The present invention relates to an intravascular medical system. In particular, the present invention is directed to an improved balloon catheter with venting of residual air in a proximal direction.
Balloon catheters are widely used in connection with a variety of intravascular medical procedures or treatments. Typically, a fluid or liquid under pressure is injected into an inflation lumen of the catheter in order to inflate the balloon. Prior to being introduced into the body, the balloon catheter is prepped by the physician or interventionalist correctly following a multi-step process to properly purge residual air from the inflation lumen and balloon. Specifically, the purging of air from the inflation lumen prevents an air embolism from entering the vasculature system in the case of leak or rupture of the balloon. Furthermore, residual air is also purged from the balloon itself to insure inflation of the balloon using a desired volume of inflation medium that might otherwise be inaccurate due to the compressed unknown volume of residual air within the balloon.
One common technique for purging residual air from a balloon catheter prior to introduction into the body is by applying a vacuum or negative pressure to the proximal end of the inflation lumen using a syringe or vacuum and drawing out as much air as possible proximally through the inflation lumen. Then the syringe vacuum is closed off via a valve (e.g., a three-way luer valve) and the inflation lumen is opened under vacuum allowing the dispensing of the inflation medium therethrough and into the balloon. During injection of the inflation medium, the balloon is preferably held vertically with a downward inclination to promote air to exhaust allowing the residual air within the catheter to rise through the inflation medium towards an inflation port. The inflation medium and some air bubbles are withdrawn from the catheter, and additional inflation medium is again injected. It is not uncommon for these steps to have to be repeated multiple times to adequately purge the catheter of the residual air, requiring a substantial amount of preparation time. With each iteration these steps must be correctly followed.
In angiographic balloon catheter systems, the device is configured so that the residual air from the inflation lumen and balloon is exhausted via a distal vent, rather than proximally.
Since the prepping steps are numerous and time consuming, physicians and interventionalist may be discouraged from using the device altogether. Those physicians or interventionalist that use the device, may unintentionally omit from following the proper prepping steps or do so improperly after introducing the balloon catheter into the body resulting in potential health risks to the patient.
It is therefore desirable to design an improved balloon catheter and method for use of such improved balloon catheter with venting of residual air in a proximal direction while minimizing the steps associated therewith thereby promoting use of the device.
An aspect of the present invention relates to an improved balloon catheter with venting of residual air in a proximal direction.
Another aspect of the present invention is directed to a balloon guide catheter system including a balloon guide catheter. The balloon guide catheter has a catheter shaft with a proximal end and an opposite distal end; wherein the catheter shaft includes: (i) a main lumen defined axially through the catheter shaft; (ii) an inflation lumen extending axially along the catheter shaft; the inflation lumen having a proximal end, an opposite terminating distal end;
and (iii) an exhaust lumen extending axially along the catheter shaft, the exhaust lumen having a proximal end and an opposite terminating distal end. The terminating distal end of the inflation lumen and the terminating distal end of the exhaust lumen are in localized fluid communication with one another underneath the balloon while in a non-inflated state. In addition, the balloon guide catheter further includes a balloon disposed about a distal region of an outer surface of the catheter shaft, wherein the exhaust lumen is configured to purge the residual air in a proximal direction and out from a proximal region of the balloon guide catheter.
Still another aspect of the present invention is directed to a method for using a balloon guide catheter system as described in the preceding paragraph. The method including the step of dispensing an inflation medium through an inflation port of a hub connected to the proximal end of the catheter shaft and into the inflation lumen. The inflation medium is advanced distally through the inflation lumen pushed by the dispensed inflation medium, causing the residual air to be exhausted proximally through the exhaust lumen exiting from the terminating distal end of the inflation lumen. The residual air being expelled through a membrane permitting passage therethrough of only the residual air and out from a proximal region of the balloon guide catheter.
The foregoing and other features of the present invention will be more readily apparent from the following detailed description and drawings illustrative of the invention wherein like reference numbers refer to similar elements throughout the several views and in which:
The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician or medical interventionalist. “Distal” or “distally” are a position distant from or in a direction away from the physician or interventionalist. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician or medical interventionalist. The terms “occlusion”, “clot” or “blockage” are used interchangeably.
The present inventive balloon catheter has multiple lumens arranged in the outer wall of the catheter radially outward relative to a main lumen that receives a guidewire therethrough. Specifically, there is at least one inflation lumen and at least one exhaust/venting lumen, each extending axially in the outer wall of the catheter from the hub to the balloon. Respective distal ends of the inflation lumen and exhaust/venting lumen are in localized fluid communication with one another. The diameter size of the main lumen of the device is sufficient to serve as a conduit for guidewire(s) (e.g., 0.014″, 0.018″, 0.035″ & 0.038″ guidewires) as well as ancillary devices such as; accommodating microcatheters, mechanical thrombectomy devices, diagnostic catheters, intermediate catheters/aspiration catheters during the procedure. Preferably, the main lumen has a diameter of approximately 0.088″.
Regardless of the particular configuration, the present inventive balloon catheter purges, exhaust or vents residual air in a proximal direction from the balloon catheter.
Referring to the perspective view of the present inventive balloon catheter 100 depicted in
Arranged axially or longitudinally through the balloon catheter 100 starting from the proximal end 105 are at least three separate, distinct, independent lumen, namely a main/guidewire lumen 123, an exhaust lumen 120 and an inflation lumen 125. The exhaust and inflation lumen 120, 125 are arranged radially outward relative to the main/guidewire lumen 123. In addition, the main/guidewire lumen 123 extends from the proximal end 105 to the opposite distal end 110, while respective terminating distal ends of the exhaust lumen 120 and inflation lumen 125 terminate beneath the balloon 115 (coincide with the balloon), as is clearly visible from the enlarged partial view of the distal end of the catheter in
Preferably, proximate the terminating distal end of the exhaust lumen 120 is a microporous membrane or filter 121. Pores of the microporous membrane are sized to permit only the passage of gas (e.g., residual air) therethrough, liquid (inflation medium) dispensed through the inflation lumen is prevented from permeating through the microporous membrane allowing the pressure within the inflation lumen to build-up and inflate the balloon as the volume within the balloon fills with the inflation medium. Preferably, the microporous membrane is a certain grade (based on porosity and thickness) of sintered polytetrafluoroethylone (PTFE), for example, expanded polytetrafluoroethylene (ePTFE) that permits the passage of air molecules therethrough but acts as a barrier to larger higher cohesive molecules such as water and contrast agent. Such microporous membrane may also prevent air-locking of the exhaust lumen and improper operation of the catheter.
In operation of the present inventive balloon catheter, inflation medium (preferably, 50% contrast saline solution) is introduced into the catheter using a syringe or other dispensing device attached to the inflation port of the hub. The inflation medium travels through the inflation lumen and into the deflated balloon. A microporous membrane located at the interface of the balloon and exhaust lumen has pores that are sized to prohibit the passage therethrough of the inflation medium, allowing only the residual air to pass out of the balloon and through the exhaust lumen. As the balloon fills with the inflation medium it inflates. Coinciding with the inflation of the balloon, the pressure inside the balloon increases causing the residual air in the balloon to be automatically exhausted or vented in a proximal direction through the exhaust lumen. At the hub, the residual air exiting from the balloon catheter may be controlled using a sealable 1-way exhaust valve and/or the purged residual air can be stored in an inflatable or expandable purge lung thereby removing the residual air from the system and storing it outside of the body in the hub by taking advantage of the fact that it is compressible.
By way of non-limiting example, numerous configurations of one or more exhaust lumen and one or more inflation lumen, each arranged radially outward from the main lumen in the balloon catheter 100 are shown and described. Additional configurations are possible and within the intended scope of the present invention with the common feature among the different configurations that the residual air is exhausted through the exhaust lumen in a proximal direction, rather than in a distal direction, from the catheter. Several exemplary designs of the exhaust and inflation lumen as well as their arrangement relative to one another in the balloon catheter are illustrated in
Alternative arrangements or configurations of the terminating distal ends of the respective exhaust and inflation lumen within the localized fluid communication channel 475 radially outward from the main/guidewire lumen 423 are depicted in the different radial cross-sectional views in
A top view of a section of the catheter shaft (without the balloon) shown in
The position of the inflation lumen 425 within the first localized fluid communication channel 475 in
In
Furthermore, to minimize kinking of the catheter in an axial direction during advancement through the vasculature, a reinforcing inner sheath or sleeve 645 may be provided between the main lumen 623 and the inflation lumen 625, radially inward of the reinforcing member. Preferably, inlet opening 630 is disposed distally in an axial direction relative to that of the outlet opening 635. As is illustrated in the radial cross-sectional view of
Yet another exemplary configuration of the balloon catheter 900 in accordance with the present invention is represented by the partial axial cross-sectional view of the distal end of the catheter in
In each of the different exemplary configurations illustrated in
The localized fluid communication channel 1075 underneath the balloon is designed so that both lumens (the exhaust lumen 1020 and the inflation lumen 1025) communicate allowing residual air and inflation medium to flow out from the terminating distal end of the inflation lumen and into the terminating distal end of the exhaust lumen.
Deflation of the balloon is achieved by attaching a vacuum (e.g., syringe) to the inflation port 1040 creating a negative pressure within the catheter. When it is time to deflate the balloon, valve 1095 is oriented to close off flow to the exhaust port 1045. Upon application of a vacuum or suction (e.g., syringe) attached to the inflation port 1040 creating a negative pressure within the catheter the inflation medium exhausted from the exhaust lumen is redirected into the bridge fluid communication channel 1090, combining with the inflation medium vented through the inflation lumen and out from the inflation port 1040. This unique hub configuration and, in particular, the orientation or positioning of the valve during deflation to close off the exhaust port 1045, upon application of a vacuum to the inflation port provides for the removal of inflation medium simultaneously through both inflation and exhaust lumens thereby optimizing deflation of the balloon.
Preferably, the configuration of the hub 1030 is optimized by minimizing its overall axial length in order to minimize cost of manufacture as well as minimize the unusable length of hub that other catheters go through. It is also contemplated to replace the 3-way manual valve 1095 with a spring-loaded or ball valve that is automatically actuated upon the introduction of a suction or vacuum applied to the inflation port 1040.
Exhausting of residual air from the present inventive balloon catheter is less complicated requiring less time to accomplish than conventional devices. In accordance with the present invention, air is automatically purged in the proximal direction from the balloon catheter. Specifically, preparation of the present inventive balloon catheter starts with inflation medium being passed through the inflation lumen which coincides with the residual air being purged, evacuated or exhausted from the system in a proximal direction via the exhaust lumen reducing preparation time. Furthermore, since the residual air is vented in a proximal direction safety concerns associated with purging air once the catheter has been introduced in the body have been eliminated.
The present inventive closed loop proximal venting system has several advantages. Since the residual air is vented in a proximal direction preparation of the device by the interventionalist may occur while the device is in the patient. Another benefit of the present inventive closed loop proximal design is that the inflation medium automatically expels the residual air/gas through the microporous membrane and out the exhaust lumen while the inflation medium is prevented from passing through the microporous membrane thereby causing the balloon to inflate and expand. Accordingly, the need for a valve or other mechanical device for causing the balloon to inflate once the residual air has been purged has been eliminated in accordance with the present invention.
Thus, while there have been shown, described, and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions, substitutions, and changes in the form and details of the systems/devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the invention. For example, it is expressly intended that all combinations of those elements and/or steps that perform substantially the same function, in substantially the same way, to achieve the same results be within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is also to be understood that the drawings are not necessarily drawn to scale, but that they are merely conceptual in nature. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Every issued patent, pending patent application, publication, journal article, book or any other reference cited herein is each incorporated by reference in their entirety.
This application claims the benefit of the following: U.S. Provisional Application No. 62/845,683, filed on May 9, 2019; U.S. Provisional Application No. 62/845,699, filed on May 9, 2019; U.S. Provisional Application No. 62/845,711, filed on May 9, 2019; and U.S. Provisional Application No. 62/845,747, filed on May 9, 2019, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4323071 | Simpson et al. | Apr 1982 | A |
4684363 | Ari et al. | Aug 1987 | A |
4715378 | Pope, Jr. et al. | Dec 1987 | A |
4753238 | Gaiser | Jun 1988 | A |
4793351 | Landman | Dec 1988 | A |
4811737 | Rydell | Mar 1989 | A |
4821722 | Miller et al. | Apr 1989 | A |
5035705 | Burns | Jul 1991 | A |
5100385 | Bromander | Mar 1992 | A |
5135486 | Eberle et al. | Aug 1992 | A |
5224933 | Bromander | Jul 1993 | A |
5256143 | Miller et al. | Oct 1993 | A |
5800421 | Lemelson | Sep 1998 | A |
6102891 | Maria van Erp | Aug 2000 | A |
6102931 | Thornton | Aug 2000 | A |
6709429 | Schaefer et al. | Mar 2004 | B1 |
6811559 | Thornton | Nov 2004 | B2 |
6953431 | Barthel | Oct 2005 | B2 |
6994687 | Shkolnik | Feb 2006 | B1 |
7160266 | Shkolnik | Jan 2007 | B2 |
7338511 | Mirigian et al. | Mar 2008 | B2 |
7678075 | Wantink et al. | Mar 2010 | B2 |
8298218 | Mahrouche | Oct 2012 | B2 |
8926560 | Dinh et al. | Jan 2015 | B2 |
9155869 | Ehrenreich et al. | Oct 2015 | B2 |
9463035 | Greenhalgh et al. | Oct 2016 | B1 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
10682152 | Vale et al. | Jun 2020 | B2 |
11202891 | Gulachenski et al. | Dec 2021 | B2 |
20030023204 | Vo et al. | Jan 2003 | A1 |
20040260329 | Gribbons et al. | Dec 2004 | A1 |
20050070881 | Gribbons et al. | Mar 2005 | A1 |
20050124932 | Foster et al. | Jun 2005 | A1 |
20050182359 | Chin et al. | Aug 2005 | A1 |
20060030814 | Valencia et al. | Feb 2006 | A1 |
20080200904 | Cluff | Aug 2008 | A1 |
20120265134 | Echarri et al. | Oct 2012 | A1 |
20130289549 | Nash et al. | Oct 2013 | A1 |
20140188043 | Shibahara | Jul 2014 | A1 |
20140257359 | Tegels et al. | Sep 2014 | A1 |
20150174363 | Sutermeister et al. | Jun 2015 | A1 |
20150224290 | Chanduszko et al. | Aug 2015 | A1 |
20160001040 | Yamaguchi et al. | Jan 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Grandfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180333192 | Sliwa et al. | Nov 2018 | A1 |
20190167287 | Vale et al. | Jun 2019 | A1 |
20190359786 | Trahan et al. | Nov 2019 | A1 |
20200246036 | Kallmes et al. | Aug 2020 | A1 |
20220143360 | Kugler et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2016168151 | Sep 2016 | JP |
2007139799 | Dec 2007 | WO |
2013163254 | Oct 2013 | WO |
2017192999 | Nov 2017 | WO |
Entry |
---|
Co-pending, co-owned, U.S. Appl. No. 16/601,256, filed Oct. 14, 2019. |
Co-pending, co-owned, U.S. Appl. No. 16/601,185, filed Oct. 14, 2019. |
Co-pending, co-owned, U.S. Appl. No. 16/601,202, filed Oct. 14, 2019. |
L.E. Romans, “The Use of Contrast Media in the CT Department”, CEWebsource.com, May 15, 2013 (50 pp). |
Number | Date | Country | |
---|---|---|---|
20200353229 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62845699 | May 2019 | US | |
62845747 | May 2019 | US | |
62845711 | May 2019 | US | |
62845683 | May 2019 | US |