1. Field of the Invention
The present invention relates to a lacrimal insert, and more particularly to a lacrimal insert such as a punctal plug comprising an inflatable and deflatable structure such as a balloon to anchor the punctal plug in the lacrimal canaliculus.
2. Discussion of the Related Art
Insufficient tears, or “dry eye” is a common condition caused by the insufficient production of tears from the lacrimal gland which causes symptoms such as dryness, redness, burning, reflex tearing, itching, or foreign body sensation. In especially difficult cases of dry eye, a lacrimal insert or punctal plug may be placed into one or both of the lacrimal puncta. Punctal plugs prevent the tears, which are being produced in deficient volume by the lacrimal gland, from draining into the lacrimal canaliculi.
The corner of each eye is called a canthus, with the nose side called the nasal canthus and the temporal side called the temporal canthus. At the lower and upper eyelid margins of the nasal canthus are small openings called puncti or puncta. As used herein, both puncti and puncta shall be understood to be the plural form of punctum. Each punctum drains tears from the eyes. A punctal plug or occluder is an ophthalmic device for insertion into a punctum of an eye in order to treat one or more disease states. Typically, a punctal plug is positioned to block tear drainage thereby helping treat dry eyes. Punctal plugs may also be utilized for sustained release of medication to the eye for the treatment of a wide variety of ocular diseases.
In order to treat infection, inflammation, glaucoma, and other ocular diseases, drugs are often required to be administered to the eye. A conventional method of drug delivery is by topical application to the eye's surface. The eye is uniquely suited to this surface route of drug administration because, properly constituted, drugs can penetrate through the cornea, rise to therapeutic concentration levels inside the eye, and exert their beneficial effects. In practice, eye drops currently account for more than ninety-five (95) percent of drug delivery methods for the eye. Rarely are drugs for the eye administered orally or by injection, either because they reach the eye in too low a concentration to have the desired pharmacological effect, or because their use is complicated by significant systemic side effects.
Eye drops, though effective, are unrefined and inefficient. When an eye drop is instilled in the eye, it typically overfills the conjuctival sac, the pocket between the eye and the eyelids, causing a substantial portion of the drop to be lost due to overflow of the eyelid margin onto the cheek. In addition, a substantial portion of the drop remaining on the ocular surface is washed away by tears into the tear drainage system, thereby diluting the concentration of the drug. Not only is this share of the drug dose lost before it can cross the cornea, but this excess drug may be carried into the nose and throat where it is absorbed into the general circulation, sometimes leading to serious systemic side effects. The small portion of the drug in the eye drop which does penetrate the cornea results in an initial peak tissue concentration, a higher level than is required for the initial pharmacological effect. This tissue concentration then gradually decreases, such that by the time the next eye drop is due, the tissue concentration and the intended pharmacological effect may be too low.
To compound the problems described above, patients often do not use their eye drops as prescribed. Often, this poor compliance is due to an initial stinging or burning sensation caused by the eye drop. Certainly, instilling eye drops in one's own eye can be difficult, in part because of the normal reflex to protect the eye. Older patients may have additional problems instilling drops due to arthritis, unsteadiness, and decreased vision, and pediatric and psychiatric patient populations pose difficulties as well. Accordingly, punctal plugs provide a viable means for solving the problems of reliable and efficient drug delivery to the eye.
Punctal plugs may be of the temporary variety or of the permanent variety. Temporary punctal plugs are usually fabricated from collagen or other similar material and are dissolvable. Temporary punctal plugs may be utilized for short duration treatment or to gauge how an individual will react to having the insert placed, for example, will the device cause excessive tearing. Permanent punctal plugs are for long term use and are removable at any time. Permanent punctal plugs are available in various sizes with the largest size that fits providing maximum effectiveness. Permanent punctal plugs are typically made of silicone rubber.
A punctal plug typically includes a body portion sized to pass through a lacrimal punctum and be positioned within a lacrimal canaliculus of the eyelid. The punctal plug also comprises a collarette connected to the body portion and sized to rest on the exterior of the lacrimal punctum. The term lacrimal punctum and lacrimal canaliculus are often utilized interchangeably; however, as used herein, the punctum means the opening and the canaliculus is the passageway or duct-like pathways that lead to the lacrimal sac. If the punctal plug is used to deliver therapeutic agents to the eye, then the body portion may comprise a reservoir for holding the therapeutic agents and the collarette may comprise an opening in communication with the reservoir through which the therapeutic agents are released.
The anatomy of the drainage system of the human eye may vary slightly from one individual to another and may vary from one eye to another. Accordingly, punctal plugs may be manufactured in a number of sizes.
However, regardless of the number of different sizes available, no one size fits all. In addition, a reduction in the profile of the device for ease of insertion and removal while maintaining a secure fit would be beneficial. Accordingly, there exists a need for a punctal plug with a means for improved placement and securement in varied anatomies.
The punctal plug incorporating a balloon structure in accordance with the present invention overcomes the limitations associated with the prior art devices as briefly described above.
In accordance with a first aspect, the present invention is directed to a lacrimal insert. The lacrimal insert comprising a punctal plug including a body portion having first and second ends, and an inflatable/deflatable element cooperatively associated with the first end of the body portion.
In accordance with another aspect, the present invention is directed to a method for treating an eye of a patient. The method comprising implanting a punctal plug, having a body portion with a first end and a second end, into a punctum of an eyelid, and inflating an inflatable/deflatable element cooperatively associated with the first end of the body portion to anchor the punctal plug in a lacrimal canaliculus.
The present invention is directed to a lacrimal insert or punctal plug incorporating a balloon structure that may be inflated and deflated multiple times. The balloon structure may be utilized to secure the punctal plug in position. In other words, the balloon punctal plug of the present invention may be inserted into either the upper and/or lower lacrimal canaliculus with the balloon deflated and then secured in position by inflating the balloon. If and/or when the device has to be removed, the balloon may be deflated. Although a balloon is described herein, any similar structure may be utilized.
The inflatable/deflatable balloon punctal plug may be inserted into either or both the upper or lower lacrimal canaliculus. The balloon punctal plug is inserted into the punctum and then inflated by any suitable means, including the use of saline. When the punctal plug has been inserted into the lacrimal duct and the lower head inflated via the balloon, this then causes the head to expand and conform to the anatomy of the vertical/horizontal canaliculus of the patient. This one size fits all device may be utilized for a majority of patients requiring this type of treatment. The insertion forces are negligible due to the low profile of the non-expanded head. With the appropriate selection of material for the balloon punctal plug, the canaliculus will self-seal once the balloon is expanded via inflation.
The balloon punctal plug of the present invention provides a device capable of conforming to different anatomies without any significant increase in cost or ease of manufacture. The balloon punctal plug may also deliver a therapeutic agent similarly to existing non-balloon punctal plugs. With the inflatable or expandable balloon, the punctal plug may be more securely positioned with lower risk of accidental removal.
The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
Tears or the tear film comprises three layers. The first layer or bottom layer is the layer that coats the eye and comprises mucin which is created by cells in the conjunctiva referred to as goblet cells. The mucin fills in microscopic irregularities on or in the eye's surface which is important to clear vision. The second layer or middle layer of the tear film comprises essentially water and makes up the bulk of the tear film. A majority of the watery component is produced or supplied from the main lacrimal or tear gland. Emotional tears and reflect tears, i.e. tears resulting from a stimulus such as bright light or a foreign body, come from the main lacrimal gland. Accessory lacrimal glands, known as the glands of Wolfing and Kraus are found in the eyelid tissue and also contribute to the watery component. The third or top layer of the tear film comprises a thin layer of oil secreted by the meibomian glands and functions to prevent the tears from evaporating too quickly.
Insufficient tears, or “dry eye” is a common condition caused by insufficient production of tears from the lacrimal gland which causes symptoms such as dryness, redness, burning, reflex tearing, itching, or foreign body sensation. In especially difficult cases of dry eye, a punctal occluder or punctal plug may be placed into one or both of the lacrimal puncta 104, 106, see
Referring now to
In addition to, or alternately, a punctal occluder or plug may be utilized to deliver one or more therapeutic agents and/or medications.
Punctal plugs may take on any number of configurations, sizes and be formed from any number of materials, depending on the desired functionality and/or medications to be delivered.
As set forth above, punctal plugs may take any size and shape. Typically, the body of the punctal plug is in the shape of an elongated cylinder, and may vary in length in the range from about 0.8 mm to about 5 mm and may vary in width in the range from about 0.2 mm to about 3 mm. The size of the opening for medication or drug release may be in the range from about 1 nm to about 2.5 mm. Rather than one large opening at any one location, multiple small openings may be used. The body of the punctal plug may be wholly or partially transparent or opaque. Optionally, the body may include a tint or pigment that makes the plug easier to see when it is placed in a punctum.
Punctal plugs may be fabricated from any number of suitable biocompatible materials including silicone, silicone blends, silicone co-polymers, for example, hydrophilic monomers of polyhdroxyethlmethacrylate, polyethylene glycol, polyvinylpyrrolidone and glycerol, and silicone hydrogel polymers, for example, those described in U.S. Pat. Nos. 5,962,548, 6,020,445, 6,099,852, 6,367,929, and 6,822,016. Other suitable biocompatible materials include polyurethane, polymethylmethacrylate, poly(ethylene glycol), poly(ethylene oxide), poly(propylene glycol), poly(vinyl alcohol), poly(hydroxyethylmethacrylate), poly(vinylpyrrolidone), polyarcrylic, poly(ethyloxazoline), poly(dimethyl acrylamide), phospholipids, for example, phosphoryl choline derivatives, polysulfobetains, acrylic esters, polysaccharides and carbohydrates, for example, hyaluronic acid, dextran, hydroxyethyl cellulose, hydroxyl propyl cellulose, gellan gum, guar gum, heparin sulfate, chondroitin sulfate, heparin and alginate, proteins, for example, gelatin, collagen, albumin and ovalbunin, polyamino acids, fluorinated polymers, for example, polytetrafluoroethylene and polyvinylidine fluoride, polypropylene, polyethylene, nylon and ethylene-co-vinylacetate.
The exterior surfaces of the punctal plug may be wholly or partially coated with a number of different biocompatible coatings. The coating may provide a number of benefits, including lubriciousness to aid in insertion of the device, muco-adhesiveness to improve tissue compatibility, texture to aid in anchoring the device and/or any combination thereof. Suitable biocompatible coatings include gelatin, collagen, hydroxyethyl methacrylate, poly(vinylpyrrolidone), poly(ethylene glycol), heparin, chondroitin sulfate, hyaluronic acid, synthetic and natural proteins, polysaccharides, thiomens, thiolated derivates of polyacrylic acid and chitosan, polyacrylic acid, carboxymethal cellulose and combinations thereof.
It has been found that with certain therapeutic agents or medications, it may be desirable to create a barrier layer between the therapeutic agent containing material to be released from the reservoir within the punctal plug and the interior surface of the walls that define the reservoir due to possible interactions, or inadvertent leaching of the active therapeutic agent through the wall of the punctal plug. In addition, it has been found that the retention of therapeutic agent within the reservoir may be aided by the selection of the geometric configuration of the punctal plug, or with the addition of various anchoring features. For example, a reservoir may comprise a simple cylindrical configuration which may not securely hold a particular therapeutic agent within the reservoir. In other words, that shape, even with a primer layer or adhesive layer may not be sufficient to hold the agent in place. Accordingly, the geometry of the reservoir may be modified to include protrusions or indents for holding the agent. These geometric variations may be utilized alone or in combination with various barrier layers, adhesives and/or primer layers. In other words, various combinations of geometries and coatings may be utilized to hold the drug in and/or force the drug out as required. For example, a barrier layer may be disposed on the external surface of the punctal plug to inhibit diffusion of the therapeutic agent in the body of the punctal plug and to inhibit the infusion of tears into the reservoir containing the therapeutic agent. In addition, the geometry of the punctal plug may be modified to create a better fit within the canaliculus.
The present invention is directed to a lacrimal insert or punctal plug incorporating a balloon structure that may be inflated and deflated multiple times. The balloon structure may be utilized to secure the punctal plug in position within the lacrimal canaliculus. In other words, the balloon punctal plug of the present invention may be inserted into either the upper or lower lacrimal canaliculus with the balloon deflated and then secured in position by inflating the balloon. If and when the punctal plug has to be removed, the balloon may be simply deflated and the low profile device removed. Although a balloon is shown and described herein, any similar structure may be utilized.
As set forth above, the inflatable/deflatable balloon punctal plug may be inserted into either the upper or lower lacrimal canaliculus. The balloon punctal plug is inserted into the punctam and then inflated by any suitable means, including saline solution, air or a medium viscosity fluid, e.g. up to 5000 cp. When the punctal plug has been inserted into the lacrimal duct and the lower head inflated, this then causes the head to expand and conform to the anatomy of the vertical/horizontal canaliculs of the patient. This one size fits all device may be utilized for a majority of patients requiring this type of treatment. The insertion forces are negligible due to the collapse of head, for example, there is no fixed or static arrowhead as illustrated in
Referring now to
The balloon head or balloon 406 may be affixed to the body 404 at the shoulder region 412 by any suitable means including adhesives and welding. In this exemplary embodiment, the balloon 406 is external to the plug 400 and it is preferable that it not separate therefrom.
In the exemplary embodiment illustrated in
In this exemplary embodiment, the balloon 506 is positioned within a chamber 506 at the end of the body 504 distal from the collarette 502. The camber 508 may comprise any suitable design and preferably is formed from a material that is suitably flexible to allow the balloon 506 to easily expand when inflated. This may be controlled by a combination of material, for example, silicone rubber, and/or wall thickness. Directional control of balloon expansion may be achieved by varying different portions of the chamber 508 as described above with respect to the thin and thick zones of the balloon. As illustrated, the exemplary balloon 506 is folded or pleated within the balloon chamber 500 in order to ensure a minimal profile for a potentially large balloon 506. Any suitable pleating or folding configuration may be utilized. Different fold configurations may result in different inflation profiles.
Referring now to
In all of the above described exemplary embodiments, the balloon may comprise various materials, thicknesses, folds and the like to create any number of anchoring configurations to secure the punctal plug in place within the lacrimal canaliculus. The balloon may be incorporated within the body or bulb/head of the punctal plug or affixed to an external portion thereof.
Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific designs and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope of the appended claims.