According to the invention, the upper part of the mast passes vertically through the envelope to give the latter a static rigidity at the level of the diametrically opposed bottom pole and top pole, the mast being hollow and comprising at least one air outlet orifice in its upper part to perform inflation of the envelope by the electro-pneumatic means.
The document FR 2,754,040 describes a self-inflating lighting balloon wherein the inflating system comprises an air supercharger integrated inside the envelope. The balloon inflates and lights up automatically in about ten seconds. The balloon support is formed by a perch fixed to an external end-piece of the bottom pole of the envelope. The bulb is of the halogen type and is protected by a grid giving the balloon structure a mechanical rigidity effect. The diameter of the envelope is about 1 metre for a weight of a few kilos. The internal air pressure is substantially constant, due to continuous operation of the supercharger. Such a balloon presents small dimensions perfectly suitable for lighting work sites and emergency operations.
The object of the invention is to achieve an inflatable lighting balloon with an envelope of large volume having an optimum wind resistance regardless of the height of the mast.
According to the invention, the top part of the mast passes vertically through the envelope to give the latter a static rigidity at the level of the diametrically opposed bottom pole and top pole, the mast being hollow and comprising at least one air outlet orifice in its top part to perform inflation of the envelope by the electro-pneumatic means.
The balloon further comprises means for detecting the wind speed outside the envelope and a control circuit connected to the means for detecting the wind speed to control the electro-pneumatic means so as to make the internal inflation pressure of the envelope vary according to the wind speed. The control circuit is arranged to emit either an inflation pressure increase signal when the wind speed increases or an inflation pressure reduction signal when the wind speed decreases.
According to a preferred embodiment of the invention, the means for detecting the wind speed comprise an anemometer arranged at the top pole of the balloon. The mechanical static rigidity is advantageously completed by the self-regulated dynamic rigidity of the envelope due to modulation of the internal inflation pressure according to the wind speed. The twofold effect of static and dynamic rigidity of the envelope gives the balloon a very good wind resistance.
Other features can be used either separately or in combination:
Other advantages and features will become more clearly apparent from the following description of an embodiment of the invention, given as a non-restrictive example only, and represented in the accompanying drawings in which:
With reference to the figures, a balloon 10 for a lighted sign is composed of an envelope 12 inflatable by a gas and a vertical support mast 14 anchored to the ground by steel armatures 13.
The envelope 12 is made of translucent flexible plastic material having a pre-determined volume after inflation, for example a spherical or elliptic shape. The filling gas is air blown inside the envelope 12 by electro-pneumatic blowing means 15 notably comprising an electric fan 16 or compressor. Any other filling gas can be used.
The metal mast 14 is hollow over its whole height and preferably has an upwardly decreasing cross-section. It is formed by one or more aluminium or steel sections, the upper part 14A whereof passes through the envelope 12 in the vertical diametrical direction.
The bottom pole 18 of the envelope 12 acts as traverse for the mast 14 and comprises for this purpose two half-flanges 20A, 20B of semi-circular shape joined to a pair of zip fasteners 22A, 22B. Opening of the zip fasteners 22A, 22B (
The top pole 26 of the envelope 12 is equipped with a positioning washer 28 (
The upper part 14A of the mast 14 situated inside the envelope 12 between the two poles 26, 18 is equipped with at least one electric lamp 36 (four in the example of
The lighting lamps 36 can be of the electromagnetic radiation, discharge in a gas, or incandescent bulb type. Electrical connections (not shown) inside the mast 14 connect the lamps 36 and the control circuit 34 to a power supply cabinet 40 located at the foot of the mast 14.
The cabinet 40 contains the variable airflow fan 16, the monitoring and protection circuits, and the power circuit of the lamps 36. The fan 16 is equipped with an air inlet orifice 42 at atmospheric pressure and with an outlet duct 44 passing through the rear wall of the cabinet 40 and ending up inside the mast 14, through which there thus passes an upward flow of pressurized air (see arrow F,
Inflation of the envelope 12 is performed via at least one outlet orifice 46 provided in the upper part 14A of the mast 14, preferably above the lamps 36.
The foot of the mast 14 contains a compartment 47 wherein there is housed a ballast and starting circuit 48 of the lamps 36. The compartment 47 is at atmospheric pressure, being separated from the internal duct of the mast 14 by a foam plug 50. Maintenance of the ballast and starting circuit 48 can thus be performed without stopping pressurization of the envelope 12.
Operation and implementation of the lighting balloon 10 according to the invention are as follows:
When installation of the balloon 10 is performed, the zip fasteners 22A, 22B of the envelope 12 are opened for the upper part 14A of the mast 14 to pass through.
At the level of the poles 18, 26, the twofold securing of the envelope 12 on the opposite ends of the pass-through mast 14A enables the balloon 10 to be given a static rigidity which secures the envelope 12 firmly to the mast 14. In the closed position of the zip fasteners 22A, 22B, the envelope 12 is not totally tight and allows a small amount of air to escape when the fan 16 operates. The air is drawn in from the outside environment through the inlet orifice 42 and discharged to the inside of the envelope 12 by means of the outlet duct 44 and the outlet orifice 46 of the mast 14. In the inflated state of the envelope 14 (
This mechanical static rigidity is advantageously completed by a self-regulated dynamic rigidity of the envelope 12 due to modulation of the internal inflation pressure according to the wind speed. The anemometer 32 at the top of the balloon 10 cooperates with the control circuit 34 to transmit to the fan 16 either an inflation pressure increase signal when the wind speed increases or a reduction signal of said pressure when the wind speed decreases. The speed of the drive motor of the fan 16 simply has to be adjusted to make the air flow injected into the envelope 12 vary.
The diameter of the envelope 12 can reach 5 metres for a mast 14 having a height of 10 metres. The twofold static and dynamic rigidity of the envelope 12 gives the balloon 10 a very good wind resistance.
Number | Date | Country | Kind |
---|---|---|---|
02 17064 | Aug 2002 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3592157 | Schwartz | Jul 1971 | A |
4167034 | Noguchi | Sep 1979 | A |
5499941 | Penjuke, Sr. | Mar 1996 | A |
6012826 | Chabert | Jan 2000 | A |
Number | Date | Country |
---|---|---|
0 771 729 | May 1997 | EP |
2754040 | Apr 1998 | FR |
2801092 | May 2001 | FR |
WO 0152453 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040042217 A1 | Mar 2004 | US |