The invention herein resides in the art of inflation devices and relates to a balloon inflator that employs a bypass motor having separate working air and motor cooling air paths. The invention further relates to a balloon inflator having a fill nozzle and a plurality of adaptors that fit on said fill nozzle to fill different types of balloons. The invention also relates to a balloon inflator having at least one switch actuated by at least one adaptor in order to change the operating parameters of the balloon inflator.
Various types of balloon inflators have previously been known. Typically, such inflators incorporate a through-flow motor which draws air from the surrounding atmosphere and exhausts it through an air duct providing an inflation nozzle adapted to receive the neck of a balloon. Accordingly, the air used for inflating the balloon is the same air that is drawn through the motor to cool it. As the motor works, its temperature rises. This is aggravated by the use of narrow inflation nozzles to receive the balloon neck. The narrow nozzle restricts the air flow and accordingly raises the motor temperature. This is particularly true when a large number of balloons are being inflated in succession, for each balloon constitutes a motor load that varies as the balloon inflates. As a result, the motors of such inflators are given to quick wear-out after operating at continuously high temperatures. Furthermore, as the temperature of the motor rises, the balloons are inflated with increasingly warmer air, and, as a result, after the balloon is inflated and the neck sealed, the balloon deflates as the warm air cools and provides less pressure.
To address this problem the art has provided an inflator employing a bypass motor that drives a fan held within a fan chamber to provide working air (i.e., air for inflation), and separates this working air from motor cooling air, resulting in an inflator that exhibits less heat build up. This balloon inflator is provided in U.S. Pat. No. 5,199,847, which establishes the state of the art of balloon inflators at this point in time. However, the balloon inflator taught by this prior patent, while constituting an improvement over its prior art, is herein improved to provide a balloon inflator adapted to fill different types of balloons, including latex balloons, small foil balloons lacking self-sealing valves, and larger foil balloons that include self-sealing valves in their neck portion.
The balloon inflator of U.S. Pat. No. 5,199,847 typically provides inflation pressures of from 80 to 95 inches of water (4° C.). While such pressures are suitable for most latex balloons and small foil balloons lacking self-sealing valves, it has been found that these pressures can force the self-sealing valve out of the neck of a large foil balloon. Thus, the prior art has failed to provide a single balloon inflator unit that can safely fill multiple types of balloons, including particularly latex balloons, small foil balloons, and large foil balloons including self-sealing valves.
Additionally, the prior art balloon inflator of U.S. Pat. No. 5,199,847 has been found to suffer from the high temperature problem previously disclosed herein. That is, despite of the employment of a bypass motor, continuous operation of the prior art balloon inflator can result in a raising of the bypass motor temperature to a point where the air filling the balloons is too warm, and, as a result, there is still a potential for balloons to deflate to some extent after the initial inflation. This is been found to be particularly true with larger foil balloons, such that there is a particular need for a balloon inflator that will adjust its operating parameters in accordance with a particular type of balloon being inflated. Currently, the need is most appreciated with respect to large foil balloons wherein high operating pressures have been shown to blow the self-sealing valve out of the balloon neck, and high operating temperature have been found to result in a deflation of the balloon after the initial inflation.
The prior art balloon inflator of U.S. Pat. No. 5,199,847 provided a fan inside of an involute to provide air to an inflation nozzle at the top of the inflator housing. This nozzle was free-floating with respect to a collar portion of the housing, and could be made to assume two positions, a first, lowered position in which the nozzle engaged the involute to receive all of the inflation air generated by the fan, and second, raised position in which the nozzle was raised off of the involute such that a portion of the inflation air generated by the fan would exit the involute in the interior of the housing and travel down through the housing, over the fan motor, and out a bottom exhaust. A portion of the air would also exit through the inflation nozzle. This movable nozzle was provided to aid in keeping the operating temperature down by limiting the amount of resistance encountered by the fan motor, but it has been found still to be too restrictive since the air to be exhausted must still travel through the housing to exit at the bottom exhaust.
In one embodiment of this invention, a balloon inflator includes a housing, a motor within the housing, and a fan operable by the motor to drive air to an inflation nozzle. The inflation nozzle provides an outlet. A nozzle adaptor is configured to fit over the outlet of the inflation nozzle and provide an alternate outlet. A nozzle receipt is provided by the housing to selectively receive the nozzle adaptor and a switch is provided at the nozzle receipt. The nozzle adaptor is selectively received at the nozzle receipt so as to trigger the switch, and is selectively removed from the nozzle receipt so as to not trigger the switch. The switch controls the power supplied to the motor, such that different motor operating parameters are realized when the switch is triggered and when the switch is not triggered.
In another embodiment, a balloon inflator includes a housing, a motor within the housing, and a fan operable by the motor to drive air to an inflation nozzle, the inflation nozzle having an outlet. A nozzle adaptor is configured to fit over the outlet of the inflation nozzle and provide an alternate outlet for the air driven by the fan. The nozzle adaptor includes vent channels that exhaust a portion of the air to the atmosphere when a balloon is fitted over the alternate outlet to receive air driven through the nozzle and the nozzle adaptor.
For a complete understanding of the objects, techniques and structure of the invention, reference should be made to the following detailed description and accompanying drawings wherein:
Referring now to the drawings and more particularly
Notably, housing 12 is formed of three pieces, with the inflation nozzle 17 being movable on a spring 13 relative to its receipt in the nozzle receipt portion 15 formed by the first housing portion 14 and second housing portion 16. This construction, having only three major pieces and a spring, yields a balloon inflator 10 that operates at reduced noise levels inasmuch as there are few construction parts to be joined together. Each joinder of a construction part provides a potential area for leaks that would increase noise production and lead to a loss of power. Thus, this simple three piece construction leaks less and provides benefits respecting noise and power production.
The housing 12 is preferably a molded plastic housing defining a cavity 19 for receiving and maintaining a bypass motor 20 therein. Support members, such as those indicated at 21, in
With reference to
With reference to
At full power, the bypass motor 20 preferably operates at between 500 and 800 watts, more preferably, between 550 and 700 watts, and, in a particular embodiment, bypass motor 20 operates at about 600 watts (plus or minus about 10%). At full power, the bypass motor 20 preferably drives the fan 22 to generate pressures of from 80 to 95 inches of water (4° C.) at the outlet 32. In other preferred embodiments, the bypass motor 20 generates pressures of from 82 to 90 inches of water (4° C.), and, in a particular embodiment, the bypass motor 20 generates a pressure of from about 80 to 85 inches of water (4° C.). A less than full power operation is disclosed herein below.
It should now be readily appreciated by those skilled in the art that only ambient air drawn through the intake opening 26 and into the fan chamber 24 is introduced into the interior of a balloon received upon the inflation nozzle 17. No motor cooling air is allowed to enter the balloon. By selecting the motor 20 to be a bypass motor, keeping motor cooling air and working air separated, the air introduced into the interior of the balloon is maintained closer to ambient temperature, such that the risk of shrinking upon cooling is significantly reduced and the life of the motor is extended by avoiding excessive overheating.
Those skilled in the art will also appreciate that the bypass nature of motor 20, separating the working air and motor cooling air, greatly reduces the operating temperature of the motor 20. Similarly, separation of the cooling air inlet 32 from the exhaust vent 36 also reduces the operating temperature. Accordingly, the balloon inflator 10 may run continuously without the excessive heat buildup characteristic of inflators using standard through flow motors. Such prior inflators typically required cool down times of 10-15 minutes for every 20-25 minutes of use, such a duty cycle being ineffective and a waste of costly inflation time. The balloon inflator 10 improves usage efficiency over the flow through motor prior art and allows continuous motor use without excessive heat buildup.
In accordance with particularly preferred embodiments of this invention, the fan chamber 24 is provided in the form of an involute. Those skilled in the art will understand that as the working air decelerates from the fan 22, it trades velocity for air pressure. Such a trade-off in an involute is extremely efficient. As the working air passes through the fan chamber 24, it passes to areas of increasing cross sectional area (see
The inflators of this invention also benefit from the provision of means for providing for various operation parameters, allowing for the selection of different air pressures for various balloons to be inflated. For example, for reasons already provided in the background section above, larger foil balloons with self-sealing valves should be inflated at a lower pressure or rate than latex balloons or smaller foil balloons without self-sealing valves. Accordingly, this balloon inflator 10 provides means for controlling the speed of the motor 14 and thus the pressures and temperatures produced thereby.
It should be appreciated that a balloon, particularly a latex balloon, can be fitted directly over the outlet 32 of the inflation nozzle 17. However, in order to further facilitate the filling of various types and sizes of balloons, various nozzle adaptors are provided. This embodiment provides three different nozzle adaptors, identified as nozzle adaptors 50A, 50B, and 50C. These nozzle adaptors 50A, 50B, 50C sealingly engage inflation nozzle 17, at inlet ends 51A, 51B, 51C, and taper to narrow outlet ends 53A, 53B, 53C to provide alternate outlets 52A, 52B, 52C, respectively. It will be appreciated that the different shapes provide for interaction with different types and sizes of balloons. To ensure that such nozzle adaptors 50A, 50B, 50C do not become lost or misplaced, housing 12 includes a plurality of adaptor holders 54A, 54B, 54C that securely retain a respective accessory inflation nozzle 50A, 50B, 50C. More particularly, as seen in
As best seen in
In this embodiment, nozzle adaptor 50C is provided to fill large foil balloons, and includes a tab 56C that is adapted to fit under a flange 60 provided in holder 54C. Placing the tab 56C under the flange 60 forces a switch actuator 62 downwardly to change the operating parameters of the balloon inflator 10. More particularly, a switch 64 is provided in the interior of the housing 12, and this switch 64 provides the switch actuator 62 that extends upwardly through the housing 12 to be exposed at holder 54C, under the flange 60. By inserting the nozzle adaptor 50C over its post P at holder 54C and rotating the adaptor 50C in the direction of arrow A, the tab 56C forces the switch actuator 62 downwardly to close a momentary snap-action switch 64. With reference to
So long as the nozzle adaptor 50C is received at holder 54C to depress the actuator switch 64, turning the rocker switch 84 on or pressing downwardly on the inflation nozzle 17 causes the motor 20 to operate at full power, with the entire wave form of the alternating current (AC) passing through switch 64 and either switch 84 or switch 66 as the case may be. When the nozzle adaptor 50C is removed from holder 54C, the switch actuator 62 raises, opening switch 64 to thereby force the current through a diode D1. The diode D1 permits only half of the wave form of the alternating current to pass through the circuit to energize the motor, dependant upon the state of either switch 66 or switch 84. This lowers the heat and pressure generated by the motor 20 and the fan 22, and also decreases power consumption. The pressure is lowered approximately 50%. Thus the inflating air is presented to the balloon at a decreased temperature and pressure. This lowering of the pressure and temperature is associated with the removal of the nozzle adaptor 50C since that nozzle adaptor 50C is to be used to fill the larger foil balloons having self-sealing valves. It will be recalled that the large foil balloons can be negatively impacted by the introduction of air at too high of a pressure or too high of a temperature, and, thus, limiting the pressure and temperature when an adaptor 50C is removed from its holder 54C and placed on an inflation nozzle 17 is very beneficial.
In accordance with other embodiments of this invention, one or more of the nozzle adaptors are altered to provide further pressure and heat reduction. In
It should be appreciated that, while the vent channel concept is shown as employed to alter the large foil balloon adaptor 50C, it could be employed with other adaptors, such as 50A or 50B, as well. Such alteration would cause those adaptors to yield inflating air at lower pressure and temperature, even though the adaptor 50C might still be actuating switch 64 to operate the motor at full power.
In yet another embodiment of this invention, as shown in
When the balloon is removed from the outlet 228 and backpressure is thereby reduced, a venturi effect is realized, and cool air is drawn in from the atmosphere at outlets 226, as generally represented at arrows D. This helps to flush out warm air generated from the motor and built up during a backpressure situation.
In light of the forgoing, it should be apparent that this invention provides advancements in the art of balloon inflators. Particular concepts disclosed herein may be practiced alone or in combination with other features, and this invention is not limited to or by any particular embodiment disclosed. The claims will serve to define the invention.
Number | Date | Country | |
---|---|---|---|
61192422 | Sep 2008 | US |