Vascular lesions within blood vessels in the body can be associated with an increased risk for major adverse events, such as myocardial infarction, embolism, deep vein thrombosis, stroke, and the like. Severe vascular lesions can be difficult to treat and achieve patency for a physician in a clinical setting.
Vascular lesions may be treated using interventions such as drug therapy, balloon angioplasty, atherectomy, stent placement, vascular graft bypass, to name a few. Such interventions may not always be ideal or may require subsequent treatment to address the lesion.
In a first aspect, a photoacoustic catheter adapted for placement within a blood vessel having a vessel wall is provided. The photoacoustic catheter can have an elongate shaft extending from a proximal region to a distal region. The elongate shaft can include a light guide, where the light guide can be configured to be placed in optical communication with a light source. The photoacoustic catheter can include a balloon coupled to the elongate shaft, where the balloon can be configured to expand from a collapsed configuration suitable for advancing the photoacoustic catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the photoacoustic catheter in position relative to a treatment site. The photoacoustic catheter can include a photoacoustic transducer disposed on a surface of the balloon and in optical communication with the light guide. The photoacoustic transducer can include a light-absorbing material and a thermal expansion material.
In a second aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the photoacoustic transducer is located on an outer surface of the balloon.
In a third aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the photoacoustic transducer is located on an inner surface of the balloon.
In a fourth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the photoacoustic transducer includes a conformal coating on the surface of the balloon extending continuously from a proximal location to distal location and extending continuously around a circumference of the balloon.
In a fifth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the photoacoustic transducer can be configured as a plurality of circumferential bars, longitudinal bars, diagonal bars, or islands.
In a sixth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, a distal portion of the light guide includes a diffraction grating pattern configured to, when the balloon is in the first expanded configuration, direct light from the light guide to one or more light pattern locations.
In a seventh aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, a wall of the balloon includes integrated fluid bubbles.
In an eighth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the balloon can be configured to change from a first expanded configuration to a second, further expanded configuration.
In a ninth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the balloon includes a stress concentration structure and the photoacoustic transducer is located on a surface of the stress concentration structure.
In a tenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the stress concentration structure includes a larger diameter region compared to a remainder of an adjacent balloon wall portion, includes a dome structure, or includes a rectangular structure.
In an eleventh aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the thermal expansion material of the photoacoustic transducer is a polymer, and where the polymer is in thermal contact with the light absorbing material.
In a twelfth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the thermal expansion material is selected from a group including polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), polyimide, polyisobutylene (FIB), PIB polyurethane, polyurethanes, styrene isoprene butadiene, ethylene propylene polyacrylic, ethylene acrylic, fluorosilicone, polybutadiene, polyisoprene, and thermoplastic elastomers.
In a thirteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the light-absorbing material is selected from a group including nanoparticles, carbon nanotubes, candle soot, candle soot nanoparticles, carbon black, a nanotube array, multiwall carbon nanotubes, and light absorbing dye.
In a fourteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the light guide is an optical fiber and the light source is a laser.
In a fifteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the photoacoustic catheters herein can include an outer balloon surrounding the balloon having the photoacoustic transducer.
In a sixteenth aspect, a photoacoustic catheter adapted for placement within a blood vessel having a vessel wall is provided. The photoacoustic catheter can include an elongate shaft extending from a proximal region to a distal region, where the elongate shaft can include a light guide. The light guide can be configured to be placed in optical communication with a light source. The photoacoustic catheter can include an outer balloon coupled to the elongate shaft, where the outer balloon can be configured to expand from a collapsed configuration suitable for advancing the photoacoustic catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the photoacoustic catheter in position relative to a treatment site. The photoacoustic catheter can further include an inner balloon coupled to the elongate shaft within the outer balloon, the inner balloon configured to expand from a collapsed configuration suitable for advancing the photoacoustic catheter through a patient's vasculature to a first expanded configuration. The inner balloon can include a photoacoustic transducer disposed on a surface of the inner balloon and in optical communication with the light guide. The photoacoustic transducer can include a light-absorbing material and a thermal expansion material. The photoacoustic catheter can be configured to expand the outer balloon using an outer balloon inflation fluid and to expand the inner balloon using an inner balloon inflation fluid.
In a seventeenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the outer balloon inflation fluid can be a liquid and the inner balloon inflation fluid can be a gas.
In an eighteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the inner balloon can be configured to include a concave portion when in the first expanded configuration, the photoacoustic transducer is located on an outer surface of the inner balloon, and the concave portion can be configured to focus at least one acoustic pressure wave from the photoacoustic transducer.
In a nineteenth aspect, a method for photoacoustically generating pressure waves within a blood vessel is provided. The method can include advancing a photoacoustic catheter to a treatment site within the blood vessel, where the photoacoustic catheter can include an elongate shaft, a balloon coupled to the elongate shaft, a light guide, and a photoacoustic transducer disposed on a surface of the balloon. The method can include expanding the balloon from a collapsed configuration suitable for advancing the photoacoustic catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the photoacoustic catheter in position relative to the treatment site. The method can include after expanding the balloon, activating a light source in optical communication with the light guide and the photoacoustic transducer, thereby imparting acoustic pressure waves upon the treatment site.
In a twentieth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the method can further include, after activating the light source, further expanding the balloon from the first expanded configuration to a second further expanded configuration.
In yet another aspect, in addition to one or more of the preceding aspects, or in the alternative to some aspects, the photoacoustic catheter can include a thermal expansion material and a light-absorbing material that are positioned adjacent to one another in layers.
This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.
Aspects may be more completely understood in connection with the following figures (FIGS.), in which:
While embodiments are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the scope herein is not limited to the particular aspects described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.
Treatment of vascular lesions can reduce major adverse events or death in affected subjects. A major adverse event is one that can occur anywhere within the body due to the presence of a vascular lesion. Major adverse events can include, but are not limited to major adverse cardiac events, major adverse events in the peripheral or central vasculature, major adverse events in the brain, major adverse events in the musculature, or major adverse events in any of the internal organs.
The systems and methods disclosed herein describe the use of pressure waves for intravascular calcification disruption. In various embodiments herein, the pressure wave generation is accomplished using a photoacoustic catheter adapted for placement within a blood vessel. The photoacoustic catheters include an elongate shaft extending from a proximal region to a distal region. The elongate shafts can include a light guide (also sometimes referred to herein as a “first light guide”, “second light guide”, etc.) configured to be placed in optical communication with a light source. The photoacoustic catheters can include a balloon coupled to the elongate shaft and can be configured to expand from a collapsed configuration suitable for advancing the photoacoustic catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the photoacoustic catheter in position relative to a treatment site. The balloon includes a photoacoustic transducer disposed on a surface of the balloon and in optical communication with the light guide, where the photoacoustic transducer includes a light-absorbing material and a thermal expansion material.
As used herein, the terms “pressure wave,” “acoustic wave,” “acoustic pressure wave,” or “sound wave” can be used interchangeably, and describe propagating a pressure disturbance in gaseous, liquid, or solid material medium, including vibrational waves, sound waves, ultrasonic waves and acoustic shock waves.
As used herein, the terms “intravascular lesion” or “vascular lesion”, can be used interchangeably, and describe any lesion region within or adjacent to a vessel wall.
It will be appreciated that the photoacoustic catheters herein can include many different forms. Referring now to
The elongate shaft 102 of photoacoustic catheter 100 can be coupled to a (also sometimes referred to herein simply as a “light guide”) 110 in optical communication with a light source 116. In some embodiments, the first light guide 110 can be an optical fiber and the light source can be a laser. The light source 116 can be in optical communication with the first light guide 110 at a proximal region 104 of the elongate shaft 102. A schematic depiction of exemplary emitted light 126 as transmitted by the first light guide 110 is shown. It will be appreciated that, photoacoustic catheter 100 can include more than one light guide. In some embodiments, photoacoustic catheter 100 can include a second light guide, a third light guide, a fourth light guide, a fifth light guide, a sixth light guide, or more. In some embodiments, a plurality of light guides will be evenly spaced and radially offset from each other so that where there are n light guides, they are spaced apart by 360 degrees divided by n. In other embodiments, the light guides will be unevenly spaced and radially offset from each other.
It will be appreciated that the photoacoustic catheters herein can include any number of light guides. For example, in some embodiments, the photoacoustic catheters herein can include from one light guide to five light guides. In other embodiments, the photoacoustic catheters herein can include from five to fifteen light guides. In yet other embodiments, the photoacoustic catheters herein can include from ten light guides to thirty light guides. The photoacoustic catheters herein can include one, two, three, four, five, six, seven, eight, nine, or ten light guides. The photoacoustic catheters can include 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 light guides. It will be appreciated that photoacoustic catheters herein can include any number of light guides that can fall within a range, wherein any of the forgoing numbers can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range. In some embodiments, the photoacoustic catheters herein can include more than 30 light guides.
The photoacoustic catheter 100 includes a balloon 122. The balloon 122 can expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. Expansion of the balloons herein to various expanded configurations will be discussed in more detail below. The balloon 122 includes a photoacoustic transducer 118 disposed on a surface of the balloon 122 and in optical communication with the first light guide 110 to direct light 126 to the interior of balloon 122. In some embodiments, the photoacoustic transducer 118 is disposed on an outer surface of the balloon 122, as shown in
The photoacoustic transducer 118 can be adapted to impart acoustic pressure waves upon a calcified lesion to induce fractures in the calcified lesion. The photoacoustic transducer 118 can be formed from a light-absorbing material and a thermal expansion material. In some embodiments, the thermal expansion material of the photoacoustic transducer 118 is a polymer, and the polymer is in thermal contact with the light absorbing material. The thermal expansion material and the light absorbing material will both be discussed in more detail below. The balloon 122 can be inflated by introduction of a balloon inflation fluid 124. The balloon inflation fluid 124 can include a fluid suitable for transmitting acoustic energy from the first light guide 110 to an inside surface of the balloon 122. Exemplary balloon inflation fluids can include, but are not to be limited to one or more of water, saline, contrast medium, gases such as carbon dioxide, and the like. The balloon inflation fluids suitable for use herein can be tailored on the basis of composition, viscosity, density, and the like in order to manipulate the rate of travel of the acoustic pressure waves therein.
The photoacoustic transducer can be conformal and continuous on at least a portion of a surface of the balloon. In some embodiments, the photoacoustic transducer includes a conformal coating on a surface of the balloon 122 extending continuously from a proximal location to distal location and extending continuously around a circumference of the balloon 122, as shown in
Referring now to
The photoacoustic transducer can be localized on various structures on a surface of the balloon 122. Referring now to
The configuration of photoacoustic catheter 800 in
In some examples, photoacoustic catheters having stress concentration structures include a photoacoustic transducer located on a surface of the stress concentration structure, such as an inner surface of the stress concentration structure or an outer surface of the stress concentration structure, which are shown in
It will be appreciated that the stress concentration structures include those having a larger diameter region compared to a remainder of an adjacent balloon wall portion. Referring to
The stress concentration structures herein can include those that have a height 806 extending in a direction perpendicular to an outer surface of the balloon of from 1 micrometer (μm) to 500 μm. In some embodiments, the stress concentration structure can include those that have a height 806 extending in a direction perpendicular to an outer surface of the balloon of from 75 μm to 200 μm. In some embodiments, the stress concentration structure can include those that have a height 806 extending in a direction perpendicular to an outer surface of the balloon of from 1 μm to 50 μm. In some embodiments, the height 806 of the stress concentrator can be greater than or equal to 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 210 μm, 220 μm, 230 μm, 240 μm, 250 μm, 260 μm, 270 μm, 280 μm, 290 μm, 300 μm, 310 μm, 320 μm, 330 μm, 340 μm, 350 μm, 360 μm, 370 μm, 380 μm, 390 μm, 400 μm, 410 μm, 420 μm, 430 μm, 440 μm, 450 μm, 460 μm, 470 μm, 480 μm, 490 μm, or 500 μm, or can be an amount falling within a range between any of the foregoing.
The photoacoustic transducer can also be localized along the longitudinal axis of balloon 122. Referring now to
The photoacoustic catheters herein may include one or more diffraction gratings used to direct light from a light guide onto one or more specific locations on a surface of the balloon. Referring now to
The diffraction grating patterns can include, but are not to be limited to, the diffraction grating patterns shown in
Light guides suitable for use in the embodiments herein can include one or more diffraction gratings and one or more fiber diffusers within the distal portion of the light guide to provide multiple selected regions within the light guide for directing toward the balloon surface. A fiber diffuser can be included as a part of the light guide that diverts light away from its axial path through the light guide and to a side surface portion. In some embodiments, the fiber diffusers can be included within the light guide at one or more regions of the distal portion. Referring now to
By way of example, light guide 1800 includes a plurality of diffraction gratings including a first, second, and third diffraction gratings 1808, 1810, and 1812, respectively, positioned along the elongate shaft of the light guide 1800. The first, second, and third diffraction gratings 1808, 1810, and 1812, respectively, can be in optical communication with the first, second, and third fiber diffusers 1802, 1804, and 1806, respectively, at a plurality of side surface portions of light guide 1800. Light 1801 within each of the first, second, and third fiber diffusers 1802, 1804, and 1806 is directed to exit the light guide 1800 at a side surface portion and is dispersed by the first, second, and third diffraction gratings 1808, 1810, and 1812, respectively. Light energy can be dispersed by the diffraction gratings in a variety of ways depending on the configuration of the diffraction coating. The diffraction gratings 1808, 1810, and 1812 of light guide 1800 can be axially spaced apart with at least one intervening non-emitting portion 1820 of the light guide 1800 disposed between the plurality of diffraction gratings.
The fiber diffusers and diffraction gratings shown in
In some embodiments, a single large fiber diffuser can be included within the light guide at the distal portion. Referring now to
Light 1901 is dispersed by the diffraction grating 1904 about the light guide 1900. The fiber diffuser 1902 and the diffraction grating 1904 can be configured to span the entire circumference of light guide 1900. The fiber diffuser 1902 can be a cylindrical fiber diffuser. The diffraction grating 1904 can be a cylindrical grating. The side surface portion of the light guide disposed in between the fiber diffuser 1902 and the diffraction grating 1904 can be a cylindrical side portion. While light guides 1800 and 1900 are shown having both fiber diffusers and diffraction gratings, it will be appreciated that in some embodiments the light guides herein can include only fiber diffusers. In some embodiments, the light guides herein can include those with only diffraction gratings. In other embodiments, the light guides herein can include those having any combination of fiber diffusers and diffraction gratings, or both.
To create diffraction gratings along the light guide, at least a portion of the cladding is removed or modified to provide an opening in the cladding that exposes a region of the light guide core for placement of a diffraction grating. In some embodiments, the portion of the cladding that is removed can be in the shape of a square, a circle, an oval, a trapezoid, and the like. In some embodiments, the portion of the cladding removed from the light guide can extend circumferentially about the entire light guide. In other embodiments, the portion of the cladding removed from the light guide can extend circumferentially about a portion of the light guide. In some embodiments, the diffraction grating is integral to a cladding layer about the light guide. In yet other embodiments, the portion of the cladding removed from the light guide can be in the shape of a spiral circumferentially disposed about a portion of the light guide.
It will be appreciated that the photoacoustic catheters herein can include multiple balloons. Referring now to
The elongate shaft 102 of photoacoustic catheter 2000 can be coupled to a first light guide 110 in optical communication with a light source 116. In some embodiments, the first light guide can be an optical fiber and the light source can be a laser. The light source 116 can be in optical communication with the first light guide 110 at a proximal region 104 of the elongate shaft 102. A schematic depiction of exemplary emitted light 126 as transmitted by the first light guide 110 is shown. It will be appreciated that, photoacoustic catheter 2000 can include more than one light guide. In some embodiments, photoacoustic catheter 2000 can include a second light guide, a third light guide, a fourth light guide, a fifth light guide, a sixth light guide, or more. In some embodiments, a plurality of light guides will be evenly spaced and radially offset from each other so that where there are n light guides, they are spaced apart by 360 degrees divided by n. In other embodiments, the light guides will be unevenly spaced and radially offset from each other.
It will be appreciated that the photoacoustic catheters herein can include any number of light guides. For example, in some embodiments, the photoacoustic catheters herein can include from one light guide to five light guides. In other embodiments, the photoacoustic catheters herein can include from five to fifteen light guides. In yet other embodiments, the photoacoustic catheters herein can include from ten light guides to thirty light guides. The photoacoustic catheters herein can include one, two, three, four, five, six, seven, eight, nine, or ten light guides. The photoacoustic catheters can include 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 light guides. It will be appreciated that photoacoustic catheters herein can include any number of light guides that can fall within a range, wherein any of the forgoing numbers can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range. In some embodiments, the photoacoustic catheters herein can include more than 30 light guides.
The photoacoustic catheter 2000 includes an outer balloon 2002 coupled to the elongate shaft 102. The outer balloon 2002 can expand from a collapsed configuration 2302 (illustrated in
The inner balloon 2004 of photoacoustic catheter 2000 can include a photoacoustic transducer 118 disposed on a surface of the inner balloon 2004 and can be in optical communication with the first light guide 110. In some embodiments, the photoacoustic transducer 118 is disposed on an outer surface of the inner balloon 2004, as shown in
The photoacoustic transducer 118 disposed on the inner balloon 2004 can be adapted to impart acoustic pressure waves upon a calcified lesion to induce fractures in the calcified lesion. The photoacoustic transducer 118 can be formed from a light-absorbing material and a thermal expansion material. In some embodiments, the thermal expansion material of the photoacoustic transducer 118 is a polymer, and the polymer is in thermal contact with the light absorbing material. The thermal expansion material and the light absorbing material will both be discussed in more detail below.
The photoacoustic catheter 2000 can be configured to expand the outer balloon 2002 using an outer balloon inflation fluid 2006 and configured to expand the inner balloon 2004 using an inner balloon inflation fluid 2008. The balloon inflation fluids herein can include a fluid suitable for transmitting acoustic energy from the first light guide 110 to an inside surface of the outer balloon 2002 and the inner balloon 2004. Exemplary balloon inflation fluids can include, but are not to be limited to, water, saline, contrast agent, gases such as oxygen and carbon dioxide, and the like, and will be discussed in more detail below. In some embodiments, the outer balloon inflation fluid 2006 is a liquid and the inner balloon inflation fluid 2008 is a gas. In some embodiments, the outer balloon inflation fluid 2006 is a gas and the inner balloon inflation fluid 2008 is a liquid. In some embodiments the inner balloon inflation fluid 2008 is the same as the outer balloon inflation fluid 2006. In some embodiments, an acoustic impedance mismatch can exist between inner balloon inflation fluid 2008 and outer balloon inflation fluid 2006 to increase acoustic coupling efficiency.
Referring now to
The cross-sectional view presented in
It will be appreciated that the configuration of inner balloon 2004 of
Methods
The photoacoustic catheters described herein can be used in one or more methods for photoacoustically generating pressure waves within a blood vessel. Referring now to
Balloons
The balloons suitable for use in the photoacoustic catheters herein include those that exhibit good adhesion to the photoacoustic transducer materials described herein. For embodiments where the photoacoustic transducer is disposed on the exterior surface of the balloon, suitable balloon materials exhibit a high transparency for light. Without being bound by any particular theory, transparency can refer to the ability of a material to transmit light without appreciable scattering of the light by the material and is reported as total transmittance. Transmittance is reported as the ratio of transmitted light to the incident light, and can be reduced by reflection of light by the material, scattering of light by the material, and absorption of light by the material. In some embodiments, the materials suitable for use in the balloons herein can include those with a transmittance of about 50% to about 100%. In some embodiments, the transmittance can be greater than or equal to 50%, 60%, 70%, 80%, 90%, or 100%, or can be an amount falling within a range between any of the foregoing.
The balloons herein can be configured to be expanded from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. After treatment at a treatment site, the balloon can be further expanded from the first expanded configuration to a second further expanded configuration. In some embodiments, the second further expanded configuration includes a balloon diameter larger than the balloon diameter of the first expanded configuration. It will be appreciated that the balloons herein can assume multiple expanded configurations between the first expanded configuration and a second further expanded configuration. In some embodiments, the balloons herein will include a maximum expanded configuration. In some embodiments, the second further expanded configuration can be the maximum expanded configuration of the balloon.
In some embodiments, the balloons herein are made from silicone. In other embodiments, the balloons herein are made from polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ material available from Arkema (which has a location at King of Prussia, Pa., USA), nylon, and the like. In some embodiments, the balloons can include those having diameters ranging from 1 millimeter (mm) to 25 mm in diameter. In some embodiments, the balloons can include those having diameters ranging from 1.5 mm to 12 mm in diameter. In some embodiments, the balloons can include those having diameters ranging from 1 mm to 5 mm in diameter. In some embodiments, the diameter can be greater than or equal to 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, 5.5 mm, 6.0 mm, 6.5 mm, 7.0 mm, 7.5 mm, 8.0 mm, 8.5 mm, 9.0 mm, 9.5 mm, 10.0 mm, 10.5 mm, 11.0 mm, 11.5 mm, 12.0 mm, 12.5 mm, 13.0 mm, 13.5 mm, 14.0 mm, 14.5 mm, 15.0 mm, 15.5 mm, 16.0 mm, 16.5 mm, 17.0 mm, 17.5 mm, 18.0 mm, 18.5 mm, 19.0 mm, 19.5 mm, or 20.0 mm, or can be an amount falling within a range between any of the foregoing.
In some embodiments, the balloons herein can include those having a length ranging from 5 mm to 300 mm in length. In some embodiments, the balloons herein can include those having a length ranging from 8 mm to 200 mm in length. In some embodiments, the length of the balloon can be greater than or equal to 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, 150 mm, 160 mm, 170 mm, 180 mm, 190 mm, 200 mm, 210 mm, 220 mm, 230 mm, 240 mm, 250 mm, 260 mm, 270 mm, 280 mm, 290 mm, or 300 mm, or can be an amount falling within a range between any of the foregoing.
The balloons herein can be inflated to inflation pressures from 1 atmosphere (atm) to 70 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from 6 atm to 20 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from 20 atm to 70 atm. In some embodiments, the balloons herein can be inflated to inflation pressures that can be greater than or equal to 1 atm, 10 atm, 20 atm, 30 atm, 40 atm, 50 atm, 60 atm, or 70 atm, or can be an amount falling within a range between any of the foregoing.
The balloons herein can include those having various shapes, including, but not to be limited to, a conical shape, a square shape, a rectangular shape, a spherical shape, a conical/square shape, a conical/spherical shape, an extended spherical shape, an oval shape, a tapered, shape, a bone shape, a stepped diameter shape, an offset shape, or a conical offset shape.
In some embodiments, the balloons herein can provide a therapeutic agent to a treatment site. In some embodiments, the therapeutic agent can be delivered via a drug eluting coating, a drug eluting stent structure, or by the delivery of a drug composition through one or more lumens of the catheters described herein. The drug elution coating or drug eluting stent structure can include one or more therapeutic agents including anti-inflammatory agents, anti-neoplastic agents, anti-angiogenic agents, and the like. Exemplary agents can include, but is not to be limited to paclitaxel, docetaxel, everolimus, and sirolimus, and analogs thereof.
The balloons suitable for use in the photoacoustic catheters herein can include one or more acoustic focusing elements, such as an acoustic mirror. Referring now to
Embodiments herein having multiple balloons can also be configured to include one or more focusing elements. By way of example, two balloon walls can be configured to trap gas therebetween such that the trapped gas can act as an acoustic mirror. In the configuration shown in
Balloon Fluids
Exemplary balloon fluids suitable for use herein can include, but are not to be limited to one or more of water, saline, contrast agent, fluorocarbons, perfluorocarbons, gases, such as carbon dioxide, and the like. In some embodiments, the balloon inflation fluids include a mixture of saline to contrast agent in a volume ratio of 50:50. In some embodiments, the balloon fluids include a mixture of saline to contrast agent in a volume ratio of 25:75. In some embodiments, the balloon fluids include a mixture of saline to contrast agent in a volume ratio of 75:25. The balloon fluids suitable for use herein can be tailored on the basis of composition, viscosity, and the like in order to manipulate the rate of travel of the acoustic pressure waves therein. The balloon fluids suitable for use herein are biocompatible.
In some embodiments, the contrast agents used herein can include, but are not to be limited to, iodine-based contrast agents, such as ionic or non-ionic iodine-based contrast agents. Some non-limiting examples of ionic iodine-based contrast agents include diatrizoate, metrizoate, iothalamate, and ioxaglate. Some non-limiting examples of non-ionic iodine-based contrast agents include iopamidol, iohexol, ioxilan, iopromide, iodixanol, and ioversol. In other embodiments, non-iodine based contrast agents can be used. Suitable non-iodine containing contrast agents can include gadolinium (III)-based contrast agents. Suitable fluorocarbon and perfluorocarbon agents can include, but are not to be limited to, agents such as the perfluorocarbon dodecafluoropentane (DDFP, C5F12), perfluoro-octane (PFO), perfluoroperhydrophenanthrene, perfluorodecalin (PFD), perfluorotributylamide (PFTB) and perfluorooctylbromide (PFOB), and the like.
Photoacoustic Transducers
The photoacoustic transducers herein can include those that can be disposed on the internal surface of a balloon or the external surface of a balloon. The photoacoustic transducers disposed on a surface of the balloon can include those that are configured to span the entire circumference of balloon. In some embodiments, the photoacoustic transducers can also include partial transducers that are configured to span from at least 1 to 359 degrees about the balloon in a circumferential direction. In some embodiments, the photoacoustic transducers herein can be disposed on a surface of the balloon in one or more photoacoustic transducer patterns as described herein. By way of example, the photoacoustic transducer patterns can include, but are not to be limited to, circumferential bars, longitudinal bars, diagonal bars, or islands of various shapes and sizes. In various embodiments herein, the photoacoustic catheters can include a plurality of photoacoustic transducers, including a first photoacoustic transducer, a second photoacoustic transducer, a third photoacoustic transducer, a fourth photoacoustic transducer, a fifth photoacoustic transducer, a sixth photoacoustic transducer, a seventh photoacoustic transducer, an eighth photoacoustic transducer, a ninth photoacoustic transducer, a tenth photoacoustic transducer, etc.
Without wishing to be bound by any particular theory, the photoacoustic transducer patterns having multiple photoacoustic transducers herein can be tailored to generate acoustic pressure waves such that adjacent photoacoustic transducers generate acoustic pressure waves that can constructively interfere with one another to generate higher peak pressure at a given location within the vascular lesion.
The photoacoustic transducers herein can generate acoustic pressure waves upon the site of a calcified lesion. The acoustic pressure waves generated by the photoacoustic transducers can be tailored for the specific application, including directionality, shape, convergence, or divergence by tailoring the size, shape and excitation of the photoacoustic transducer(s) and the balloon surface. In some embodiments, the photoacoustic transducer(s) and balloon surface can be tailored to generate a cylindrical acoustic wave symmetrically about a balloon. In other embodiments, the photoacoustic transducers can be tailored to generate multiple acoustic pressure waves from more than one location on a surface of a balloon. In other embodiments, the photoacoustic transducers can be tailored to generate multiple acoustic pressure waves that are directionally offset from one another by from zero degrees to 180 degrees about the balloon.
The size of the photoacoustic transducers can vary and can depend on the treatment location to be accessed. In some embodiments, the photoacoustic transducers can be from 0.1 mm to 6 mm, 0.1 mm to 2 mm, or 10 mm to 100 mm in diameter or width. In some embodiments, the photoacoustic transducers can be from 5 mm to 30 mm in diameter or width. In some embodiments, the photoacoustic transducers can be from 10 mm to 20 mm in diameter or width. A size for a single photoacoustic transducer of about 1 mm2 or less is possible and has efficiency advantages over larger photoacoustic transducers. In other embodiments, the photoacoustic transducers can collectively span from 0.1 mm to 6 mm, 0.1 mm to 2 mm, 10 mm to 100 mm, from 5 mm to 30 mm along the length of the balloon. In yet other embodiments, the photoacoustic transducers can exceed 30 mm in length, exceed 100 mm in length, such as in the context of coronary treatment, or exceed 200 mm to 300 mm in length, such as in the context of peripheral vascular treatment.
The photoacoustic transducers herein can include a light-absorbing material and a thermal expansion material. Exemplary light absorbing material suitable for use herein can include strong light-absorbing materials having large absorption coefficients of units inverse centimeters. Some exemplary light-absorbing materials can include, but not be limited to, nanoparticles, carbon nanotubes, candle soot, candle soot nanoparticles, carbon black, a nanotube array, multiwall carbon nanotubes, and light absorbing dyes. The light-absorbing materials herein can be highly absorbing of laser light such that absorption is rapid on the nanosecond timescale. The rapid absorption of light energy by the light-absorbing material can enable the efficient transfer of thermal energy to the thermal expansion material, thus driving the generation of acoustic waves.
Thermal expansion materials suitable for use herein can include materials having a strong coefficient of thermal expansion. For example, the thermal expansion material can have a coefficient of thermal expansion from 23 degrees Celsius to 100 degrees Celsius of about 0.000012 1/K or higher, about 0.0001 1/K or higher, 0.0002 1/K or higher, or about 0.0003 1/K or higher.
Suitable thermal expansion materials can include polymers having a strong coefficient of thermal expansion. Examples of suitable materials include, but are not to be limited to, polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), polyimide, polyisobutylene (FIB), PIB polyurethane, polyurethanes, styrene isoprene butadiene, ethylene propylene polyacrylic, ethylene acrylic, fluorosilicone, polybutadiene, polyisoprene, and thermoplastic elastomers. For a silicone PDMS material, the coefficient of thermal expansion from 23 degrees Celsius to 100 degrees Celsius can be about 0.00034 1/K. For a plain PTFE material, the coefficient of thermal expansion from 23 degrees Celsius to 100 degrees Celsius can be about 0.000143 1/K. For a polyimide material, the coefficient of thermal expansion from 23 degrees Celsius to 100 degrees Celsius can be about 0.00014 1/K.
Thermal expansion materials suitable for use herein can also include thin metallic films. Thin metallic films can be used alone, or in combination with additional thermal expansion materials, such as thermal expansion materials having a high coefficient of thermal expansion (CTE). Some exemplary metals for use as thermal expansion materials in thin metallic films include, but are not to be limited to silver, copper, and gold, aluminum, beryllium, tungsten, and magnesium.
The photoacoustic transducers herein can be formed by layering a light-absorbing material and a thermal expansion material on a surface of the balloons described herein. In some embodiments, the light-absorbing material and a thermal expansion material can form a composite film on or around the balloons described herein. In some embodiments, the composite film can include one that has layers of the light-absorbing material. In one embodiment, a layer of the light-absorbing material can be disposed on a balloon in optical contact with the core of the light guide and a thermal expansion material can be disposed on the surface of the light-absorbing material layer at the outermost surface. In some embodiments, the thermal expansion material is in thermal contact with the light absorbing material. In some embodiments, the thermal expansion material is in direct contact with the light absorbing material. In other embodiments, the thermal expansion material is in a matrix with the light absorbing material. In yet other embodiments, the thermal expansion material and the light absorbing material are the same.
One suitable configuration for the light-absorbing material and a thermal expansion material can include a layer of candle-soot nanoparticles as the light-absorbing material in contact with a layer of polydimethylsiloxane as the thermal expansion material. Another suitable configuration for the light-absorbing material and a thermal expansion material can include a layer of multiwall carbon nanotubes as the light-absorbing material in contact with a layer of polydimethylsiloxane as the thermal expansion material.
The light-absorbing material and a thermal expansion material can be applied to the balloons using various techniques. In some embodiments, the light-absorbing material and a thermal expansion material can be individually applied to the balloons using a spray coating technique. In other embodiments, the light-absorbing material and a thermal expansion material can be individually applied to the balloons using a dip coating technique. In yet other embodiments, the light-absorbing material and a thermal expansion material can be individually applied to the balloons using an e-spun coating technique.
Light Guides (
The light guides herein can include an optical fiber or flexible light pipe. The light guides herein can be thin and flexible and can allow light signals to be sent with very little loss of strength. The light guides herein can include a core surrounded by a cladding about its circumference. In some embodiments, the core can be a cylindrical core or a partially cylindrical core. The core and cladding of the light guides can be formed from one or more materials, including but not limited to one or more types of glass, silica, or one or more polymers. The light guides may also include a protective coating, such as a polymer. It will be appreciated that the index of refraction of the core will be greater than the index of refraction of the cladding.
Each light guide can guide light along its length to a distal portion having a photoacoustic transducer connected thereto. The light guide can create a light path as a portion of an optical network including a light source. The light path within the optical network allows light to travel from one part of the network to another without being modified. Both the optical fiber or the flexible light pipe can provide a light path within the optical networks herein.
The light guides herein can assume many configurations about the elongate shaft of the photoacoustic catheters described herein. In some embodiments, the light guides can run parallel to the longitudinal axis of the elongate shaft of the photoacoustic catheter. In some embodiments, the light guides can be disposed spirally or helically about the longitudinal axis of the elongate shaft of the photoacoustic catheter. In some embodiments, the light guides can be physically coupled to the elongate shaft. In other embodiments, the light guides can be disposed along the length of the outer diameter of the elongate shaft. In yet other embodiments the light guides herein can be disposed within one or more light guide lumens within the elongate shaft. Various configurations for the elongate shafts and light guide lumens will be discussed below.
Examples of photoacoustic catheters having multiple light guides disposed about the elongate shaft at different positions around the circumference are shown in
When multiple light guides are present, the light guides can be radially offset from one another by about at least about or about 45 degrees. In some embodiments, the light guides can be radially offset from one another by at least about or about 60 degrees. In some embodiments, the light guides can be radially offset from one another by about at least about or 90 degrees. In some embodiments, the light guides can be radially offset from one another by about 180 degrees. In some embodiments, a plurality of light guides will be evenly spaced and radially offset from each other so that where there are n light guides, they are spaced apart by 360 degrees divided by n. In some embodiments, each of the light guide locations shown in
The light guides herein can include one or more diverting features configured to direct light within the light guide toward a side surface portion of the distal portion of the light guide. The diverting feature can include a reflecting element, a refracting element, a fiber diffuser, or any combination thereof, and a first light window positioned on the side surface portion. When light guides include a diverting feature configured to direct light within the light guide toward a side surface portion of the distal portion of the light guide, the light guides can also include at least a first light window positioned on a side surface portion of the light guide. In some embodiments the light windows span the entire circumference of the light guides, while in other embodiments the light windows only span a portion of the circumference of the light guides. Other properties of the light guides, including size, spacing, and distribution are described elsewhere herein.
In various embodiments, the light guides herein include one or more fiber diffusers. In some embodiments, a light guide can include a first fiber diffuser in a distal portion of the light guide, where the first fiber diffuser directs light from the light guide to exit the light guide at a side surface portion of the light guide. In cases where a light guide includes a first fiber diffuser to direct light from the light guide to exit the light guide at a side surface portion of the light guide, the side surface portion of the light guide is in optical communication with a first light window. In some embodiments the light windows span the entire circumference of the light guides, while in other embodiments the light windows only span a portion of the circumference of the light guides.
In yet other embodiments, the light guides herein can include a plurality of light windows and a plurality of fiber diffusers in the distal portion of the light guide. The plurality of light windows can include a first light window and the plurality of fiber diffusers can include the first fiber diffuser. Each fiber diffuser can direct light from the light guide to exit the light guide at a side surface portion of the light guide, where each side surface portion is in optical communication with one of the plurality of light windows. The plurality of light windows can be axially spaced apart with at least one intervening non-emitting portion of the light guide disposed between each of the plurality of light windows. The side surface portion can be a cylindrical side surface portion and a first light window can be configured as a cylindrical window.
The light guides herein can include various configurations at a distal portion of the light guide. Referring now to
In some embodiments, a diverting feature can be included with the light guide to direct light toward a side surface portion of the distal portion of the light guide. A diverting feature can include any feature of the system herein that diverts light from the light guide away from its axial path toward a side surface portion of the light guide. Examples include a reflector, a refracting structure, and a fiber diffuser. Fiber diffusers will be discussed in more detail below.
In other embodiments, the light guides can form a spiral configuration about the longitudinal axis of the elongate shaft of the photoacoustic catheter. In some embodiments, the spiral configuration can run clockwise about the longitudinal axis of the elongate shaft of the photoacoustic catheter, while in other embodiments the spiral configuration can run counter-clockwise about the longitudinal axis of the elongate shaft of the photoacoustic catheter. In some embodiments, the light guides can form a single helix, a double helix, a triple helix, or a quadruple helix about the longitudinal axis of the elongate shaft of the photoacoustic catheter.
The light guides herein can come in various sizes and configurations. The light guides will have a longitudinal axis along the elongate shaft of the light guide and short axis about its circumference. In some embodiments, the light guides can have an outer diameter of about 100 μm, including the cladding and the core. In other embodiments, the light guides can include those that have an outer diameter of from 50 μm to 1000 μm including the cladding and the core. The length of the light guides can include those having a length of from 40 cm to 175 cm. In some embodiments, the length of the light guides can include those having a length of from 50-150 cm. In some embodiments, the length of the light guide can include those having a length of 40 cm, 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 125 cm, 150 cm, or 175 cm. It will be appreciated that the light guides herein can have a usable length that can fall within a range, wherein any of the forgoing lengths can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range.
It will be appreciated that one or more light guides herein can be adhered to the outer surface of the elongate shaft of a catheter, to create a photoacoustic catheter. However, in other embodiments, one or more light guides can be disposed within a lumen of a photoacoustic catheter. In addition, the photoacoustic catheter may define a lumen for a guidewire having an inner diameter of about 0.014 inch (0.356 mm). In some embodiments, the photoacoustic catheter can include those having an inner diameter of about 0.018 inch (0.457 mm). In yet other embodiments, the photoacoustic catheter can include those having an inner diameter of about 0.035 inch (0.889 mm). In some embodiments the light guides herein can be integrated with a balloon catheter. In some embodiments the light guides herein can be integrated into a guide wire. In embodiments where the light guide is integrated into a guide wire, the resulting photoacoustic catheter can be used independently or can be used with various other balloon catheters.
Lumens of the Elongate Shaft (
The elongate shafts herein can include one or more lumens that span the length of the elongate shaft. Referring now to
In the configuration in
The light guides can be disposed within one or more light guide lumens disposed within the elongate shafts symmetrically about the circumference. In the configuration in
The light guides can be disposed within one or more light guide lumens disposed within the elongate shafts asymmetrically about the circumference. In the configuration in
It will be appreciated that the lumens described in
Fiber Diffusers
A fiber diffuser directs light from within a light guide to exit at a side surface portion of the light guide. The fiber diffusers described herein can be created several ways. In some embodiments, the fiber diffusers can be created by micro-machining the surface of the distal portion of a light guide with a CO2 laser. In some embodiments, a fused silica coating can be applied to the distal portion of the light guide. In other embodiments, the fiber diffuser can be formed from a glass, a polymer, or a metal coating on the distal portion of the light guide. In other embodiments, the fiber diffuser can be formed by a fiber Bragg grating on the distal portion of the light guide. In some embodiments, the fiber diffuser can include a machined portion of the light guide, a laser-machined portion of the light guide, fiber Bragg gratings, a fused splicing, a fused splicing forming at least one internal mirror, and a splicing of two or more diffuse regions. Suitable materials for a fiber diffuser can include, but not be limited to, the materials of the core or cladding, ground glass, silver coated glass, gold coated glass, TiO2, and other materials that will scatter and not significantly absorbed the light wavelength of interest. One method that can be used to create a uniform diffuser in a light guide, optical component, or materials is to utilize scattering centers on the order of 50 nanometers to 5 micrometers in size. The scattering centers can have a distribution around 200 nanometers in size.
Light Sources
The light sources suitable for use herein can include various types of light sources including lasers and lamps. Suitable lasers can include short pulse lasers on the nanosecond (ns) timescale. The lasers can also include short pulse lasers on the picosecond (ps), femtosecond (fs), and microsecond (us) timescales.
Exemplary nanosecond lasers can include those within the UV to IR spectrum, spanning wavelengths of about 10 nanometers to 10 millimeters. Nanosecond lasers can include those having repetition rates of up to 200 kHz. In some embodiments, the laser can include a Q-switched thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In some embodiments, the laser can include a neodymium:YAG (Nd:YAG), holmium:YAG (Ho:YAG), erbium:YAG (Er:YAG), excimer laser, helium-neon laser, carbon dioxide laser, as well as doped, pulsed, fiber lasers.
Acoustic Pressure Waves
The photoacoustic catheters herein can generate acoustic pressure waves having pressures in the range of 2 megapascals (MPa) to 25 MPa. The maximum pressure generated by a particular photoacoustic catheter will depend on the light source, the absorbing material, the propagation medium, a distance of the measurement device to the source of the pressure wave, and any other relevant factors. In some embodiments, the photoacoustic catheters herein can generate acoustic pressure waves having peak or maximum pressures in the range of 5 MPa to 20 MPa. In some embodiments, the photoacoustic catheters herein can generate acoustic pressure waves having peak pressures of about 1 MPa, 2 MPa, 3 MPa, 4 MPa, 5 MPa, 6 MPa, 7 MPa, 8 MPa, 9 MPa, 10 MPa, 11 MPa, 12 MPa, 13 MPa, 14 MPa, 15 MPa, 16 MPa, 17 MPa, 18 MPa, 19 MPa, 20 MPa, 21 MPa, 22 MPa, 23 MPa, 24 MPa, or 25 MPa. It will be appreciated that photoacoustic catheters herein can generate acoustic pressure waves having operating pressures or peak pressures that can fall within a range, wherein any of the forgoing numbers can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range.
Therapeutic treatment can act via a fatigue mechanism or a brute force mechanism. For a fatigue mechanism, operating pressures would be about 0.5 MPa to 2 MPa, or about 1 MPa. For a brute force mechanism, operating pressures would be about 20 MPa to 30 MPa, or about 25 MPa. Pressures between the extreme ends of these two ranges may act upon a calcified lesion using a combination of a fatigue mechanism and a brute force mechanism.
It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.
All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.
As used herein, the recitation of numerical ranges by endpoints shall include all numbers subsumed within that range (e.g., 2 to 8 includes 2.1, 2.8, 5.3, 7, etc.).
The headings used herein are provided for consistency with suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not be viewed to limit or characterize the invention(s) set out in any claims that may issue from this disclosure. As an example, although the headings refer to a “Field,” such claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the invention(s) set forth in issued claims.
The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices. As such, aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.
This application claims priority on U.S. Provisional Application Ser. No. 62/863,506, filed on Jun. 19, 2019, and entitled “BALLOON SURFACE PHOTOACOUSTIC SHOCKWAVE GENERATION TO DISRUPT VASCULAR LESIONS”. To the extent permitted, the contents of U.S. Provisional Application Ser. No. 62/863,506 are incorporated in their entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4649924 | Taccardi | Mar 1987 | A |
4699147 | Chilson et al. | Oct 1987 | A |
4799479 | Spears | Jan 1989 | A |
4913142 | Kittrell et al. | Apr 1990 | A |
4932954 | Wondrazek et al. | Jun 1990 | A |
4955895 | Suglyama | Sep 1990 | A |
4960108 | Reichel et al. | Oct 1990 | A |
4994059 | Kosa et al. | Feb 1991 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5041121 | Wondrazek et al. | Aug 1991 | A |
5104391 | Ingle | Apr 1992 | A |
5104392 | Kittrell et al. | Apr 1992 | A |
5116227 | Levy | May 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5173049 | Levy | Dec 1992 | A |
5181921 | Makita et al. | Jan 1993 | A |
5200838 | Nudelman | Apr 1993 | A |
5290277 | Vercimak et al. | Mar 1994 | A |
5324282 | Dodick | Jun 1994 | A |
5372138 | Crowley | Dec 1994 | A |
5387225 | Euteneur | Feb 1995 | A |
5400428 | Grace | Mar 1995 | A |
5422926 | Smith | Jun 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5509917 | Cecchetti | Apr 1996 | A |
5540679 | Fram | Jul 1996 | A |
5562657 | Griffin | Oct 1996 | A |
5598494 | Behrmann et al. | Jan 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5729583 | Tang | Mar 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5860974 | Abele | Jan 1999 | A |
5891135 | Jackson | Apr 1999 | A |
5906611 | Dodick et al. | May 1999 | A |
5944687 | Benett et al. | Aug 1999 | A |
6015404 | Altshuler | Jan 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6123923 | Unger | Sep 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6339470 | Papademetriou et al. | Jan 2002 | B1 |
6368318 | Visuri et al. | Apr 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6514249 | Maguire | Feb 2003 | B1 |
6524251 | Rabiner et al. | Mar 2003 | B2 |
6538739 | Visuri et al. | Mar 2003 | B1 |
6607502 | Maguire et al. | Aug 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6666834 | Restle et al. | Dec 2003 | B2 |
6773447 | Laguna | Aug 2004 | B2 |
6849994 | White et al. | Feb 2005 | B1 |
6947785 | Beatty et al. | Sep 2005 | B1 |
6978168 | Beatty et al. | Dec 2005 | B2 |
6990370 | Beatty et al. | Jan 2006 | B1 |
7309324 | Hayes et al. | Dec 2007 | B2 |
7470240 | Schultheiss et al. | Dec 2008 | B2 |
7569032 | Naimark et al. | Aug 2009 | B2 |
7599588 | Eberle et al. | Oct 2009 | B2 |
7713260 | Essard | May 2010 | B2 |
7758572 | Weber et al. | Jul 2010 | B2 |
7810395 | Zhou | Oct 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7867178 | Simnacher | Jan 2011 | B2 |
7972299 | Carter | Jul 2011 | B2 |
7985189 | Ogden et al. | Jul 2011 | B1 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8166825 | Zhou | May 2012 | B2 |
8192368 | Woodruff | Jun 2012 | B2 |
8292913 | Warnack | Oct 2012 | B2 |
8328820 | Diamant | Dec 2012 | B2 |
3364235 | Kordis et al. | Jan 2013 | A1 |
8419613 | Saadat | Apr 2013 | B2 |
8439890 | Beyar | May 2013 | B2 |
8556813 | Cashman et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8657814 | Werneth | Feb 2014 | B2 |
8709075 | Adams et al. | Apr 2014 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins et al. | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
8986339 | Warnack | Mar 2015 | B2 |
8992817 | Stamberg | Mar 2015 | B2 |
9005216 | Hakala et al. | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
9044618 | Hawkins et al. | Jun 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9072534 | Adams et al. | Jul 2015 | B2 |
9131949 | Coleman et al. | Sep 2015 | B2 |
9138249 | Adams et al. | Sep 2015 | B2 |
9138260 | Miller et al. | Sep 2015 | B2 |
9180280 | Hawkins et al. | Nov 2015 | B2 |
9220521 | Hawkins et al. | Dec 2015 | B2 |
9237984 | Hawkins et al. | Jan 2016 | B2 |
9289132 | Ghaffari et al. | Mar 2016 | B2 |
9289224 | Adams et al. | Mar 2016 | B2 |
9320530 | Grace | Apr 2016 | B2 |
9333000 | Hakala et al. | May 2016 | B2 |
9375223 | Wallace | Jun 2016 | B2 |
9421025 | Hawkins et al. | Aug 2016 | B2 |
9433428 | Hakala et al. | Sep 2016 | B2 |
9504809 | Bo | Nov 2016 | B2 |
9510887 | Burnett | Dec 2016 | B2 |
9522012 | Adams | Dec 2016 | B2 |
9554815 | Adams et al. | Jan 2017 | B2 |
9555267 | Ein-gal | Jan 2017 | B2 |
9566209 | Katragadda et al. | Feb 2017 | B2 |
9579114 | Mantell et al. | Feb 2017 | B2 |
9629567 | Porath et al. | Apr 2017 | B2 |
9642673 | Adams | May 2017 | B2 |
9662069 | De Graff et al. | May 2017 | B2 |
9687166 | Subramaniam | Jun 2017 | B2 |
9730715 | Adams | Aug 2017 | B2 |
9764142 | Imran | Sep 2017 | B2 |
9814476 | Adams et al. | Nov 2017 | B2 |
9861377 | Mantell et al. | Jan 2018 | B2 |
9867629 | Hawkins et al. | Jan 2018 | B2 |
9894756 | Weinkam et al. | Feb 2018 | B2 |
9955946 | Miller et al. | May 2018 | B2 |
9974963 | Imran | May 2018 | B2 |
9974970 | Nuta et al. | May 2018 | B2 |
9993292 | Adams et al. | Jun 2018 | B2 |
10039561 | Adams et al. | Aug 2018 | B2 |
10136829 | Deno et al. | Nov 2018 | B2 |
10149690 | Hawkins et al. | Dec 2018 | B2 |
10159505 | Takala et al. | Dec 2018 | B2 |
10194994 | Deno et al. | Feb 2019 | B2 |
10201387 | Grace et al. | Feb 2019 | B2 |
10206698 | Hakala et al. | Feb 2019 | B2 |
10226265 | Ku et al. | Mar 2019 | B2 |
10357264 | Kat-Kuoy | Jul 2019 | B2 |
10405923 | Yu et al. | Sep 2019 | B2 |
10406031 | Thyzel | Sep 2019 | B2 |
10420569 | Adams | Sep 2019 | B2 |
10441300 | Hawkins | Oct 2019 | B2 |
10478202 | Adams et al. | Nov 2019 | B2 |
10517620 | Adams | Dec 2019 | B2 |
10517621 | Hakala et al. | Dec 2019 | B1 |
10537287 | Braido et al. | Jan 2020 | B2 |
10555744 | Nguyen et al. | Feb 2020 | B2 |
10561428 | Eggert et al. | Feb 2020 | B2 |
10646240 | Betelia et al. | May 2020 | B2 |
10682178 | Adams et al. | Jun 2020 | B2 |
10702293 | Adams et al. | Jul 2020 | B2 |
10709462 | Nguyen et al. | Jul 2020 | B2 |
10758255 | Adams | Sep 2020 | B2 |
10842567 | Grace et al. | Nov 2020 | B2 |
10959743 | Adams et al. | Mar 2021 | B2 |
10966737 | Nguyen | Apr 2021 | B2 |
10967156 | Gulachenski | Apr 2021 | B2 |
10973538 | Hakala et al. | Apr 2021 | B2 |
11000299 | Hawkins et al. | May 2021 | B2 |
11020135 | Hawkins | Jun 2021 | B1 |
11026707 | Ku et al. | Jun 2021 | B2 |
11058492 | Grace et al. | Jul 2021 | B2 |
11076874 | Hakala et al. | Aug 2021 | B2 |
11213661 | Spindler | Jan 2022 | B2 |
11229772 | Nita | Jan 2022 | B2 |
11229776 | Kugler et al. | Jan 2022 | B2 |
11246659 | Grace et al. | Feb 2022 | B2 |
20010016761 | Rudie | Aug 2001 | A1 |
20010051784 | Brisken | Dec 2001 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020065512 | Fjield | May 2002 | A1 |
20020082553 | Duchamp | Jun 2002 | A1 |
20020183729 | Farr et al. | Dec 2002 | A1 |
20020188204 | McNamara | Dec 2002 | A1 |
20030009157 | Evine et al. | Jan 2003 | A1 |
20030050632 | Fjield et al. | Mar 2003 | A1 |
20030065316 | Evine et al. | Apr 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20040002677 | Gentsler | Jan 2004 | A1 |
20040073251 | Weber | Apr 2004 | A1 |
20040097996 | Rabiner | May 2004 | A1 |
20040133254 | Sterzer et al. | Jul 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040243119 | Ane et al. | Dec 2004 | A1 |
20040249401 | Rabiner | Dec 2004 | A1 |
20040254570 | Hadjicostis | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050021013 | Visuri | Jan 2005 | A1 |
20050080396 | Rontal | Apr 2005 | A1 |
20050113722 | Schultheiss | May 2005 | A1 |
20050171437 | Carberry | Aug 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050251131 | Esh | Nov 2005 | A1 |
20050273014 | Gianchandani et al. | Dec 2005 | A1 |
20050277839 | Alderman et al. | Dec 2005 | A1 |
20060033241 | Schewe | Feb 2006 | A1 |
20060084966 | Maguire et al. | Apr 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20060200039 | Brockway et al. | Sep 2006 | A1 |
20060221528 | Li et al. | Oct 2006 | A1 |
20060241524 | Lee et al. | Oct 2006 | A1 |
20060241572 | Zhou | Oct 2006 | A1 |
20060241733 | Zhang et al. | Oct 2006 | A1 |
20060270976 | Savage et al. | Nov 2006 | A1 |
20070043340 | Thyzel | Feb 2007 | A1 |
20070060990 | Satake | Mar 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070118057 | Ein-gal | May 2007 | A1 |
20070142819 | El-Nounou et al. | Jun 2007 | A1 |
20070179496 | Swoyer | Aug 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070255270 | Carney | Nov 2007 | A1 |
20070264353 | Myntti et al. | Nov 2007 | A1 |
20070270897 | Skerven | Nov 2007 | A1 |
20070299392 | Beyar et al. | Dec 2007 | A1 |
20080086118 | Lai | Apr 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080114341 | Thyzel | May 2008 | A1 |
20080132810 | Scoseria et al. | Jun 2008 | A1 |
20080195088 | Farr et al. | Aug 2008 | A1 |
20080214891 | Slenker et al. | Sep 2008 | A1 |
20080296152 | Voss | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090036803 | Warlick et al. | Feb 2009 | A1 |
20090043300 | Reitmajer et al. | Feb 2009 | A1 |
20090054881 | Krespi | Feb 2009 | A1 |
20090097806 | Viellerobe et al. | Apr 2009 | A1 |
20090125007 | Splinter | May 2009 | A1 |
20090192495 | Ostrovsky et al. | Jul 2009 | A1 |
20090247945 | Levit | Oct 2009 | A1 |
20090299327 | Tilson et al. | Dec 2009 | A1 |
20090306533 | Rousche | Dec 2009 | A1 |
20090312768 | Hawkins | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins et al. | May 2010 | A1 |
20100125268 | Gustus et al. | May 2010 | A1 |
20100160903 | Krespi | Jun 2010 | A1 |
20100168572 | Sliwa | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191089 | Stebler et al. | Jul 2010 | A1 |
20100198114 | Novak et al. | Aug 2010 | A1 |
20100199773 | Zhou | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100234875 | Allex et al. | Sep 2010 | A1 |
20100256535 | Novak et al. | Oct 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110059415 | Kasenbacher | Mar 2011 | A1 |
20110082452 | Melsky | Apr 2011 | A1 |
20110082534 | Wallace | Apr 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110184244 | Kagaya et al. | Jul 2011 | A1 |
20110208185 | Diamant et al. | Aug 2011 | A1 |
20110213349 | Brown | Sep 2011 | A1 |
20110245740 | Novak et al. | Oct 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110263921 | Vrba | Oct 2011 | A1 |
20110275990 | Besser et al. | Nov 2011 | A1 |
20120064141 | Andreacchi et al. | Mar 2012 | A1 |
20120071715 | Beyar et al. | Mar 2012 | A1 |
20120071867 | Ryan | Mar 2012 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095335 | Sverdlik et al. | Apr 2012 | A1 |
20120095461 | Derscher et al. | Apr 2012 | A1 |
20120116289 | Tawkins et al. | May 2012 | A1 |
20120116486 | Naga et al. | May 2012 | A1 |
20120123331 | Satake | May 2012 | A1 |
20120123399 | Belikov | May 2012 | A1 |
20120157892 | Reitmajer et al. | Jun 2012 | A1 |
20120197245 | Burnett | Aug 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20120232409 | Stahmann | Sep 2012 | A1 |
20120296367 | Grovender et al. | Nov 2012 | A1 |
20120330293 | Arai | Dec 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130041355 | Heeren et al. | Feb 2013 | A1 |
20130046207 | Capelli | Feb 2013 | A1 |
20130046293 | Arai et al. | Feb 2013 | A1 |
20130053762 | Rontal et al. | Feb 2013 | A1 |
20130116714 | Adams et al. | May 2013 | A1 |
20130190803 | Angel et al. | Jul 2013 | A1 |
20130197614 | Gustus | Aug 2013 | A1 |
20130218054 | Sverdlik et al. | Aug 2013 | A1 |
20130226131 | Bacino et al. | Aug 2013 | A1 |
20130253466 | Campbell | Sep 2013 | A1 |
20130345617 | Wallace | Dec 2013 | A1 |
20140005576 | Adams | Jan 2014 | A1 |
20140005706 | Gelfand et al. | Jan 2014 | A1 |
20140012186 | Thyzel | Jan 2014 | A1 |
20140039002 | Adams et al. | Jan 2014 | A1 |
20140039358 | Zhou et al. | Feb 2014 | A1 |
20140039513 | Hakala | Feb 2014 | A1 |
20140046229 | Hawkins et al. | Feb 2014 | A1 |
20140046353 | Adams | Feb 2014 | A1 |
20140052146 | Curtis et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140058294 | Gross et al. | Feb 2014 | A1 |
20140074111 | Hakala | Mar 2014 | A1 |
20140114198 | Samada et al. | Apr 2014 | A1 |
20140153087 | Hutchings et al. | Jun 2014 | A1 |
20140155990 | Nyuli | Jun 2014 | A1 |
20140180069 | Millett | Jun 2014 | A1 |
20140180126 | Millett | Jun 2014 | A1 |
20140180134 | Hoseit | Jun 2014 | A1 |
20140188094 | Islam | Jul 2014 | A1 |
20140228829 | Schmitt | Aug 2014 | A1 |
20140257144 | Capelli et al. | Sep 2014 | A1 |
20140257148 | Jie | Sep 2014 | A1 |
20140276573 | Miesel | Sep 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20140336632 | Toth | Nov 2014 | A1 |
20140357997 | Hartmann | Dec 2014 | A1 |
20150005576 | Diodone et al. | Jan 2015 | A1 |
20150039002 | Hawkins | Feb 2015 | A1 |
20150073430 | Hakala et al. | Mar 2015 | A1 |
20150080875 | Kasprzyk et al. | Mar 2015 | A1 |
20150105715 | Pikus et al. | Apr 2015 | A1 |
20150119870 | Rudie | Apr 2015 | A1 |
20150141764 | Harks et al. | May 2015 | A1 |
20150250542 | Islam | Sep 2015 | A1 |
20150276689 | Watanabe et al. | Oct 2015 | A1 |
20150313732 | Fulton, III | Nov 2015 | A1 |
20150359432 | Ehrenreich | Dec 2015 | A1 |
20160008016 | Cioanta et al. | Jan 2016 | A1 |
20160016016 | Taylor et al. | Jan 2016 | A1 |
20160018602 | Govari et al. | Jan 2016 | A1 |
20160022294 | Cioanta et al. | Jan 2016 | A1 |
20160038087 | Hunter | Feb 2016 | A1 |
20160095610 | Lipowski et al. | Apr 2016 | A1 |
20160135828 | Tawkins et al. | May 2016 | A1 |
20160143522 | Ransbury | May 2016 | A1 |
20160183819 | Burnett | Jun 2016 | A1 |
20160183957 | Hakala et al. | Jun 2016 | A1 |
20160184020 | Kowalewski et al. | Jun 2016 | A1 |
20160184022 | Grace et al. | Jun 2016 | A1 |
20160184023 | Grace | Jun 2016 | A1 |
20160184570 | Grace et al. | Jun 2016 | A1 |
20160262784 | Grace et al. | Sep 2016 | A1 |
20160270806 | Wallace | Sep 2016 | A1 |
20160234534 | Hawkins et al. | Nov 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160331389 | Hakala et al. | Nov 2016 | A1 |
20160367274 | Wallace | Dec 2016 | A1 |
20160367275 | Wallace | Dec 2016 | A1 |
20170049463 | Popovic et al. | Feb 2017 | A1 |
20170056035 | Adams | Mar 2017 | A1 |
20170056087 | Buckley | Mar 2017 | A1 |
20170086867 | Adams | Mar 2017 | A1 |
20170119469 | Shimizu et al. | May 2017 | A1 |
20170119470 | Diamant et al. | May 2017 | A1 |
20170135709 | Nguyen et al. | May 2017 | A1 |
20170265942 | Grace et al. | Sep 2017 | A1 |
20170303946 | Ku et al. | Oct 2017 | A1 |
20170311965 | Adams | Nov 2017 | A1 |
20180008348 | Grace et al. | Jan 2018 | A1 |
20180042661 | Long | Feb 2018 | A1 |
20180042677 | Yu et al. | Feb 2018 | A1 |
20180049877 | Venkatasubramanian | Feb 2018 | A1 |
20180092763 | Dagan et al. | Apr 2018 | A1 |
20180098779 | Betelia et al. | Apr 2018 | A1 |
20180152568 | Kat-kuoy | Jun 2018 | A1 |
20180238675 | Wan | Aug 2018 | A1 |
20180256250 | Adams et al. | Sep 2018 | A1 |
20180280005 | Parmentier | Oct 2018 | A1 |
20180303501 | Hawkins | Oct 2018 | A1 |
20180303503 | Eggert et al. | Oct 2018 | A1 |
20180303504 | Ggert et al. | Oct 2018 | A1 |
20180304053 | Eggert et al. | Oct 2018 | A1 |
20180333043 | Teriluc | Nov 2018 | A1 |
20180360482 | Nguyen | Dec 2018 | A1 |
20190029702 | De Cicco | Jan 2019 | A1 |
20190029703 | Wasdyke et al. | Jan 2019 | A1 |
20190069916 | Hawkins et al. | Mar 2019 | A1 |
20190099588 | Ramanath et al. | Apr 2019 | A1 |
20190104933 | Stern | Apr 2019 | A1 |
20190117242 | Lawinger | Apr 2019 | A1 |
20190150960 | Nguyen et al. | May 2019 | A1 |
20190175111 | Genereux et al. | Jun 2019 | A1 |
20190175300 | Horn | Jun 2019 | A1 |
20190175372 | Boydan et al. | Jun 2019 | A1 |
20190175407 | Bacher | Jun 2019 | A1 |
20190209368 | Park et al. | Jul 2019 | A1 |
20190232066 | Lim et al. | Aug 2019 | A1 |
20190247680 | Mayer | Aug 2019 | A1 |
20190262594 | Ogata et al. | Aug 2019 | A1 |
20190265419 | Tayebati | Aug 2019 | A1 |
20190282249 | Tran et al. | Sep 2019 | A1 |
20190282250 | Tran et al. | Sep 2019 | A1 |
20190328259 | Deno et al. | Oct 2019 | A1 |
20190365400 | Adams et al. | Dec 2019 | A1 |
20190388002 | Bozsak et al. | Dec 2019 | A1 |
20190388110 | Nguyen et al. | Dec 2019 | A1 |
20190388133 | Sharma | Dec 2019 | A1 |
20190388151 | Bhawalkar | Dec 2019 | A1 |
20200000484 | Hawkins | Jan 2020 | A1 |
20200008856 | Harmouche | Jan 2020 | A1 |
20200022754 | Cottone | Jan 2020 | A1 |
20200038087 | Harmouche | Feb 2020 | A1 |
20200046949 | Chisena et al. | Feb 2020 | A1 |
20200054352 | Brouillette | Feb 2020 | A1 |
20200061931 | Brown et al. | Feb 2020 | A1 |
20200069371 | Brown et al. | Mar 2020 | A1 |
20200085458 | Nguyen et al. | Mar 2020 | A1 |
20200085459 | Adams | Mar 2020 | A1 |
20200107960 | Bacher | Apr 2020 | A1 |
20200129195 | McGowan et al. | Apr 2020 | A1 |
20200129741 | Kawwas | Apr 2020 | A1 |
20200155812 | Zhang et al. | May 2020 | A1 |
20200197019 | Harper | Jun 2020 | A1 |
20200205890 | Harlev | Jul 2020 | A1 |
20200246032 | Betelia et al. | Aug 2020 | A1 |
20200289202 | Miyagawa et al. | Sep 2020 | A1 |
20200297366 | Nguyen et al. | Sep 2020 | A1 |
20200337717 | Walzman | Oct 2020 | A1 |
20200383724 | Adams et al. | Dec 2020 | A1 |
20200397230 | Massimini et al. | Dec 2020 | A1 |
20200398033 | McGowan et al. | Dec 2020 | A1 |
20200405333 | Massimini et al. | Dec 2020 | A1 |
20200405391 | Massimini et al. | Dec 2020 | A1 |
20200406009 | Massimini | Dec 2020 | A1 |
20200406010 | Massimini et al. | Dec 2020 | A1 |
20210038237 | Adams | Feb 2021 | A1 |
20210085347 | Phan et al. | Mar 2021 | A1 |
20210085348 | Nguyen | Mar 2021 | A1 |
20210085383 | Vo et al. | Mar 2021 | A1 |
20210128241 | Schultheis | May 2021 | A1 |
20210137598 | Cook | May 2021 | A1 |
20210153939 | Cook | May 2021 | A1 |
20210177445 | Nguyen | Jun 2021 | A1 |
20210186613 | Cook | Jun 2021 | A1 |
20210212765 | Verhagen | Jul 2021 | A1 |
20210220052 | Cook | Jul 2021 | A1 |
20210220053 | Cook | Jul 2021 | A1 |
20210244473 | Cook et al. | Aug 2021 | A1 |
20210267685 | Schultheis | Sep 2021 | A1 |
20210275247 | Schultheis | Sep 2021 | A1 |
20210275249 | Massimini et al. | Sep 2021 | A1 |
20210282792 | Adams et al. | Sep 2021 | A1 |
20210290259 | Hakala et al. | Sep 2021 | A1 |
20210290286 | Cook | Sep 2021 | A1 |
20210290305 | Cook | Sep 2021 | A1 |
20210298603 | Feldman | Sep 2021 | A1 |
20210307828 | Schultheis | Oct 2021 | A1 |
20210330384 | Cook | Oct 2021 | A1 |
20210338258 | Hawkins et al. | Nov 2021 | A1 |
20210353359 | Cook | Nov 2021 | A1 |
20210369348 | Cook | Dec 2021 | A1 |
20210378743 | Massimini et al. | Dec 2021 | A1 |
20210386479 | Massimini et al. | Dec 2021 | A1 |
20220000505 | Hauser | Jan 2022 | A1 |
20220000506 | Hauser | Jan 2022 | A1 |
20220000507 | Hauser | Jan 2022 | A1 |
20220000508 | Schmitt et al. | Jan 2022 | A1 |
20220000509 | Aser et al. | Jan 2022 | A1 |
20220000551 | Govari et al. | Jan 2022 | A1 |
20220008130 | Massimini et al. | Jan 2022 | A1 |
20220008693 | Humbert et al. | Jan 2022 | A1 |
20220015785 | Hakala et al. | Jan 2022 | A1 |
20220021190 | Pecquois | Jan 2022 | A1 |
20220022902 | Spano | Jan 2022 | A1 |
20220022912 | Efremkin | Jan 2022 | A1 |
20220023528 | Long et al. | Jan 2022 | A1 |
20220071704 | Le | Mar 2022 | A1 |
20220168594 | Mayer | Jun 2022 | A1 |
20220183738 | Flores et al. | Jun 2022 | A1 |
20220218402 | Schultheis | Jul 2022 | A1 |
20220249165 | Cook | Aug 2022 | A1 |
20220273324 | Schultheis | Sep 2022 | A1 |
20220354578 | Cook | Nov 2022 | A1 |
20220387106 | Cook | Dec 2022 | A1 |
20230013920 | Massimini | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
2017205323 | Jan 2022 | AU |
2019452180 | Jan 2022 | AU |
2229806 | Mar 1997 | CA |
2983655 | Oct 2016 | CA |
102057422 | May 2011 | CN |
109223100 | Jan 2019 | CN |
110638501 | Jan 2020 | CN |
106794043 | Mar 2020 | CN |
11399346 | Jan 2022 | CN |
107411805 | Jan 2022 | CN |
107899126 | Jan 2022 | CN |
109475378 | Jan 2022 | CN |
113876388 | Jan 2022 | CN |
113877044 | Jan 2022 | CN |
113907838 | Jan 2022 | CN |
113951972 | Jan 2022 | CN |
113951973 | Jan 2022 | CN |
113974765 | Jan 2022 | CN |
113974826 | Jan 2022 | CN |
215384399 | Jan 2022 | CN |
215386905 | Jan 2022 | CN |
215458400 | Jan 2022 | CN |
215458401 | Jan 2022 | CN |
215505065 | Jan 2022 | CN |
215534803 | Jan 2022 | CN |
215537694 | Jan 2022 | CN |
215584286 | Jan 2022 | CN |
215606068 | Jan 2022 | CN |
215651393 | Jan 2022 | CN |
215651394 | Jan 2022 | CN |
215651484 | Jan 2022 | CN |
215653328 | Jan 2022 | CN |
3038445 | May 1982 | DE |
3836337 | Apr 1990 | DE |
3913027 | Oct 1990 | DE |
202008016760 | Mar 2009 | DE |
102007046902 | Apr 2009 | DE |
102008034702 | Jan 2010 | DE |
102009007129 | Aug 2010 | DE |
202010009899 | Nov 2010 | DE |
102013201928 | Aug 2014 | DE |
102020117713 | Jan 2022 | DE |
0119296 | Sep 1984 | EP |
0261831 | Jun 1992 | EP |
558297 | Sep 1993 | EP |
0571306 | Nov 1993 | EP |
1179993 | Feb 2002 | EP |
1946712 | Jul 2008 | EP |
1946712 | Jul 2008 | EP |
2157569 | Feb 2010 | EP |
2879595 | Jun 2015 | EP |
2879595 | Jun 2015 | EP |
2944264 | Jun 2015 | EP |
3226795 | Oct 2017 | EP |
3318204 | May 2018 | EP |
3461438 | Apr 2019 | EP |
3473195 | Apr 2019 | EP |
3643260 | Apr 2020 | EP |
3076881 | Jan 2022 | EP |
3932342 | Jan 2022 | EP |
3936140 | Jan 2022 | EP |
4051154 | Sep 2022 | EP |
1082397 | Sep 1967 | GB |
S62275446 | Nov 1987 | JP |
20050098932 | Oct 2005 | KR |
20080040111 | May 2008 | KR |
20160090877 | Aug 2016 | KR |
WO9007904 | Jul 1990 | WO |
WO9105332 | Apr 1991 | WO |
9203095 | Mar 1992 | WO |
1992008515 | May 1992 | WO |
9902095 | Jan 1999 | WO |
9920189 | Apr 1999 | WO |
WO200067648 | Nov 2000 | WO |
WO2000067648 | Nov 2000 | WO |
2001003599 | Jan 2001 | WO |
2006006169 | Jan 2006 | WO |
WO2006006169 | Jan 2006 | WO |
WO2009121017 | Oct 2009 | WO |
WO2009149321 | Dec 2009 | WO |
WO2009152352 | Dec 2009 | WO |
2010042653 | Apr 2010 | WO |
WO2011094379 | Aug 2011 | WO |
2011126580 | Oct 2011 | WO |
WO2012025833 | Mar 2012 | WO |
WO20120052924 | Apr 2012 | WO |
WO2012099974 | Jul 2012 | WO |
WO20120120495 | Sep 2012 | WO |
WO2013119662 | Aug 2013 | WO |
20130169807 | Nov 2013 | WO |
WO2013169807 | Nov 2013 | WO |
WO2014022436 | Feb 2014 | WO |
WO2014025397 | Feb 2014 | WO |
WO20140022867 | Feb 2014 | WO |
WO2014138582 | Sep 2014 | WO |
WO2015056662 | Apr 2015 | WO |
WO2015097251 | Jul 2015 | WO |
2015177790 | Nov 2015 | WO |
WO2016089683 | Jun 2016 | WO |
WO2016090175 | Jun 2016 | WO |
WO2016109739 | Jul 2016 | WO |
WO2016151595 | Sep 2016 | WO |
WO2017004432 | Jan 2017 | WO |
WO20170192869 | Nov 2017 | WO |
20180022641 | Feb 2018 | WO |
WO2018022593 | Feb 2018 | WO |
WO2018083666 | May 2018 | WO |
2018175322 | Sep 2018 | WO |
WO2018175322 | Sep 2018 | WO |
WO2018191013 | Oct 2018 | WO |
WO2019200201 | Oct 2019 | WO |
WO2019215869 | Nov 2019 | WO |
WO2019222843 | Nov 2019 | WO |
WO2020056031 | Mar 2020 | WO |
WO20200086361 | Apr 2020 | WO |
WO2020089876 | May 2020 | WO |
WO2020157648 | Aug 2020 | WO |
WO2020256898 | Dec 2020 | WO |
WO2020256898 | Dec 2020 | WO |
WO2020256949 | Dec 2020 | WO |
WO2020256949 | Dec 2020 | WO |
WO2020263469 | Dec 2020 | WO |
WO2020263685 | Dec 2020 | WO |
WO2020263687 | Dec 2020 | WO |
WO2020263688 | Dec 2020 | WO |
WO2020263689 | Dec 2020 | WO |
WO2021061451 | Apr 2021 | WO |
WO2021067563 | Apr 2021 | WO |
2021086571 | May 2021 | WO |
2021101766 | May 2021 | WO |
WO2021096922 | May 2021 | WO |
WO2021101766 | May 2021 | WO |
WO2021126762 | Jun 2021 | WO |
WO2021162855 | Aug 2021 | WO |
WO2021173417 | Sep 2021 | WO |
WO2021183367 | Sep 2021 | WO |
WO2021183401 | Sep 2021 | WO |
WO2021188233 | Sep 2021 | WO |
WO2021202248 | Oct 2021 | WO |
WO2021231178 | Nov 2021 | WO |
WO2021247685 | Dec 2021 | WO |
WO2021257425 | Dec 2021 | WO |
WO2022007490 | Jan 2022 | WO |
WO2022008440 | Jan 2022 | WO |
WO2022010767 | Jan 2022 | WO |
WO2022055784 | Mar 2022 | WO |
WO2022125525 | Jun 2022 | WO |
WO2022154954 | Jul 2022 | WO |
WO2022173719 | Aug 2022 | WO |
WO2022187058 | Sep 2022 | WO |
WO2022216488 | Oct 2022 | WO |
WO2022240674 | Nov 2022 | WO |
WO2022260932 | Dec 2022 | WO |
Entry |
---|
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020038517. |
International Search Report and Written Opinion dated Sep. 9, 2020 in PCT Application Serial No. PCT/US2020038530. |
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020038521. |
International Search Report and Written Opinion dated Sep. 7, 2020 in PCT Application Serial No. PCT/US2020034642. |
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009. |
International Search Report and Written Opinion dated Sep. 14, 2020 in PCT Application Serial No. PCT/US2020/038523. |
International Search Report and Written Opinion dated Oct. 2, 2020 in PCT Application Serial No. PCT/US2020/036107. |
Stelzle, F., et al. “Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery”, Lasers in Surgery and Medicine, 2010, pp. 319-325, vol. 42, Wiley-Liss Inc. |
Stelzle, F., et al. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery, Sensors, 2013, pp. 13717-13731, vol. 13, Basel, Switzerland. |
Tagawa, Y., et al. “Structure of laser-induced shock wave in water”, Japan Society for the Promotion of Science, 2016. |
Shen, Y., et al. “Theoretical and experimental studies of directivity of sound field generated by pulsed laser induced breakdown in liquid water”, SPIE, 2013, pp. 8796141-8796148, vol. 8796, SPIE. |
Preisack, M., et al. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline”, Lasers in Surgery and Medicine, 1992, pp. 520-527, vol. 12, Wiley-Liss Inc. |
Versluis, M., et al. “How Snapping Shrimp Snap: Through Cavitating Bubbles”, Science Mag, 2000, pp. 2114-2117, vol. 289, American Association for the Advancement of Science, Washington DC, USA. |
Yan, D., et al. “Study of the Electrical Characteristics, Shock-Wave Pressure Characteristics, and Attenuation Law Based on Pulse Discharge in Water”, Shock and Vibration, 2016, pp. 1-11, vol. 2016, Article ID 6412309, Hindawi Publishing Corporation. |
Zhang, Q., et al. “Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles”, Water, 2018, pp. 1-12, vol. 10, No. 1683. |
“Damage threshold of fiber facets”, NKT Photonics, 2012, pp. 1-4, Denmark. |
Smith, A., et al. “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm”, Applied Optics, 2008, pp. 4812-4832, vol. 47, No. 26, Optical Society of America. |
Smith, A., et al. “Deterministic Nanosecond Laser-Induced Breakdown Thresholds in Pure and Yb3 Doped Fused Silica”, SPIE, 2007, pp. 6453171-64531712, vol. 6453, SPIE. |
Sun, X., et al. “Laser Induced Damage to Large Core Optical Fiber by High Peak Power Laser”, Specialty Photonics Division, 2010. |
Smith, A., et al. “Nanosecond laser-induced breakdown in pure and Yb3 doped fused silica”, SPIE, 2007, vol. 6403, SPIE. |
Smith, A., et al. “Optical Damage Limits to Pulse Energy From Fibers”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, pp. 153-158, vol. 15, No. 1, IEEE. |
Reichel, E., et al. “A Special Irrigation Liquid to Increase the Reliability of Laser-Induced Shockwave Lithotripsy”, Lasers in Surgery and Medicine, 1992, pp. 204-209, vol. 12, Wiley-Liss Inc., Graz, Austria. |
Reichel, E., et al. “Bifunctional irrigation liquid as an ideal energy converter for laser lithotripsy with nanosecond laser pulses”, SPIE Lasers in Urology, Laparoscopy, and General Surgery, 1991, pp. 129-133, vol. 1421, SPIE. |
Reichel, E., et al. “Laser-induced Shock Wave Lithotripsy with a Regenerative Energy Converter”, Lasers in Medical Science, 1992, pp. 423-425, vol. 7, Bailliere Tindall. |
Hardy, L., et al. “Cavitation Bubble Dynamics during Thulium Fiber Laser Lithotripsy”, SPIE BiOS, 2016, vol. 9689, SPIE. |
Deckelbaum, L., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, vol. 14, Wiley-Liss Inc., Conneticuit, USA. |
Shangguan, H., et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and on Submerged Targets”, Diagnostic and Therapeutic Cardiovascular Interventions VII, SPIE, 1997, pp. 783-791, vol. 2869, SPIE. |
Van Leeuwen, T., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine, 1996, pp. 381-390, vol. 18, Wiley-Liss Inc., The Netherlands. |
Vogel, A., et al. “Minimization of Cavitation Effects in Pulsed Laser Ablation Illustrated on Laser Angioplasty”, Applied Physics, 1996, pp. 173-182, vol. 62, Springer-Verlag. |
Vogel, A., et al. “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water”, The Journal of Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, The Acoustical Society of America. |
Varghese, B., et al. “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser Induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America. |
Linz, N., et al. “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state”, Physical Review, 2015, p. 134114.1-1341141.10, vol. 91, American Physical Society. |
International Search Report and Written Opinion dated Jun. 27, 2018, in PCT Application Serial No. PCT/US2018/027121. |
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027801. |
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027784. |
European Search Report, for European Patent Application No. 18185152, dated Dec. 13, 2018. |
International Search Report and Written Opinion dated May 22, 2019, in PCT Application Serial No. PCT/US2019/022009. |
International Search Report and Written Opinion dated May 29, 2019, in PCT Application Serial No. PCT/US2019/022016. |
International Search Report and Written Opinion dated Jun. 22, 2018, in Application Serial No. NL2019807, issued by the European Patent Office. |
International Search Report and Written Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960. |
Shariat, Mohammad H., et al. “Localization of the ectopic spiral electrical source using intracardiac electrograms during atrial fibrillation.” 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015. |
Nademanee, Koonlawee, et al. “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate.” Journal of the American College of Cardiology 43.11 (2004): 2044-2053. |
Calkins, Hugh. “Three dimensional mapping of atrial fibrillation: techniques and necessity.” Journal of interventional cardiac electrophysiology 13.1 (2005): 53-59. |
Shariat, Mohammad Hassan. Processing the intracardiac electrogram for atrial fibrillation ablation. Diss. Queen's University (Canada), 2016. |
Meng et al., “Accurate Recovery of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). |
Jiang et al., “Multielectrode Catheter For Substrate Mapping for Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). |
Sacher et al., “Comparison of Manual Vs Automatic Annotation to Identify Abnormal Substrate for Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336). |
Noimark, Sacha, et al., “Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging”, Advanced Functional Materials, 2016, pp. 8390-8396, vol. 26, Wiley-Liss Inc. |
Chen, Sung-Liang, “Review of Laser-Generated Ultrasound Transmitters and their Applications to All-Optical Ultrasound Transducers and Imaging”, Appl. Sci. 2017, 7, 25. |
Colchester, R., et al. “Laser-Generated ultrasound with optica fibres using functionalised carbon nanotube composite coatings”, Appl. Phys. Lett., 2014, vol. 104, 173504, American Institute of Physics. |
Poduval, R., et al. “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite”, Appl. Phys. Lett., 2017, vol. 110, 223701, American Institute of Physics. |
Tian, J., et al. “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings”, Optics Express, Mar. 2013, pp. 6109-6114, vol. 21, No. 5, Optical Society of America. |
Kim, J., et al. “Optical Fiber Laser-Generated-Focused-Ultrasound Transducers for Intravascular Therapies”, IEEE, 2017. |
Kang, H., et al. “Enhanced photocoagulation with catheter-based diffusing optical device”, Journal of Biomedical Optics, 2012, vol. 17, Issue 11, 118001, SPIE. |
International Search Report and Written Opinion dated Jan. 3, 2020, in PCT Application Serial No. PCT/US2019/056579. |
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 18185152.8, dated Jan. 16, 2019. |
European Search Report, for European Patent Application No. 18185152.8, dated Dec. 20, 2018. |
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. |
International Search Report and Written Opinion dated Jan. 29, 2020 in PCT Application Serial No. PCT/US2020/059961. |
International Search Report and Written Opinion dated Jan. 20, 2020 in PCT Application Serial No. PCT/US2020/054792. |
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/018522. |
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/015204. |
International Search Report and Written Opinion dated Jun. 17, 2021 in PCT Application Serial No. PCT/US2021/020934. |
International Search Report and Written Opinion dated Jul. 13, 2021 in PCT Application Serial No. PCT/US2021/024216. |
International Search Report and Written Opinion dated Jun. 22, 2021 in PCT Application Serial No. PCT/US2021/020937. |
International Search Report and Written Opinion dated Jun. 24, 2021 in PCT Application Serial No. PCT/US2021/021272. |
International Search Report and Written Opinion, issued by the European Patent Office for PCT/2021/XXX, dated Sep. 30, 2021. |
International Search Report and Written Opinion dated Jul. 29, 2020 in PCT Application Serial No. PCT/US2020/034005. |
Provisional International Search Report and Written Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960. |
Oriel Instruments, “Introduction to Beam Splitters for Optical Research Applications”, Apr. 2014, pp. 1-9, https://www.azoptics.com/Article.aspx?ArticaID=871. |
International Search Report and Written Opinion dated Apr. 12, 2021 in PCT Application Serial No. PCT/US2020/059960. |
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2020/064846. |
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2021/013944. |
International Search Report and Written Opinion dated May 25, 2021 in PCT Application Serial No. PCT/US2021/017604. |
International Search Report and Written Opinion, issued by the EP/ISA, in PCT/US2021/048819, dated Jan. 14, 2022. |
Davletshin, Yevgeniy R., “A Computational Analysis of Nanoparticle-Mediated Optical Breakdown”, A dissertation presented to Ryerson University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in the Program of Physics, Toronto, Ontario, CA 2017. |
Vogel, A., et al. “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries”, Journal Acoustical Society of America, 1988, pp. 719-731, vol. 84. |
Asshauer, T., et al. “Acoustic transient generation by holmium-laser-induced cavitation bubbles”, Journal of Applied Physics, Nov. 1, 1994, pp. 5007-5013, vol. 76, No. 9, American Institute of Physics. |
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, Splicer Engineering AFL, Duncan, SC USA. |
Ali, Ziad A., et al. “Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions”, JACC: Cardiovascular Imaging, 2017, pp. 897-906, vol. 109, No. 8, Elsevier. |
Ali, Ziad A., et al. “Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification” 2018, European Society of Cardiology. |
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—full article”, Journal of Biophotonics, 2014, pp. 103-109, vol. 7, No. 1-2. |
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—proof” Journal of Biophotonics 7, 2014, No. 1-2. |
Bian, D. C., et al. “Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water”, Hindawi Advances in Materials Science and Engineering, Jan. 2018, 12 pages, vol. 2018, Article ID 8025708. |
Bian, D. C., et al. “Study on Breakdown Delay Characteristics Based on High-voltage Pulse Discharge in Water with Hydrostatic Pressure”, Journal of Power Technologies 97(2), 2017, pp. 89-102. |
Doukas, A. G., et al. “Biological effects of laser induced shock waves: Structural and functional cell damage in vitro”, Ultrasound in Medicine and Biology, 1993, pp. 137-146, vol. 19, Issue 2, Pergamon Press, USA. |
Brodmann, Marianne et al. “Safety and Performance of Lithoplasty for Treatment of Calcified Peripheral Artery Lesions”, JACC, 2017, vol. 70, No. 7. |
Brouillette, M., “Shock Waves at Microscales”, 2003, pp. 3-12, Springer-Verlag. |
Mirshekari, G., et al. “Shock Waves in Microchannels”, 2013, pp. 259-283, vol. 724, Cambridge University Press. |
“Bubble Dynamics and Shock Waves”, Springer, 2013, Springer-Verlag, Berlin Heildelberg. |
Hardy, Luke A., et al. “Cavitation Bubble Dynamics During Thulium Fiber Laser Lithotripsy”, SPIE, Feb. 29, 2016, vol. 9689, San Francisco, California, USA. |
Claverie, A., et al. “Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge”, Review of Scientific Instruments, 2014, American Institute of Physics. |
Blackmon, Richard L., et al. “Comparison of holmium: YAG and thulium fiber laser lithotripsy ablation thresholds, ablation rates, and retropulsion effects”, Journal of Biomedical Optics, 2011, vol. 16(7), SPIE. |
Debasis, P., et al. “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations”, Applied Optics, Aug. 10, 2016, vol. 55, No. 23, Optical Society of America. |
Cook, Jason R., et al. “Tissue mimicking phantoms for photoacoustic and ultrasonic imaging”, Biomedical Optics Express, 2011, vol. 2, No. 11, Optical Society of America. |
Deckelbaum, Lawrence I., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, Wiley-Liss Inc. |
Costanzo, F., “Underwater Explosion Phenomena and Shock Physics”, Research Gate, 2011. |
Mizeret, J. C., et al. “Cylindrical fiber optic light diffuser for medical applications”, Lasers in Surgery and Medicine, 1996, pp. 159-167, vol. 19, Issue 2, Wiley-Liss Inc., Lausanne, Switzerland. |
De Silva, K., et al. “A Calcific, Undilatable Stenosis Lithoplasty, a New Tool in the Box?”, JACC: Cardiovascular Interventions, 2017, vol. 10, No. 3, Elsevier. |
Vesselov, L., et al. “Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers”, Applied Optics, 2005, pp. 2754-2758, vol. 44, Issue 14, Optical Society of America. |
Hutchens, Thomas C., et al. “Detachable fiber optic tips for use in thulium fiber laser lithotripsy”, Journal of Biomedical Optics, Mar. 2013, vol. 18(3), SPIE. |
Kostanski, Kris L., et al. “Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers in Photodynamic Cancer Therapy”, Journal of Applied Polymer Science, 2009, pp. 1516-1523, vol. 112, Wiley InterScience. |
Kristiansen, M., et al. “High Voltage Water Breakdown Studies”, DoD, 1998, Alexandria, VA, USA. |
Dwyer, J. R., et al. “A study of X-ray emission from laboratory sparks in air at atmospheric pressure”, Journal of Geophysical Research, 2008, vol. 113, American Geophysical Union. |
Jansen, Duco E., et al. “Effect of Pulse Duration on Bubble Formation and Laser-Induced Pressure Waves During Holmium Laser Ablation”, Lasers in Surgery and Medicine 18, 1996, pp. 278-293, Wiley-Liss Inc., Austin, TX, USA. |
Shangguan, HanQun et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and on Submerged Targets”, SPIE, 1997, pp. 783-791, vol. 2869. |
Varghese, B., et al. “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation”, SPIE, Mar. 9, 2016, vol. 9740, SPIE, San Francisco, USA. |
Varghese, B., et al. “Effects of polarization and apodization on laser induced optical breakdown threshold”, Optics Express, Jul. 29, 2013, vol. 21, No. 15, Optical Society of America. |
Bonito, Valentina, “Effects of polarization, plasma and thermal initiation pathway on irradiance threshold of laser induced optical breakdown”, Philips Research, 2013, The Netherlands. |
Vogel, A. et al. “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales”, Applied Physics B 68, 1999, pp. 271-280, Springer-Verlag. |
Kang, Hyun W., et al. “Enhanced photocoagulation with catheter based diffusing optical device”, Journal of Biomedical Optics, Nov. 2012, vol. 17(11), SPIE. |
Esch, E., et al. “A Simple Method for Fabricating Artificial Kidney Stones of Different Physical Properties”, National Institute of Health Public Access Author Manuscript, Aug. 2010. |
Isner, Jeffrey M., et al. “Excimer Laser Atherectomy”, Circulation, Jun. 1990, vol. 81, No. 6, American Heart Association, Dallas, TX, USA. |
Israel, Douglas H., et al. “Excimer Laser-Facilitated Balloon Angioplasty of a Nondilateable Lesion”, JACC, Oct. 1991, vol. 18, No. 4, American College of Cardiology, New York, USA. |
Van Leeuwen, Ton G., et al. “Excimer Laser Induced Bubble: Dimensions,Theory, and Implications for aser Angioplasty”, Lasers in Surgery and Medicine 18, 1996, pp. 381-390, Wiley-Liss Inc., Utrecht, The Netherlands. |
Nguyen, H., et al. “Fabrication of multipoint side-firing optical fiber by laser micro-ablation”, Optics Letters, May 1, 2017, vol. 42, No. 9, Optical Society of America. |
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, IEEE, Duncan, SC, USA. |
Whitesides, George M., et al. “Fluidic Optics”, 2006, vol. 6329, SPIE, Cambridge, MA, USA. |
Forero, M., et al. “Coronary lithoplasty: a novel treatment for stent underexpansion”, Cardiovascular Flashlight, 2018, European Society of Cardiology. |
Ghanate, A. D., et al. “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario”, Journal of Biomedical Optics, Feb. 2011, pp. 1-9, vol. 16(2), SPIE. |
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, Jun. 1996, pp. 3465-3474, Acoustical Society of America, Austin, TX, USA. |
Blackmon, Richard L., et al. “Holmium: YAG Versus Thulium Fiber Laser Lithotripsy”, Lasers in Surgery and Medicine, 2010, pp. 232-236, Wiley-Liss Inc. |
Varghese, B., “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America. |
Noack, J., “Influence of pulse duration on mechanical effects after laser-induced breakdown in water”, Journal of Applied Physics, 1998, pp. 7488-EOA, vol. 83, American Institute of Physics. |
Van Leeuwen, Ton G., et al. “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit”, Circulation, Apr. 1993, vol. 87, No. 4, American Heart Association, Dallas, TX, USA. |
Vogel, A., et al. “Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina”, Investigative Ophthalmology & Visual Science, Jun. 1994, pp. 3032-3044, vol. 35, No. 7, Association for Research in Vision and Ophthalmology. |
Jones, H. M., et al. “Pulsed dielectric breakdown of pressurized water and salt solutions”, Journal of Applied Physics, Jun. 1998, pp. 795-805, vol. 77, No. 2, American Institute of Physics. |
Kozulin, I., et al. “The dynamic of the water explosive vaporization on the flat microheater”, Journal of Physics: Conference Series, 2018, pp. 1-4, IOP Publishing, Russia. |
Cross, F., “Laser Angioplasty”, Vascular Medicine Review, 1992, pp. 21-30, Edward Arnold. |
Doukas, A. G., et al. “Laser-generated stress waves and their effects on the cell membrane”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, pp. 997-1003, vol. 5, Issue 4, IEEE. |
Noack, J., et al. “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density”, IEEE Journal of Quantum Electronics, 1999, pp. 1156-1167, vol. 35, No. 8, IEEE. |
Pratsos, A., “The use of Laser for the treatment of coronary artery disease”, Bryn Mawr Hospital, 2010. |
Li, Xian-Dong, et al. “Influence of deposited energy on shock wave induced by underwater pulsed current discharge”, Physics of Plasmas, 2016, vol. 23, American Institute of Physics. |
Logunov, S., et al. “Light diffusing optical fiber illumination”, Renewable Energy and the Environment Congress, 2013, Coming, NY, USA. |
Maxwell, A. D., et al. “Cavitation clouds created by shock scattering from bubbles during histotripsy”, Acoustical Society of America, 2011, pp. 1888-1898, vol. 130, No. 4, Acoustical Society of America. |
McAteer, James A., et al. “Ultracal-30 Gypsum Artificial Stones for Research on the Mechinisms of Stone Breakage in Shock Wave Lithotripsy”, 2005, pp. 429-434, Springer-Verlag. |
Vogel, A., et al. “Mechanisms of Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses”, asers in Surgery and Medicine, 1994, pp. 32-43, vol. 15, Wiley-Liss Inc., Lubeck, Germany. |
Vogel, A., et al. “Mechanisms of Pulsed Laser Ablation of Biological Tissues”, Chemical Reviews, 2003, pp. 677-644, vol. 103, No. 2, American Chemical Society. |
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. |
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. |
Mayo, Michael E., “Interaction of Laser Radiation with Urinary Calculi”, Cranfield University Defense and Security, PhD Thesis, 2009, Cranfield University. |
Mirshekari, G., et al. “Microscale Shock Tube”, Journal of Microelectromechanical Systems, 2012, pp. 739-747, vol. 21, No. 3, IEEE. |
“Polymicro Sculpted Silica Fiber Tips”, Molex, 2013, Molex. |
Zhou, J., et al. “Optical Fiber Tips and Their Applications”, Polymicro Technologies a Subsidiary of Molex, Nov. 2007. |
Iang, Xiao-Xuan, et al. “Multi-Rate-Equation modeling of the energy spectrum of laser-induced conduction band electrons in water”, Optics Express, 2019, vol. 27, No. 4, Optical Society of America. |
Nachabe, R., et al. “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods”, Journal of Biomedical Optics, 2011, vol. 16(8), SPIE. |
Naugol'Nykh, K. A., et al. “Spark Discharges in Water”, Academy of Sciences USSR Institute of Acoustics, 1971, Nauka Publishing Co., Moscow, USSR. |
Van Leeuwen, Ton G., et al. “Noncontact Tissue Ablation by Holmium: YSGG Laser Pulses in Blood”, Lasers in Surgery and Medicine, 1991, vol. 11, pp. 26-34, Wiley-Liss Inc. |
Nyame, Yaw A., et al. “Kidney Stone Models for In Vitro Lithotripsy Research: A Comprehensive Review”, Journal of Endourology, Oct. 2015, pp. 1106-1109, vol. 29, No. 10, Mary Ann Liebert Inc., Cleveland, USA. |
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. |
Zheng, W., “Optical Lenses Manufactured on Fiber Ends”, IEEE, 2015, Splicer Engineering, Duncan SC USA. |
Dwyer, P. J., et al. “Optically integrating balloon device for photodynamic therapy”, Lasers in Surgery and Medicine, 2000, pp. 58-66, vol. 26, Issue 1, Wiley-Liss Inc., Boston MA USA. |
“The New Optiguide DCYL700 Fiber Optic Diffuser Series”, Optiguide Fiber Optic Spec Sheet, Pinnacle Biologics, 2014, Pinnacle Biologics, Illinois, USA. |
Van Leeuwen, Ton G., et al. “Origin of arterial wall dissections induced by pulsed excimer and mid-infared laser ablation in the pig”, JACC, 1992, pp. 1610-1618, vol. 19, No. 7, American College of Cardiology. |
Oshita, D., et al. “Characteristic of Cavitation Bubbles and Shock Waves Generated by Pulsed Electric Discharges with Different Voltages”, IEEE, 2012, pp. 102-105, Kumamoto, Japan. |
Karsch, Karl R., et al. “Percutaneous Coronary Excimer Laser Angioplasty in Patients With Stable and Unstable Angina Pectoris”, Circulation, 1990, pp. 1849-1859, vol. 81, No. 6, American Heart Association, Dallas TX, USA. |
Murray, A., et al. “Peripheral laser angioplasty with pulsed dye laser and ball tipped optical fibres”, The Lancet, 1989, pp. 1471-1474, vol. 2, Issue 8678-8679. |
Mohammadzadeh, M., et al. “Photoacoustic Shock Wave Emission and Cavitation from Structured Optical Fiber Tips”, Applied Physics Letters, 2016, vol. 108, American Institute of Physics Publishing LLC. |
Doukas, A. G., et al. “Physical characteristics and biological effects of laser-induced stress waves”, Ultrasound in Medicine and Biology, 1996, pp. 151-164, vol. 22, Issue 2, World Federation for Ultrasound in Medicine and Biology, USA. |
Doukas, A. G., et al. “Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient”, Ultrasound in Medicine and Biology, 1995, pp. 961-967, vol. 21, Issue 7, Elsevier Science Ltd., USA. |
Piedrahita, Francisco S., “Experimental Research Work on a Sub-Millimeter Spark-Gap For Sub Nanosecond Gas Breakdown”, Thesis for Universidad Nacional De Colombia, 2012, Bogota, Colombia. |
Vogel, A., et al. “Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance”, IEEE Journal of Selected Topics in Quantum Electronics, 1996, pp. 847-859, vol. 2, No. 4, IEEE. |
Park, Hee K., et al. “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface”, Journal of Applied Physics, 1996, pp. 4072-4081, vol. 80, No. 7, American Institute of Physics. |
Cummings, Joseph P., et al. “Q-Switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties”, SPIE, Laser-Tissue Interaction III, 1992, pp. 242-253, vol. 1646. |
Lee, Seung H., et al. “Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications”, Optics Express, 2015, vol. 23, No. 16, Optical Society of America. |
Hui, C., et al. “Research on sound fields generated by laser-induced liquid breakdown”, Optica Applicata, 2010, pp. 898-907, vol. XL, No. 4, Xi'an, China. |
Riel, Louis-Philippe, et al. “Characterization of Calcified Plaques Retrieved From Occluded Arteries and Comparison with Potential Artificial Analogues”, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, pp. 1-11, ASME, Canada. |
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, 1996, pp. 3465-3475, vol. 99, No. 6, Acoustical Society of America. |
Rocha, R., et al. “Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis”, Photomedicine and Lsser Surgery, 2008, pp. 329-335, vol. 26, No. 4, Mary Ann Liebert Inc. |
Scepanovic, Obrad R., et al. “Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque”, Journal of Biomedical Optics, 2011, pp. 1-10, vol. 16, No. 1, SPIE. |
Serruys, P. W., et al. “Shaking and Breaking Calcified Plaque Lithoplasty, a Breakthrough in Interventional Armamentarium?”, JACC: Cardiovascular Imaging, 2017, pp. 907-911, vol. 10, No. 8, Elsevier. |
Vogel, A., et al. “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water”, The Journal of the Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, Acoustical Society of America. |
Vogel, A., et al. “Shock-Wave Energy and Acoustic Energy Dissipation After Laser-induced Breakdown”, SPIE, 1998, pp. 180-189, vol. 3254, SPIE. |
International Search Report and Written Opinion dated Jun. 28, 2022, in PCT Application Serial No. PCT/US2022/015577. |
International Search Report and Written Opinion dated Jun. 27, 2022, in PCT Application Serial No. PCT/US2022/022460. |
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
OHL, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. Oct. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. Dec. 2, 2021. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
Meng et al., “Accurate Recovery of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). May 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
Jiang et al., “Multielectrode Catheter for Substrate Mapping for Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
Sacher et al., “Comparison of Manual Vs Automatic Annotation to Identify Abnormal Substrate for Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.). |
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/062170. |
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/065073. |
Partial Search Report and Provisional Opinion dated May 3, 2022 in PCT Application No. PCT/US2022/015577. |
International Search Report and Written Opinion dated May 13, 2022 in PCT Application Serial No. PCT/US2022/017562. |
International Search Report and Written Opinion dated Aug. 25, 2022 in PCT Application Serial No. PCTUS/2022/028035. |
International Search Report and Written Opinion dated Sep. 15, 2022 in PCT Application Serial No. PCTUS/2022/032045. |
International Search Report and Written Opinion, PCT Application Serial No. PCT/US2022/047751 dated Feb. 10, 2023, by the European Patent Office. (56PCT). |
International Search Report and Written Opinion dated Nov. 8, 2022 in PCT Application Serial No. PCTUS/2022/039678. |
AccuCoat, “Beamsplitter: Divide, combine & conquer”; 2023. |
Lin et al., “Photoacoustic imaging”, Science Direct; 2021. |
Zhou et al., “Photoacoustic Imaging with fiber optic technology: A review”, Science Direct; 2020. |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2022/053775, dated Apr. 21, 2023. (Re 45PCT). |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/011497, dated Apr. 28, 2023. (Re 54PCT). |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/012599, dated May 19, 2023. (Re 57PCT). |
Number | Date | Country | |
---|---|---|---|
20200397453 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62863506 | Jun 2019 | US |