudinal threads replaced with longitudinal threads of the same material on the inner side of the balloon's anticipated axial bending direction. The material used for the balloon is an anisotropic material, with a lower elastic modulus in the axial direction and a higher elastic modulus in the radial direction. After the formation of the balloon, a series of radial reinforcement ribs or a reinforcement mesh is applied externally. A polymer membrane is applied externally to the radial reinforcement ribs or reinforcement mesh to secure them in place or for fixing them with respect to the balloon.
Furthermore, the radial restraint of the balloon involves embedding a woven mesh within the balloon. Both the inner and outer sides of the balloon are made of thermoplastic elastomeric material, encapsulating the woven mesh.
Additionally, the radial restraint of the balloon involves the external sheathing of the balloon with a memory metal mesh possessing a memory of a contracted or predetermined shape. The diameter of the memory metal mesh contracts back to its original state or shape. In the axial intended bending direction of the balloon, the memory metal mesh maintains at least one fixed-length memory metal wire on the inner side.
The advantageous effect of this device is the addition of a radial restraint to the balloon while allowing unrestricted axial expansion. This ensures that the balloon no longer expands in the radial direction once it reaches a predetermined diameter. As a result, the balloon's expansion tendency is concentrated more in the axial direction, effectively increasing the balloon's bending curvature and stiffness. The significance of this lies in significantly enhancing the balloon's bending capability, and over time, the bending force of the balloon does not diminish, ensuring the effectiveness of esophageal traction with the balloon.
To make the aforementioned objectives, features, and advantages more clearly understandable, the following text provides a detailed explanation of a preferred embodiment, accompanied by the attached diagrams:
In order to provide a clearer understanding of the specific embodiments of the present invention or the technical solutions in the prior art, a brief introduction to the accompanying drawings required for the description of specific embodiments or existing techniques is provided below. It is evident that the accompanying drawings in the following description depict certain embodiments of the present invention. Those skilled in the art will recognize that, without departing from the spirit of this invention, additional variations can be derived based on these drawings without the necessity for inventive effort.
The technical solutions in the embodiments of the present device will be clearly and completely described below in conjunction with the accompanying drawings. Obviously, the embodiments described are only a portion of the embodiments of the present device and not all of them. The components of embodiments of the present device generally described and illustrated in the accompanying drawings herein may be arranged and designed in a variety of different configurations. Accordingly, the following detailed description of embodiments provided in the accompanying drawings is not intended to limit the scope of the present device for which protection is claimed, but rather represents only selected embodiments of the present device. Based on the embodiments of the present device, all other embodiments obtained by a person skilled in the art without creative labor are within the scope of protection of the present application.
The solution of this device involves adding a radial constraint to the balloon, without imposing any restrictions axially. This prevents the balloon from expanding in the radial direction when it reaches a predetermined diameter, focusing the expansion of the balloon more on or in its axial direction. This effectively increases the curvature and bending stiffness of the balloon.
One approach is as follows: use a semi-compliant balloon to create an eccentrically positioned balloon relative to the axis. Subsequently, a diameter restriction is applied to the balloon in the radial direction. As the balloon inflates to the intended final diameter, expansion in the radial direction ceases, while expansion along the axial direction remains unrestricted, allowing the balloon to maintain continuous curvature. Over time, this approach enables the balloon to retain its curvature and bending strength.
Another approach is as follows: first use a semi-compliant balloon to create an eccentrically positioned balloon relative to the axis. Then, impose a restriction on the diameter of the balloon in the radial direction, while applying a fixed-length constraint on the inner side in the axial intended bending direction, without any restriction on the outer side in the axial intended bending direction. Consequently, as the balloon's diameter increases to the predetermined size, the balloon's diameter is restricted while reinforcing the limitation on the length of the inner side in the bending direction. This achieves the objective of enhancing bending force. At the same time, the length on the inner side in the axial intended bending direction is subjected to intensified restrictions, thereby achieving the aim of enhancing bending force.
The aforementioned diameter restriction on the balloon can involve using a mesh, sleeve, or another balloon with a fixed diameter. Alternatively, it can involve modifying certain regions of the balloon to enhance the modulus and stiffness of those areas. The axial restriction on the balloon can take the form of a reinforcing strip, a line or thread or strand affixed to the balloon, or a line or thread or strand secured at both ends of the balloon.
The following provides further detailed explanation of this invention, in order to enable professionals in the field to implement it based on the provided description.
First, please refer to
Next, please refer to
Furthermore, please refer to
The two ends of the woven mesh 15 are fastened to the two ends of the balloon 12. Simultaneously, the method or process of expelling fluid from within the balloon 12 and then folding and rolling up the mesh and balloon is employed to establish the folded and rolled configuration of the mesh and balloon as the initial state. By doing so, it ensures that the balloon catheter 13 can meet the transportability requirements of the balloon within the delivery channel before use. In the meantime, during usage, as the balloon within the balloon catheter 13 expands and bends, the woven mesh follows the curvature. Once the diameter of the balloon reaches the predetermined diameter of the woven mesh, even if the balloon is further inflated, the diameter of the balloon remains constant, effectively constraining the balloon from expanding further in the radial direction. This reinforcement enhances the balloon's elongation along the axial direction.
As the balloon 12 inflates and bends, the stretching side of the balloon, due to the segmented weft threads, is not constrained by the entire length of a single weft thread. This allows it to freely expand along the axial direction. Meanwhile, in the radial direction, the inflation of the balloon encounters the warp threads 61 of the woven mesh 25, imposing radial limitations. Consequently, this imparts greater deformation to the axial expansion of the balloon, enabling it to maintain curvature and stiffness.
A further enhancement option in this device is to add a fixed-length strut or rib on the inner side of the expected bending direction of the balloon in the above-mentioned design. This would introduce a fixed-length constraint to the inner side of the balloon in the intended axial bending direction.
Referring back to
As the balloon inflates, there is significant friction between the balloon and the woven mesh 15, creating a relatively fixed relationship. As the balloon bends, the length of the inner side 18 in the expected axial bending direction is fixed both by the balloon catheter 13 and the warp threads on the inner side 18 in the expected axial bending direction. This ensures that the difference in length between the inner side 18 in the expected, anticipate or intended axial bending direction and the elongation side 17 does not decrease over time, thereby maintaining the ability to retain the curvature and bending force of the balloon catheter 1.
Referring back to
Referring back to
While the embodiments of the present retractor device have been disclosed as above, they are not limited to the specifications and embodiments provided. They can be applied to various fields suitable for the present device. Those skilled in the art can easily make additional modifications. Therefore, within the general concept defined by the claims and their equivalents, the present device is not limited to specific details and illustrations shown and described here.
Number | Date | Country | Kind |
---|---|---|---|
202110190768.X | Feb 2021 | CN | national |
PCT/CN2021/109615 | Jul 2021 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/109615 | 7/30/2021 | WO |